Proteomics Insights

Volume 10: 1-13

© The Author(s) 2019

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1178641819840369

®SAGE

Phorbol 12-Myristate 13-Acetate-Induced Changes
in Chicken Enterocytes

Narayan C Rath'®, Anamika Gupta?, Rohana Liyanage?®

and Jackson O Lay Jr3

TUSDA, Agricultural Research Service, Poultry Science Center, University of Arkansas,
Fayetteville, AR, USA. 2Department of Poultry Science, Poultry Science Center, University of

Arkansas, Fayetteville, AR, USA. 3Statewide Mass Spectrometry Facility, Department of
Chemistry Biochemistry, University of Arkansas, Fayetteville, AR, USA.

ABSTRACT: Increased intestinal epithelial permeability has been linked to many enteric diseases because it allows easy access of microbial
pathogens and toxins into the system. In poultry production, the restrictions in the use of antibiotic growth promoters have increased the chances
of birds being susceptible to different enteric diseases. Thus, understanding the mechanisms which compromise intestinal function is pertinent.
Based on our previous observation which showed the primary chicken enterocytes in culture undergoing dystrophic changes on treatment
with phorbol myristate acetate (PMA), we surmised that this model, which appeared to mimic increased intestinal permeability, may help to
understand the mechanisms of this problem. As genomic and proteomic changes are associated with many physiological and pathological
problems, we were interested to find whether certain proteomic changes underlie the morphological alterations in the enterocytes induced by
PMA. We exposed primary enterocyte cultures to a sub-lethal concentration of PMA, extracted the proteins, and analyzed by mass spectrometry
for differentially regulated proteins. Our results showed that PMA affected several biological processes which negatively affected their energy
metabolism, nuclear activities, and differentially regulated the levels of several stress proteins, chaperon, cytoskeletal, and signal transduction
proteins that appear to be relevant in the cause of enterocyte dystrophy. Phorbol myristate acetate-affected signal transduction activities also
raise the possibilities of their increased susceptibility to pathogens. The changes in enterocyte integrity can make intestine vulnerable to invasion
by microbial pathogens and disrupt gut homeostasis.
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Introduction

Increased intestinal permeability contributes to “leaky-gut,” a
condition that is linked to several enteric problems because it
can permeate microbial pathogens, antigens, and toxins into
the system.'® The epithelial integrity prevents bacterial path-
ogens from entering blood and activate immune system,
thereby maintaining a healthy mucosal immunity. In poultry
production, the restrictions in the use of “antibiotic growth
promoters” have increased the chances of the birds being sus-
ceptible to infections and intestinal diseases.** Hence, under-
standing how different factors, including microbial pathogens,
interact with intestine can help develop products that can
improve gut health. The avian enterocyte culture, thus, has
potential for screening assays and to study the mechanisms of
their interaction with different dietary, microbial, and chemi-
cal factors. Previously we observed that the primary chicken
enterocytes, when treated with phorbol myristate acetate
(PMA), undergo dystrophic changes characterized by cell
shrinkage, distended intercellular spaces, and cachectic cellular
processes without significant losses of their viabilities.® The
phorbol esters bind phospholipid membrane receptors of the
cells leading to the activation of different proteins and enzymes
such as NADPH oxidase, protein kinase C (PKC), and integ-
rins, thus altering cellular adhesion, growth, differentiation,

and remodeling.” Protein kinase C activation is one of the
most studied mechanisms of phorbol esters which activate
their membrane recruitment and trigger many cellular
responses including inflammation, proliferation as well as cell
death, and remodeling.®? We surmised that the dystrophic
changes in the enterocytes induced by the action of PMA can
be an useful experimental model to study the intestinal perme-
ability changes associated with “leaky-gut” problem. The in
vitro observation of the effect of PMA appeared consistent
with evidence in the literature where the animals treated with
phorbol esters or croton oil, a major source of these esters,°
disrupt epithelial barrier of the intestine and cause inflamma-
tion and cell death.’™> On account of the fact that proteomic
changes underlie most physio-pathological transformations
including morphological and functional alterations, the objec-
tive of this study was to determine the proteomic changes in
the enterocytes induced by PMA that would cause enterocyte
dystrophy.

