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Abstract: The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance
(MR) imaging to improve the lesion detection and characterization. It generates a signal by changing
the relaxivity of protons from associated water molecules and creates a clearer physical distinction
between the molecule and the surrounding tissues. New gadolinium-based contrast agents displaying
larger relaxivity values and specifically targeted might provide higher resolution and better functional
images. We have synthesized the gadolinium(III) complex of formula [Gd(thy)2(H2O)6](ClO4)3·2H2O
(1) [thy = 5-methyl-1H-pyrimidine-2,4-dione or thymine], which is the first reported compound based
on gadolinium and thymine nucleobase. 1 has been characterized through UV-vis, IR, SEM-EDAX,
and single-crystal X-ray diffraction techniques, and its magnetic and relaxometric properties have
been investigated by means of SQUID magnetometer and MR imaging phantom studies, respectively.
On the basis of its high relaxivity values, this gadolinium(III) complex can be considered a suitable
candidate for contrast-enhanced magnetic resonance imaging.

Keywords: thymine; gadolinium; contrast agent; magnetic resonance; metal complexes; crystal
structure; relaxivity

1. Introduction

Thymine is one of the four natural nitrogen bases that are precursors and part of
the structure of the deoxyribonucleic acid (DNA) macromolecule [1,2]. This pyrimidine
base has been widely studied, in part because of the common mutations of DNA caused
when adjacent thymines are irradiated by UV light and are dimerized, generating the
well-known thymine dimers [2,3]. Furthermore, considerable effort has also been devoted
to the rational design of drugs that might selectively inhibit thymine biosynthesis, thereby
blocking DNA replication, especially in rapidly dividing malignant cells [2].

In comparison with other natural nucleobases, the coordination chemistry of thymine-
based metal complexes has been much less investigated. Most of the thymine-containing
complexes have been prepared with the nucleobase in the form of thyminate anion, that is,
releasing one or two protons of its N-H groups, whereas the reported examples obtained
with the thymine molecule acting through its carbonyl groups as a neutral ligand toward
the metal are much scarcer [4–7]. In that respect, theoretical studies have been performed
on metal clusters to investigate the preferential binding sites of the thymine molecule [8].

There exist some published thymine-based complexes that exhibit singular proper-
ties, as, for instance, the RuII-thymine complex [Ru(PPh3)2(thy)(bpy)]PF6 [where PPh3 =
triphenylphosphine and bpy = 2,2′-bipyridine], which is a potent cytotoxic agent with
the ability to bind to DNA, inducing apoptotic cell death in human colon carcinoma [6,7].
Thymine has also shown to be a highly specific ligand toward HgII metal ion [9,10]. The
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discovery of the linear thymine-HgII-thymine structure, which affords a high stabilization
of thymine-thymine pairs in DNA, has led to the designing and development of recent
thymine-based sensors [11–13].

Regarding lanthanide complexes, only two structures based on thyminate anion
have been published so far, namely, the heteropolynuclear complexes of general for-
mula [{Cp*RhIII(µ-thym)}4{LnIII(NO3)2}]+, where Ln = DyIII and ErIII, which form cationic
metallacalix[4]arene-type systems [14]. Hence, no crystal structure of gadolinium complex
based on thymine has been reported up to date.

As a continuation of our interest in investigating biomolecule-based complexes [15–20],
herein we report the synthesis and characterization of a new gadolinium(III) complex of
formula [Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = thymine], which exhibits a linearly
disposed thymine-GdIII-thymine structure (Figure 1 and Figure S1). 1 displays the first
reported crystal structure based on gadolinium and thymine and is a suitable candidate for
contrast-enhanced magnetic resonance (MR) imaging applications.
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ligand (Figure S2), with this fact indicating the stability of 1 in aqueous solution (Figure 
2a). SEM-EDAX analysis gave a molar ratio of 1:3 for the Gd/Cl relation in 1 (Figure 2b). 

Figure 1. (a) Molecular structure of the thymine nucleobase (thy); (b) Mononuclear [Gd(thy)2(H2O)6]3+ complex in 1.
ClO4

− anions and non-coordinated water molecules have been omitted for clarity. Color code: purple, Gd; red, O; blue, N;
black, C; white, H.

