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Introduction
Increased intestinal permeability contributes to “leaky-gut,” a 
condition that is linked to several enteric problems because it 
can permeate microbial pathogens, antigens, and toxins into 
the system.1–3 The epithelial integrity prevents bacterial path-
ogens from entering blood and activate immune system, 
thereby maintaining a healthy mucosal immunity. In poultry 
production, the restrictions in the use of “antibiotic growth 
promoters” have increased the chances of the birds being sus-
ceptible to infections and intestinal diseases.4,5 Hence, under-
standing how different factors, including microbial pathogens, 
interact with intestine can help develop products that can 
improve gut health. The avian enterocyte culture, thus, has 
potential for screening assays and to study the mechanisms of 
their interaction with different dietary, microbial, and chemi-
cal factors. Previously we observed that the primary chicken 
enterocytes, when treated with phorbol myristate acetate 
(PMA), undergo dystrophic changes characterized by cell 
shrinkage, distended intercellular spaces, and cachectic cellular 
processes without significant losses of their viabilities.6 The 
phorbol esters bind phospholipid membrane receptors of the 
cells leading to the activation of different proteins and enzymes 
such as NADPH oxidase, protein kinase C (PKC), and integ-
rins, thus altering cellular adhesion, growth, differentiation, 

and remodeling.7 Protein kinase C activation is one of the 
most studied mechanisms of phorbol esters which activate 
their membrane recruitment and trigger many cellular 
responses including inflammation, proliferation as well as cell 
death, and remodeling.8,9 We surmised that the dystrophic 
changes in the enterocytes induced by the action of PMA can 
be an useful experimental model to study the intestinal perme-
ability changes associated with “leaky-gut” problem. The in 
vitro observation of the effect of PMA appeared consistent 
with evidence in the literature where the animals treated with 
phorbol esters or croton oil, a major source of these esters,10 
disrupt epithelial barrier of the intestine and cause inflamma-
tion and cell death.11–15 On account of the fact that proteomic 
changes underlie most physio-pathological transformations 
including morphological and functional alterations, the objec-
tive of this study was to determine the proteomic changes in 
the enterocytes induced by PMA that would cause enterocyte 
dystrophy.

Methods
Day-old male broiler Cobb 500 chicks, obtained from a local 
hatchery, were used to harvest intestinal villi, and the entero-
cytes were dissociated and cultured as described earlier.6 The 
animal procedures used were per institutional guidelines. The 
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villi were treated initially with hyaluronidase followed by 
trypsin/EDTA and subjected to a density-gradient centrifuga-
tion using Histopaque®-1077 (www.sigmaaldrich.com) to sepa-
rate living cells and cell clusters from the debris. The cells in the 
interface of density-gradient medium were cultured and 
expanded in Dulbecco’s minimum essential medium (DMEM) 
containing 10% heat inactivated fetal bovine serum (FBS) IX 
ITS (insulin, transferrin, and selenite; www.sigmaaldrich.com) 
and epithelial cell growth supplement (https://www 
.sciencellonline.com). The enterocytes propagated as individual 
clusters at the beginning but reached semi-confluence when 
they were pooled following dissociation with Accumax (www.
sigmaaldrich.com) and then replated and expanded in larger 
flasks. The cells in the third passage were dissociated, counted, 
and seeded in 12-well plates at the densities of 100 000 cells/
mL and grown for 2 days before their treatments with PMA. 
The cell layers were rinsed twice, each with 1 mL of serum and 
growth-factor-free culture medium for 5 minutes to deplete 
exogenous proteins, and then replaced with 1 mL of the same 
serum-free medium. The treatment cultures were added to 1 µL 
(500 ng) of PMA dissolved in dimethyl sulfoxide (DMSO), 
whereas the control cultures received only the DMSO. All 
assays were done in triplicate, and the changes in the cells were 
examined microscopically at 24 h to ensure the anticipated mor-
phological changes and photographed. We used replicate cul-
tures, derived from two separate experiments, for mass 
spectrometric protein analysis.