Methods

Day-old male broiler Cobb 500 chicks, obtained from a local
hatchery, were used to harvest intestinal villi, and the entero-
cytes were dissociated and cultured as described earlier.® The
animal procedures used were per institutional guidelines. The
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villi were treated initially with hyaluronidase followed by
trypsin/EDTA and subjected to a density-gradient centrifuga-
tion using Histopaque®-1077 (www.sigmaaldrich.com) to sepa-
rate living cells and cell clusters from the debris. The cells in the
interface of density-gradient medium were cultured and
expanded in Dulbecco’s minimum essential medium (DMEM)
containing 10% heat inactivated fetal bovine serum (FBS) IX
ITS (insulin, transferrin, and selenite; www.sigmaaldrich.com)
and epithelial (https://www
.sciencellonline.com). The enterocytes propagated as individual

cell growth supplement
clusters at the beginning but reached semi-confluence when
they were pooled following dissociation with Accumax (www.
sigmaaldrich.com) and then replated and expanded in larger
flasks. The cells in the third passage were dissociated, counted,
and seeded in 12-well plates at the densities of 100000 cells/
mL and grown for 2days before their treatments with PMA.
The cell layers were rinsed twice, each with 1 mL of serum and
growth-factor-free culture medium for 5minutes to deplete
exogenous proteins, and then replaced with 1 mL of the same
serum-free medium. The treatment cultures were added to 1 pL.
(500ng) of PMA dissolved in dimethyl sulfoxide (DMSO),
whereas the control cultures received only the DMSO. All
assays were done in triplicate, and the changes in the cells were
examined microscopically at 24 h to ensure the anticipated mor-
phological changes and photographed. We used replicate cul-
tures, derived from two separate experiments, for mass
spectrometric protein analysis.

Proteomic Analyses

After incubation, the cells were removed of supernatant and
lysed with 0.5 mL of 4 M guanidine HCI containing 20 mM
Na-acetate, pH 6.5, by freeze thaw and repeated trituration.
The cell extracts were transferred to fresh tubes, centrifuged at
21000g for 10 minutes at 4°C, and the resulting supernatant
dialyzed using 5000 MW cut-off Dispo dialyzers (www.spec-
trumchemical.com) against excess volumes of 25 mM ammo-
nium bicarbonate at 4°C over a 48-hour period with 3 changes.
The retentate were transferred to micro-centrifuge tubes and
subjected to reduction with 10 mM dithiothreitol (DTT) at
60°C and alkylation with 20 mM iodoacetamide at room tem-
perature for 1hour, and then digested with 50ng of MS grade
trypsin (www.thermofisher.com) for 24 hours at 37°C.1617 The
tryptic digests were desalted using Pierce C18 spin columns
per manufacturer-suggested protocol. The eluted peptides were
dried and resuspended in 0.1% formic acid (FA) for liquid
chromatography-mass spectrometry (LC-MS)/MS. Analyses
of LC-MS/MS were done using an Agilent 1200 series micro-
flow high-performance liquid chromatography (HPLC) cou-
pled to a Bruker amaZon SL quadrupole ion trap mass
spectrometer with a captive spray ionization source. Peptides
were separated using a Cyg capillary column (150 mm X 0.1 mm,
3.5 pm particle size, 300 A pore size; ZORBAX SB) with 5%
to 40% gradients of 0.1% FA (solvent A) and acetonitrile in

0.1% FA (solvent B), and a solvent flow rate of 1.6 pL/min over
a 300-minute period each. The captive spray source was oper-
ated in a positive ion mode with a dry gas temperature of
150°C, dry nitrogen flow 3L/min, and capillary voltage of
1500volts. The data were acquired in the auto MS (n) mode
with optimized trapping condition for the ions at m/z 1000.
MS scans were performed in an enhanced scanning mode
(8100 m/z/s) with collision-induced dissociation and MS/MS
fragmentation scans performed automatically for top 10 pre-
cursor ions for 1 minute in the ultrascan mode (32500 m/z/s).18
The results were based on five replicate samples in each group
from two separate experiments.

Data Analyses

Bruker DataAnalysis 4.0 software was used to pick peaks from
the LC-MS/MS chromatogram using a default setting as rec-
ommended by the manufacturer to create Protein Analysis
Results.xml file which were then used for Mascot database
search. The parent ion- and fragment ion mass tolerances were
both set at 0.6Da with cysteine carbamidomethylation and
methionine oxidation as fixed and variable modifications in
Mascot search. Mascot search was carried out against Gallus
proteins in UniProt database to identify the proteins in the cell
extracts. The peptides from all proteins were identified with
95% confidence limit and reported based on <1% false discov-
ery rate using at least two peptides and one unique peptide from
a protein. The uncharacterized Gallus proteins were tentatively
identified by their gene sequence similarities. Mascot.dat files
were then exported into Scaffold Proteome Software version
4.8 (http://www.proteomesoftware.com) to identify differen-
tially expressed proteins.”” The quantitative differences were
calculated on the basis of 95% confidence limit. The differen-
tially regulated proteins were subjected to functional annota-
tions by gene ontology (GO) terms of proteins using Protein
Analysis Through Evolutionary Relationships  software
(PANTHER;  http://pantherdb.org). The differentially
expressed proteins were also subjected to STRING protein
association network (https://string-db.org) and obtain KEGG

pathway associations.

Results

Phorbol myristate acetate treatment produced cellular dystro-
phy, cachectic changes in the cells, and increased intercellular
spaces, while the cells remained attached to the wells (Figure
1). Longer incubation up to 48 hours severely shrunk the cells’
widening intercellular spaces, often, detaching cell clusters
from the substratum (not shown).