2. Results and Discussion
2.1. Synthetic Procedure

Compound 1 was prepared from a mixture of Gd2O3 and thymine, which reacted in an
aqueous suspension acidulated with perchloric acid, and was stirred at 60 ◦C for 1 h. The
resulting solution was left to evaporate at room temperature for 1 week, thus generating
colorless parallelepipeds of 1. Once synthesized, 1 is air-stable over a period of several
days. In order to study its stability further, electronic absorption spectra of 1 were collected
both in solid state and in aqueous solution (Figure 2 and Figure S2). Remarkably, the two
spectra show the same absorption bands and different ones to that of the free thymine
ligand (Figure S2), with this fact indicating the stability of 1 in aqueous solution (Figure 2a).
SEM-EDAX analysis gave a molar ratio of 1:3 for the Gd/Cl relation in 1 (Figure 2b).

2.2. IR Spectroscopy

The infrared spectra of 1 and free thymine ligand are given in Figure S3. The infrared
spectrum of thymine has been studied in detail in previous works [21,22], nevertheless, it
has been included here just for comparison. The most interesting feature that is observed
are the main vibrational bands associated to the two C=O groups, whose values for the free
thymine ligand are 1735 and 1679 cm−1, respectively [21,22]. For 1, these vibrational bands
are observed at 1747 and 1679 cm−1 (Figure S3), which is consistent with the coordination
of the ligand through of only one C=O group [23].

The main vibrational bands associated to perchlorate anion are observed at 1145, 1112,
and 1089 cm−1, which indicate the presence of this anion counterbalancing the positive
charges of the cationic [Gd(thy)2(H2O)6]3+ complex of 1 (Figure S3).



Int. J. Mol. Sci. 2021, 22, 4586 3 of 11Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 2. (a) Electronic absorption spectra from samples of compound 1 in solid state (top) and in aqueous solution (bot-
tom); (b) SEM-EDAX spectrum for compound 1. 

2.2. IR Spectroscopy 
The infrared spectra of 1 and free thymine ligand are given in Figure S3. The infrared 

spectrum of thymine has been studied in detail in previous works [21,22], nevertheless, it 
has been included here just for comparison. The most interesting feature that is observed 
are the main vibrational bands associated to the two C=O groups, whose values for the 
free thymine ligand are 1735 and 1679 cm−1, respectively [21,22]. For 1, these vibrational 
bands are observed at 1747 and 1679 cm−1 (Figure S3), which is consistent with the coordi-
nation of the ligand through of only one C=O group [23]. 

The main vibrational bands associated to perchlorate anion are observed at 1145, 
1112, and 1089 cm−1, which indicate the presence of this anion counterbalancing the posi-
tive charges of the cationic [Gd(thy)2(H2O)6]3+ complex of 1 (Figure S3). 

2.3. Description of the Crystal Structure 
Crystal data and structure refinement parameters are summarized in Table 1. Com-

pound 1 crystallizes in the monoclinic system with space group P21/c. Its crystal structure 
is made up of [Gd(thy)2(H2O)6]3+ cations, ClO4− anions, and water molecules of crystalliza-
tion, which are held together mainly by electrostatic forces and H-bonding interactions. A 
[Gd(thy)2(H2O)6]3+ cation, three ClO4− anions, and two non-coordinating water molecules 
are present in the asymmetric unit of 1. 

Table 1. Summary of the crystal data and structure refinement parameters for 1. 

Compound 1 
CCDC 2009091 

Formula C10H28N4O24Cl3Gd 
Mr/g mol−1 851.96 

Crystal system Monoclinic 
Space group P21/c 

a/Å 13.192 (1) 
b/Å 9.901 (1) 
c/Å 20.985 (1) 
α/° 90 
β/° 95.18 (1) 
γ/° 90 
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2.3. Description of the Crystal Structure

Crystal data and structure refinement parameters are summarized in Table 1. Com-
pound 1 crystallizes in the monoclinic system with space group P21/c. Its crystal structure
is made up of [Gd(thy)2(H2O)6]3+ cations, ClO4

− anions, and water molecules of crystalliza-
tion, which are held together mainly by electrostatic forces and H-bonding interactions. A
[Gd(thy)2(H2O)6]3+ cation, three ClO4

− anions, and two non-coordinating water molecules
are present in the asymmetric unit of 1.

Table 1. Summary of the crystal data and structure refinement parameters for 1.