Proteomic Analyses
After incubation, the cells were removed of supernatant and 
lysed with 0.5 mL of 4 M guanidine HCl containing 20 mM 
Na-acetate, pH 6.5, by freeze thaw and repeated trituration. 
The cell extracts were transferred to fresh tubes, centrifuged at 
21 000 g for 10 minutes at 4°C, and the resulting supernatant 
dialyzed using 5000 MW cut-off Dispo dialyzers (www.spec-
trumchemical.com) against excess volumes of 25 mM ammo-
nium bicarbonate at 4°C over a 48-hour period with 3 changes. 
The retentate were transferred to micro-centrifuge tubes and 
subjected to reduction with 10 mM dithiothreitol (DTT) at 
60°C and alkylation with 20 mM iodoacetamide at room tem-
perature for 1 hour, and then digested with 50 ng of MS grade 
trypsin (www.thermofisher.com) for 24 hours at 37°C.16,17 The 
tryptic digests were desalted using Pierce C18 spin columns 
per manufacturer-suggested protocol. The eluted peptides were 
dried and resuspended in 0.1% formic acid (FA) for liquid 
chromatography-mass spectrometry (LC-MS)/MS. Analyses 
of LC-MS/MS were done using an Agilent 1200 series micro-
flow high-performance liquid chromatography (HPLC) cou-
pled to a Bruker amaZon SL quadrupole ion trap mass 
spectrometer with a captive spray ionization source. Peptides 
were separated using a C18 capillary column (150 mm × 0.1 mm, 
3.5 µm particle size, 300 Å pore size; ZORBAX SB) with 5% 
to 40% gradients of 0.1% FA (solvent A) and acetonitrile in 

0.1% FA (solvent B), and a solvent flow rate of 1.6 µL/min over 
a 300-minute period each. The captive spray source was oper-
ated in a positive ion mode with a dry gas temperature of 
150°C, dry nitrogen flow 3 L/min, and capillary voltage of 
1500 volts. The data were acquired in the auto MS (n) mode 
with optimized trapping condition for the ions at m/z 1000. 
MS scans were performed in an enhanced scanning mode 
(8100 m/z/s) with collision-induced dissociation and MS/MS 
fragmentation scans performed automatically for top 10 pre-
cursor ions for 1 minute in the ultrascan mode (32 500 m/z/s).18 
The results were based on five replicate samples in each group 
from two separate experiments.

Data Analyses
Bruker DataAnalysis 4.0 software was used to pick peaks from 
the LC-MS/MS chromatogram using a default setting as rec-
ommended by the manufacturer to create Protein Analysis 
Results.xml file which were then used for Mascot database 
search. The parent ion- and fragment ion mass tolerances were 
both set at 0.6 Da with cysteine carbamidomethylation and 
methionine oxidation as fixed and variable modifications in 
Mascot search. Mascot search was carried out against Gallus 
proteins in UniProt database to identify the proteins in the cell 
extracts. The peptides from all proteins were identified with 
95% confidence limit and reported based on <1% false discov-
ery rate using at least two peptides and one unique peptide from 
a protein. The uncharacterized Gallus proteins were tentatively 
identified by their gene sequence similarities. Mascot.dat files 
were then exported into Scaffold Proteome Software version 
4.8 (http://www.proteomesoftware.com) to identify differen-
tially expressed proteins.19 The quantitative differences were 
calculated on the basis of 95% confidence limit. The differen-
tially regulated proteins were subjected to functional annota-
tions by gene ontology (GO) terms of proteins using Protein 
Analysis Through Evolutionary Relationships software 
(PANTHER; http://pantherdb.org). The differentially 
expressed proteins were also subjected to STRING protein 
association network (https://string-db.org) and obtain KEGG 
pathway associations.

Results
Phorbol myristate acetate treatment produced cellular dystro-
phy, cachectic changes in the cells, and increased intercellular 
spaces, while the cells remained attached to the wells (Figure 
1). Longer incubation up to 48 hours severely shrunk the cells’ 
widening intercellular spaces, often, detaching cell clusters 
from the substratum (not shown).

There were a total of 333 proteins consisting of 236 clusters, 
of which 15 clusters were uniquely present in control and 3 in 
PMA treated cells (Figure 2; Supplemental Table S1). 
Quantitative comparison showed upregulation of 24 individual 
(13 clusters) and downregulation of 63 proteins (51 clusters) by 
PMA treatment (Figure 2; Table 1).

www.sigmaaldrich.com
www.sigmaaldrich.com
https://www.sciencellonline.com
https://www.sciencellonline.com
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www.spectrumchemical.com
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https://string-db.org
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Figure 1. Chicken ileal enterocytes showing morphological changes induced by PMA at 24 hours following treatment (magnification 100×).

Figure 2. Venn diagrams showing the common and differentially expressed individual proteins and protein clusters and a volcano plot showing down- 