Compound 1

CCDC 2009091
Formula C10H28N4O24Cl3Gd

Mr/g mol−1 851.96
Crystal system Monoclinic

Space group P21/c
a/Å 13.192 (1)
b/Å 9.901 (1)
c/Å 20.985 (1)
α/◦ 90
β/◦ 95.18 (1)
γ/◦ 90

V/Å3 2729.8 (2)
Z 4

Dc/g cm−3 2.073
µ (Mo − Kα)/mm−1 2.832
Goodness-of-fit on F2 1.081

R1 [I > 2σ (I)]/all 0.0280/0.0325
wR2 [I > 2σ (I)]/all 0.0703/0.0733

The GdIII ion in 1 is eight-coordinate and bonded to eight oxygen atoms, two oxygen
atoms from carbonyl groups of two neutral thymine ligands, and six oxygen atoms of
six water molecules (Figure 1). Given the neutral nature of the thymine molecule, coor-
dination through the O(1) and O(3) atoms is expected (Figures S1 and S4). The average
value of the Gd-O bond lengths [2.381(1) Å] is somewhat shorter than that of the Gd-Owater
bond lengths [2.390(1) Å] (Table S1). The O-Gd-O bond angles show values covering the
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range of 70.24(6)–148.57(7)◦. These values are in agreement with those reported for other
species with a similar GdIII environment [24–26]. In 1, the thymine molecules are planar
and form an angle between them of ca. 7.8(1)◦ with an intramolecular thymine-thymine
separation of ca. 4.08 Å, which corresponds to the O(1)···O(3) distance. The C−C, C−N,
and C−O bond lengths agree with those found in the literature for the thymine molecule
(Table S1) [27].

In the crystal packing of 1, adjacent [Gd(thy)2(H2O)6]3+ cations are connected through H-
bonding interactions that occur between thymine pairs, linking them into chains [N(3)···O(4a)
= 2.763(3) Å and O(2)···N(10a) = 2.785(3) Å; (a) = x, y − 1, z], which grow along the b
crystallographic axis (Figure S5). These chains are separated from each other through
perchlorate anions, which interact with coordinated water molecules by means of H-bonding
interactions involving the following set of atoms: O(3w)···O(11b) [2.944(3) Å; (b) = −x + 1,
−y + 1,−z + 1], O(4w)···O(10b) [2.870(3) Å], O(4w)···O(15c) [2.847(3) Å; (c) =−x + 1, y− 1/2,
−z + 3/2], and O(5w)···O(12) [2.713(3) Å] (Figure 3). The chains based on [Gd(thy)2(H2O)6]3+

cations are arranged forming a herringbone type structure, generating thymine planes that
exhibit an angle of ca. 64(1)◦ (Figure 3b). The shortest Gd···Gd separation is 8.256(1) Å
[Gd(1)···Gd(1d) distance; (d) = -x, −y + 1, −z + 1]. A supramolecular network is generated
by additional H-bonding interactions involving coordinated and non-coordinated water
molecules, along with weaker C-H···O interactions [the average value of the C···O distance
being ca. 3.34 Å for C(13)···O(16), C(6)···O(5d) and C(13)···O(11e); (e) = −x + 1, y + 1/2,
−z + 3/2], which contribute to stabilizing the crystal structure in 1 (Table 2).
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the SHAPE program was used [28]. In 1, the single GdIII ion exhibits a coordination num-
ber (CN) equal to 8. For Gd(1), a value of 0.307 was obtained and associated with a square 
antiprism (SAPR) geometry, the next and closer computed value being 1.733, which was 
assigned to a biaugmented trigonal prism (BTPR) geometry (Table 3). Hence, these calcu-
lated values allow us to assign the D4d symmetry to the Gd(1) ion in complex 1 (Table 3). 

  

Figure 3. (a) View along the crystallographic c axis of the H-bonding interactions (green dashed lines) between perchlorate
anions (capped sticks model) and [Gd(thy)2(H2O)6]3+ cations in 1. For the sake of clarity, H atoms are omitted and only
coordinated water molecules are shown. Color code: purple, Gd; green, Cl; red, O; blue, N; grey, C; (b) View along the
crystallographic a axis of the herringbone type structure of 1. H atoms, perchlorate anions, and non-coordinating water
molecules have been omitted for clarity. Color code: purple, Gd; red, O; blue, N; grey, C.

To further analyze the coordination environment and geometry of the GdIII ion in 1,
the SHAPE program was used [28]. In 1, the single GdIII ion exhibits a coordination number
(CN) equal to 8. For Gd(1), a value of 0.307 was obtained and associated with a square
antiprism (SAPR) geometry, the next and closer computed value being 1.733, which was as-
signed to a biaugmented trigonal prism (BTPR) geometry (Table 3). Hence, these calculated
values allow us to assign the D4d symmetry to the Gd(1) ion in complex 1 (Table 3).
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Table 2. Selected hydrogen-bonding interactions in 1 a.

D-H·A D-H/Å H·A/Å D·A/Å (DHA)/◦

N(1)-H(1)···O(8f) 0.880 2.12(1) 2.982(1) 165.4(1)
N(3)-H(3)···O(4a) 0.880 1.89(1) 2.763(1) 175.6(1)
N(10)-H(10)···O(2g) 0.880 1.92(1) 2.785(1) 168.7(1)
O(1w)-H(1wA)···O(7) 0.951 2.05(1) 2.986(1) 168.4(1)
O(1w)-H(1wB)···O(4a) 0.953 1.77(1) 2.677(1) 159.1(1)
O(2w)-H(2wA)···O(2g) 0.948 1.75(1) 2.691(1) 169.2(1)
O(3w)-H(3wA)···O(11b) 0.953 2.07(1) 2.944(1) 151.0(1)
O(3w)-H(3wB)···O(7wf) 0.950 1.76(1) 2.660(1) 156.0(1)
O(4w)-H(4wA)···O(10b) 0.951 2.01(1) 2.870(1) 149.4(1)
O(4w)-H(4wB)···O(15c) 0.953 1.944(1) 2.847(1) 157.4(1)
O(5w)-H(5wA)···O(12) 0.950 1.77(1) 2.713(1) 169.2(1)
O(5w)-H(5wB)···O(14) 0.950 1.87(1) 2.810(1) 169.1(1)
O(6w)-H(6wA)···O(9h) 0.951 2.27(1) 2.939(1) 126.9(1)
O(6w)-H(6wA)···O(7wf) 0.951 2.31(1) 2.986(1) 127.4(1)
O(6w)-H(6wB)···O(8w) 0.953 1.75(1) 2.694(1) 171.9(1)
O(7w)-H(7wB)···O(8wc) 0.961 1.91(1) 2.896(1) 172.5(1)
O(8w)-H(8wA)···O(13) 0.954 1.91(1) 2.855(1) 170.8(1)
O(8w)-H(8wB)···O(15e) 0.953 1.92(1) 2.846(1) 163.9(1)

a Symmetry codes: (a) = x, y − 1, z; (b) = −x + 1, −y + 1, −z + 1; (c) = −x + 1, y − 1/2, −z + 3/2; (e) = −x + 1, y +
1/2, −z + 3/2; (f) = x, −y + 3/2, z − 1/2; (g) = x, y + 1, z; (h) = −x + 1, −y + 2, −z + 1.

Table 3. Selected values for possible geometries with coordination number (CN) equal to 8 obtained
through the SHAPE program and from the structural parameters of complex 1 a.

HPY HBPY CU SAPR TDD JGBF JETBPY BTPR JSD TT

23.392 16.322 9.171 0.307 1.913 15.656 28.471 1.733 4.830 10.015
a HPY: heptagonal pyramid (C7v); HBPY: hexagonal bipyramid (D6h); CU: cube (Oh); SAPR: square antiprism
(D4d); TDD: triangular dodecahedron (D2d); JGBF: Johnson gyrobifastigium (D2d); JETBPY: Johnson elongated
triangular bipyramid (D3h); BTPR: biaugmented trigonal prism (C2v); JSD: snub disphenoid (D2d); TT: triakis
tetrahedron (Td).

2.4. Analysis of the Hirshfeld Surfaces

Hirshfeld surfaces of the cationic [Gd(thy)2(H2O)6]3+ complex were calculated, and its
closer intermolecular interactions were analyzed through the CrystalExplorer program [29,30].
These surfaces were mapped taking into account the distance from a point on the surface
to the nearest atom outside (de) and inside (di) the surface. To overcome limitations related
to the size of atoms, a normalized contact distance (dnorm) was also considered [29,30]. For
compound 1, Hirshfeld surfaces are shown in Figure 4 and Figure S6, where the shorter
contacts are displayed using red color [31]. Intermolecular O···H contacts between water
molecules and between water molecules and carbonyl groups of the thymine molecules
are the main interactions detected on the Hirshfeld surface (Figure 4 and Figure S6). The
most important O···H contacts are those involving H-bonds between non-coordinated and
coordinated water molecules, which are approximately 48% of the complete fingerprint plot,
whereas the O···H interactions involving non-coordinated water molecules and carbonyl
groups are highlighted from the full fingerprint as ca. 19% of the plot. Finally, additional
N···H contacts involving non-coordinated water molecules and N-H groups of the thymine
molecules only cover approximately 2% of the fingerprint plot (Figure 4).