and upregulated protein clusters.
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There were 10 biological processes affected by PMA, of 
which 8 were common to both groups although the proteins 
included in each of these processes were different (Table 2). 
Table 3 shows the KEGG pathways affected by PMA. There 
were 12 pathways downregulated and 3 pathways upregulated 
by PMA treatment. The adhesion functions of the cells were 
downregulated in PMA-treated cells indicated by the reduc-
tion in the levels of two collagen proteins. The downregulated 
proteins largely belonged to cellular and metabolic processes 
that included enzyme proteins associated with energy metabo-
lisms such as alpha enolase (ENO1), ATP synthase (ATP5B), 
aldehyde dehydrogenase (ALDH18A1), phosphoglycerate 
dehydrogenase (PHGDH), triose phosphate isomerase (TPI1), 
lactate dehydrogenase (LDHA, LDHB), ATP synthase 
(ATP5B), glucose phosphate isomerase (GPI), and fatty acid 
metabolism and transport-related proteins (fatty acid synthase 
[FASN], apolipoprotein A1 [APOA1], and fatty acid binding 
proteins [AFABP]). Several ribosomal proteins and DNA rep-
lication and interactive proteins such as elongation factors 
(EEF1A, EEF2), histones (H4-VIII, H2B-I), nucleophosmin 
(NPM1), and cytoskeletal proteins (ACTB, ACTG1), nonmus-
cle myosin, and cytokeratin proteins were affected by PMA. 
Heat shock proteins (HSP) such as the HSPs 47(SERPINH1), 
60 (HSPD1), and a mitochondrial stress protein 70 (HSPA9) 
were downregulated on PMA treatment, and HSP 90 co-
chaperon (CDC37) and a 78 kDa glucose regulated protein 
(HSPA5) were upregulated (Tables 1 and 2). Other upregulated 
proteins in PMA-treated enterocytes included certain cytoskel-
etal and structural proteins such as the intermediate-sized fila-
ment proteins, vimentin, and keratins, and two or more signal 
transduction proteins, a clathrin light chain A and a Rous sar-
coma virus transcription enhancer factor II (Table 1). Figure 3 
shows the number of regulated proteins under different bio-
logical processes although all of the regulated Gallus proteins 
with putative biological functions (Table 1) were not accounted 
in the chart.

Discussion
Our results show that PMA exerts an anti-anabolic effect on 
enterocytes, downregulating several proteins which affect dif-
ferent biological processes. Many of the proteins identified 
were associated with energy metabolism, carbon metabolism, 
nuclear, signal transduction, cytoskeletal homeostasis, and cell 
adhesion functions. The downregulation of glycolytic and 
energy metabolism-associated enzymes such as ATP- and cit-
rate-synthases, glucose 6-phosphate isomerase, and several 
oxido-reductase enzymes (phosphoglycerate-, aldehyde-, and 
lactate dehydrogenase, aldo-keto reductase, and thioredoxin 
domain-containing protein 17 [TXNDC17]) indicate dimin-
ished mitochondrial activities which were also further evident 
from the decreased levels of fat metabolism-related proteins. 
The fat metabolism-associated proteins such as fatty acid syn-
thase, fatty acid binding protein (FABP), and apolipoproteins 
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help not only in energy production but also their transporta-
tion along with other lipophilic substances such as cholesterol 
and triglycerides thereby playing key roles in membrane bio-
synthesis and signaling functions.20–23 Intestinal tissues consti-
tutively produce FABPs which transport dietary lipids and 
fatty acids.24–27 Decreased levels of both FABP and ApoA1 in 
PMA-treated enterocytes suggest decreased lipid metabolism 
and their transport that can affect membrane biosynthesis and 

remodeling. Phorbol myristate acetate was shown to induce 
transcriptional suppression of ApoA4 in human hepatic and 
intestinal cells.28 Song et al29 reported the negative effects of 
phorbol on membrane remodeling based on their studies with 
human intestinal epithelial cells. Both nuclear and nucleolar 
functions of enterocytes were also suppressed by PMA which 
were evidenced by the decrease in the levels of several riboso-
mal proteins, histone, elongation factor, and nucleophosmin 

Table 3. KEGG pathways affected by PMA treatment.