2.5. Magnetic Properties

Dc magnetic susceptibility measurements were carried out on a freshly prepared
microcrystalline sample of 1 in the 2–300 K temperature range and under an external
magnetic field of 0.5 T. The χMT vs. T plot (χM being the molar magnetic susceptibility
per GdIII ion) for compound 1 is given in Figure 5. At room temperature, the χMT value is
ca. 7.89 cm3mol−1K, which is very close to that expected for a magnetically isolated GdIII

ion (4f7 ion with gGd = 2.0, SGd = 7/2 and LGd = 0), that is, 7.88 cm3mol−1K [26,32]. Upon
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cooling, the χMT value approximately follows the Curie law to ca. 25 K with decreasing
temperature, before χMT decreases, reaching a minimum value of ca. 7.21 cm3mol−1 K at
2 K. The decrease of the χMT value observed for complex 1 would likely be assignable to
intermolecular interactions and/or very small zero-field splitting (ZFS) effects [32].
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To analyze the magnetic behavior and fit the experimental data of the χMT vs. T plot
for complex 1, the theoretical expression for the magnetic susceptibility of a single and
isotropic SGd = 7/2 center was used [χM = (NµB

2gGd
2/3kB)SGd(SGd + 1)/(T − Θ)] [25].

Due to possible intermolecular interactions that can take place in 1, a Θ parameter was also
included in this expression. The best least-squares fit gave the parameters gGd = 2.008 (1)
and Θ = −0.039 (1) K with R = 1.9 × 10−5 for 1 {R being the agreement factor defined as
Σi[(χMT)i

obs − (χMT)i
calcd]2/[(χMT)i

obs]2}.
Field dependence of the molar magnetization (M) plot for 1 at 2 K is given in the inset

of Figure 5. This plot exhibits a continuous increase of M with the applied magnetic field,
showing a maximum value of M obtained for 1 (ca. 6.92 µB) at 5.0 T, which is as expected
for a mononuclear GdIII complex [25]. The experimental data of the M vs. H plot were
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close to the Brillouin curve generated, with values of g and S of 2.0 and 7/2, respectively
(Figure 5) [32].

2.6. MR Imaging Phantom Studies

The relaxometric properties of compound 1 as a potential high-field MR imaging
contrast agent were evaluated [33]. Thirteen samples of 1 were prepared in physiological
serum with concentrations covering the range of 0.0–3.2 mM and were measured on a
clinical MR scanner (Achieva 3T TX, Philips Healthcare, Best, The Netherlands) by using
the volumetric head eight channels SENSE coil (Figure 6 and Figure S7).
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Figure 6. (a) MR imaging scanner (Philips Achieva 3T); (b) Samples of 1 prepared in physiological serum with concentrations
covering the range of 0.0–3.2 mM; (c) MR images of the tube phantoms of 1; (d) T2 parametric map analysis.

The relaxation rate, denoted by R (and expressed in s−1), was obtained for each
concentration through the calculation of the corresponding relaxation time T. R1 was
obtained by calculating the T1 time from FFE sequences with 2◦, 5◦, 10◦, 15◦, 25◦, and 45◦

flip angles, whereas r2 and r2* values were obtained after calculating T2 and T2* relaxation
times from TSE and GRE sequences with 32 echo times each, TE1 = 10 ms, ∆TE = 10 ms
and TE1 = 0.9 ms, ∆TE = 0.7 ms, respectively [34]. Thus, the longitudinal relaxivity (r1) of
1 at 3 T was determined to be 16.1 mM−1s−1, whereas the transversal relaxivities r2 and
r2* values were 13.5 and 14.5 mM−1s−1, respectively (Figures 7 and 8). These results show
relaxivity values for 1 that are much higher than those of commercial MR imaging contrast
agents currently employed on 3 T equipment [33], such as Magnevist, Gadovist, Prohance,
Multihance, Dotarem, and Omniscan, among others [34], which makes 1 potentially useful.
The fact that the GdIII ion in 1 exhibits a higher number of coordinate water molecules
than the typical commercial contrast agents would enhance, at least in part, the common
relaxivity values reported for these commercial contrast agents [34].
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3. Materials and Methods
3.1. Reagents and Instruments

All of the manipulations were performed under aerobic conditions. All the commercial
chemicals were used as received. CAUTION: Although no problems were encountered in
this work, care should be taken when using the potentially explosive perchlorate anion
(ClO4

−).
Elemental analyses (C, H, N) and X-ray microanalysis were performed by the Central

Service for the Support to Experimental Research (SCSIE) at the University of Valencia.
Scanning electron microscopy (SEM) images and results were obtained from a Hitachi
S-4800 field emission scanning electron microscope (Hitachi Ltd., Tokyo, Japan). The
electronic absorption spectra of 1 and thymine were measured at room temperature in



Int. J. Mol. Sci. 2021, 22, 4586 9 of 11

a Jasco V-670 UV-vis-NIR spectrophotometer (Jasco Ltd., Tokyo, Japan) in the range of
600 to 1400 nm. Infrared spectra (IR) of 1 and thymine were recorded with a PerkinElmer
Spectrum 65 FT-IR spectrometer (PerkinElmer Inc., Waltham, USA) in the range of 400 to
4000 cm−1. Variable-temperature, solid-state direct current (DC) magnetic susceptibility
data down to 2.0 K were collected on a Quantum Design MPMS-XL SQUID magnetometer
(Quantum Design, Inc., San Diego, CA, USA) equipped with a 5 T DC magnet. The experi-
mental magnetic data were corrected for the diamagnetic contributions of the constituent
atoms and also for the sample holder. MR data were collected on a Philips Achieva 3T
clinical scanner (Philips Healthcare, Best, The Netherlands) with a volumetric head eight
channels SENSE coil at La Fe University and Polytechnic Hospital.

3.2. Preparation of Compound

Synthesis of [Gd(thy)2(H2O)6](ClO4)3·2H2O (1)
A mixture of Gd2O3 (0.091 g, 0.25 mmol) and thymine (0.063 g, 0.50 mmol) in an aque-

ous suspension (5 mL) was acidulated with perchloric acid (1.0 mL, 2 M) and was stirred
and heated at 60 ◦C for 1 h. The resulting solution was left to evaporate at room temperature
for 1 week. Colorless parallelepipeds were obtained and were suitable for single-crystal
X-ray diffraction studies. Yield: ca. 45%. Anal. Calcd. for C10H24N4O22Cl3Gd: C, 14.7; H,
3.0; N, 6.9. Found: C, 14.5; H, 3.0; N, 6.8. SEM-EDAX: a molar ratio of 1:3 for Gd/Cl was
found for 1. IR (KBr pellet/cm−1): peaks were observed at 3399 (br), 3218 (m), 3063 (m),
2928 (m), 2813 (m), 1747 (s), 1679 (vs), 1635 (m), 1483 (w), 1449 (m), 1427 (w), 1383 (m),
1246 (m), 1205 (m), 1145 (vs), 1112 (vs), 1089 (vs), 935 (m), 835 (m), 815 (m), 760 (m), 744 (m),
627 (vs), 560 (m), 477 (m), 432 (m).

3.3. X-ray Data Collection and Structure Refinement

X-ray diffraction data from a single crystal of 1 with dimensions 0.34 × 0.12 × 0.05 mm3

was collected on a Bruker D8 Venture diffractometer (Bruker, Billerica, MA, USA) with
graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). The structures were solved by
standard direct methods and subsequently completed by Fourier recycling by using the
SHELXTL software packages. The obtained model was refined with version 2018/1 of
SHELXL against F2 on all data by full-matrix least squares [35]. All non-hydrogen atoms
were anisotropically refined, whereas the hydrogen atoms of the thymine molecules were set
in calculated positions and refined isotropically by using the riding model. The graphical
manipulations were performed with the DIAMOND program [36]. The CCDC code for 1
is 2009091.

4. Conclusions

In summary, the preparation, crystal structure, magnetic properties, and MR imaging
phantom studies of a novel GdIII complex based on the thymine nucleobase, of formula
[Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = thymine], have been reported. 1 displays the
first reported crystal structure based on gadolinium and thymine. Furthermore, 1 exhibits
high relaxivity values and, therefore, can be considered a suitable candidate for further
developments and MR analysis. Given that most of the thymine-containing complexes
have been reported with this ligand in the form of thyminate anion, we presented in this
work a singular strategy to prepare lanthanide compounds where the thymine molecule
acts as a neutral ligand toward the metal ion. Further investigations dealing with the
synthesis and characterization of this type of lanthanide complexes are now in progress in
our group, incorporating other 4f ions and similar biomolecules.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22094586/s1, X-ray crystallographic data in CIF format for compound 1, Figures S1–S7,
and Table S1.

https://www.mdpi.com/article/10.3390/ijms22094586/s1
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