NO. PAThWAy iD PAThWAy DESCRiPTiON COUNT iN GENE SET FALSE DiSCOVERy RATE

Downregulated pathways  

1 03010 Ribosome 14 1.37e-17

2 00010 Glycolysis/gluconeogenesis 5 1.54e-0.05

3 01120 Microbial metabolism in diverse environments 6 6.01e-0.05

4 01230 biosynthesis of amino acids 4 0.000701

5 01200 Carbon metabolism 4 0.00317

6 00620 Pyruvate metabolism 3 0.00443

7 01100 Metabolic pathways 10 0.0116

8 03018 RNA degradation 3 0.0164

9 04512 ECM-receptor interaction 3 0.0238

10 04510 Focal adhesion 4 0.0301

11 00051 Fructose and mannose metabolism 2 0.0444

12 00640 Propanoate metabolism 2 0.0444

Upregulated pathways

1 04110 Cell cycle 3 0.0121

2 04114 Oocyte meiosis 3 0.0121

3 04141 Protein processing in endoplasmic reticulum 3 0.0199

Figure 3. Phorbol myristate acetate-induced down- and upregulated proteins in different biological processes.
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proteins that are involved in transcription, translational activi-
ties, ribosome biogenesis, and degradation. Phorbol myristate 
acetate also affected both protein maturation and degradation 
functions indicated by differential changes in HSPs and other 
chaperon proteins such as peptidyl prolyl cis-trans isomerase 
(PPIB), thioredoxin domain containing 17, and protein 
disulfide isomerase (PDIA) family of proteins.30 The chaperon 
proteins, particularly the HSPs, are stress proteins that are 
involved in a variety of functions which include peptide trans-
location, folding, stabilization, and the degradation of mis-
folded proteins.31–33 The HSPs protect the cells against 
apoptosis and have been implicated in some gastrointestinal 
diseases.34–36 HSPs appeared to be differentially regulated by 
PMA. The HSPs 90, GRP-78, and PDIA3 were upregulated 
by PMA, the HSPs 47 and 60, and PPIB, whereas PDIA4 
were downregulated on PMA treatment. The differential regu-
lations of these stress proteins in the enterocytes are not under-
stood but reciprocal regulations of different stress proteins such 
as GRP 78 and HSP 70 have been observed in other cells.37 In 
certain neurodegenerative diseases, the HSPs 90 and 70 have 
been shown to have opposing roles on the stability of their 
respective interacting proteins and their proteosomal degrada-
tions.38 HSPs help maintain intestinal integrity and provide 
defense against epithelial permeability and their decreased 
expressions have been reported in conditions that increase gut 
permeability.39,40 HSP 47 (SERPINH1), which decreased in 
PMA-treated enterocytes, has been implicated in the etiology 
of intestinal fibrosis in experimentally induced colitis.41 
Because fibrosis is a condition that relates to the overproduc-
tion and deposition of collagens,42 a decreased expression of 
HSP 47 in PMA-treated enterocytes, along with the decrease 
in collagen content, observed in this study seems consistent.

Phorbol myristate acetate also induced differential changes 
in several cytoskeletal and structural proteins which affect 
extracellular matrices (ECMs)-receptor interactions and focal 
adhesion of cells. These included actin, nonmuscle myosin, and 
keratin 19, all of which were downregulated whereas some oth-
ers, particularly the intermediate filament-associated proteins, 
and desmin, and vimentin were upregulated along with kerat-
ins 3 and 8. The relationship and the differential regulation of 
different cytoskeletal proteins are not understood, but it can be 
related to their metabolic dynamics such as their turnover rates. 
The dysregulations of cytoskeletal proteins and the adhesion of 
the cells to their ECM are known to affect their morphology 
and survival. Activation of PKC affect cell polarization also 
causes their morphological changes through mechanisms regu-
lating actin cytoskeleton and other stress fibers.43–45 Similarly, 
the collagens which are an important component of ECM play 
significant role in cell-matrix interactions and influence cell 
attachment and their spreading, and contribute to their pheno-
types.46 Both type I and type III collagens were significantly 
downregulated in PMA-treated enterocytes. Although there 
are no data of enterocytes producing collagens, there are many 

reports of different epithelial cells producing collagens.47–50 In 
addition, the PMA-treated enterocytes showed a downregula-
tion in protein named RPSA which is a receptor for laminin 
present in ECM that facilitates cell adhesion.51 Taken together, 
it appears that the changes in cytoskeletal proteins along with 
the decrease in their collagen production likely affect their 
spreading and dystrophic changes in the enterocytes.

Phorbol myristate acetate also affected signaling function 
proteins indicated by the reductions in the level of a mitochon-
drial, voltage-dependent, anion-selective channel protein 2 
that is responsible for ATP channeling and a GTP binding 
RAS-related nuclear proteins which contribute to the nuclear 
activities of the cells. Similarly, there were other signal trans-
duction proteins that were upregulated in the enterocytes on 
PMA treatment. These were three 14-3-3 proteins—beta/
alpha, theta, and gamma—which bind to different kinases, 
phosphatases, and transmembrane receptors. Heightened 
expressions of these proteins have been linked to different 
pathological conditions.52 The other upregulated proteins were 
a Rous sarcoma virus transcription enhancer factor II and a 
clathrin light chain A protein, both of which can increase the 
cell’s susceptibility to microbial invasions.

In conclusion, our results show that PMA downregulates 
mitochondrial function, impairs energy metabolism and nuclear 
functions of the enterocytes such as their transcriptional and 
translational activities, and disrupts cytoskeletal homeostasis 
and focal adhesion which most likely contribute to cellular dys-
trophy, cachexia, and distension of intercellular spaces. 
Extrapolating it to an in vivo situation, such changes in entero-
cytes can inevitably increase intestinal permeability and cause 
epithelial damage resulting in enteropathy. The PMA-induced 
changes in enterocytes may help understand the “leaky-gut” 
problem which is linked to several avian intestinal diseases.
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