There were a total of 333 proteins consisting of 236 clusters,
of which 15 clusters were uniquely present in control and 3 in
PMA treated cells (Figure 2; Supplemental Table S1).
Quantitative comparison showed upregulation of 24 individual
(13 clusters) and downregulation of 63 proteins (51 clusters) by
PMA treatment (Figure 2; Table 1).
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Figure 2. Venn diagrams showing the common and differentially expressed individual proteins and protein clusters and a volcano plot showing down-
and upregulated protein clusters.
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There were 10 biological processes affected by PMA, of

which 8 were common to both groups although the proteins

c
o
2 o ° © 3 included in each of these processes were different (Table 2).
g 2 2 5 @ Table 3 shows the KEGG pathways affected by PMA. There
< £ N oY 2 P Y y
— o =
< e = = s £ were 12 pathways downregulated and 3 pathways upregulated
oc < R - " p y g p ys upregu
(= (9] (%) H 1
W 5 g § s E E 8 2 by PMA treatment. The adhesion functions of the cells were
=8 ° = = > S . T
2o © ac 3 3 2 g3 downregulated in PMA-treated cells indicated by the reduc-
: g g y
£ £ x5 £ 8§ 5 §82 . .
g g < g sg % % %_ = 5 tion in the levels of two collagen proteins. The downregulated
2 -5 gpgg %%j z,E-, % N §§ proteins largely belonged to cellular and metabolic processes
o Ig =2 0°¢ = = z o . . . .
wne Sa I8 £ £ = T 5 that included enzyme proteins associated with energy metabo-
lisms such as alpha enolase (ENOI), ATP synthase (47P5B),
x aldehyde dehydrogenase (ALDHI18A41), phosphoglycerate
§ dehydrogenase (PHGDH), triose phosphate isomerase (7PI1),
g lactate dehydrogenase (LDHA, LDHB), ATP synthase
= (ATP5B), glucose phosphate isomerase (GPI), and fatty acid
5] metabolism and transport-related proteins (fatty acid synthase
b
< [FASN], apolipoprotein Al [APOA1], and fatty acid binding
T . b )
o proteins [AF4BP]). Several ribosomal proteins and DNA rep-
§ E a Q N z z z z lication and interactive proteins such as elongation factors
(EEF1A4, EEF2), histones (H4-VIII, H2B-I), nucleophosmin
& (NNPM1), and cytoskeletal proteins (4CTB, ACTGI), nonmus-
3 cle myosin, and cytokeratin proteins were affected by PMA.
< .
1 Heat shock proteins (HSP) such as the HSPs 47(SERPINHI),
P 2 8 5 3 S 8 @ 60 (HSPD1), and a mitochondrial stress protein 70 (HSPA9)
= v p< S P S S P p were downregulated on PMA treatment, and HSP 90 co-
~ = .
chaperon (CDC37) and a 78 kDa glucose regulated protein
o (HSPAS5) were upregulated (Tables 1 and 2). Other upregulated
® . . . .
'<ZT: Z IR proteins in PMA-treated enterocytes included certain cytoskel-
© . . . .
i g b g § etal and structural proteins such as the intermediate-sized fila-
H . . . . .
Zc B § 8 g ment proteins, vimentin, and keratins, and two or more signal
transduction proteins, a clathrin light chain A and a Rous sar-
z coma virus transcription enhancer factor II (Table 1). Figure 3
7 shows the number of regulated proteins under different bio-
x . .
§ S °S 5 s 85 & S logical processes although all of the regulated Gallus proteins
= 5 o 5 a 6‘ 6| S with putative biological functions (Table 1) were not accounted
O w e E ~ — — © o .
o N 5 8) o i 9 in the chart.
s L O 5 5 B8 8
Z 2D — o a D D — D
D Z N1} I (@] I I (@] g
Discussion
Our results show that PMA exerts an anti-anabolic effect on
N enterocytes, downregulating several proteins which affect dif-
c - Q o = ferent biological processes. Many of the proteins identified
2 % e % _ 2 were associated with energy metabolism, carbon metabolism,
s - (o]
;’ o I 4 S % S nuclear, signal transduction, cytoskeletal homeostasis, and cell
= ) 5 . . . .
sa 2 Ba e ¢ o £ adhesion functions. The downregulation of glycolytic and
- o |l [9] < . . .
3 é’ é Su L2 ‘g& s energy metabolism-associated enzymes such as ATP- and cit-
e - c | 2_ i
80 - &N 929 o S rate-synthases, glucose 6-phosphate isomerase, and several
o Q << o > ] > a = o>
= ™ N b O P 535 S £3 . ~ ~ B
EZX s 319 . > 82 5% oxido-reductase enzymes (phosphoglycerate-, aldehyde-, and
JoRe] - ®O o B8 TE 2
_ § (Z; E’% %;(% 5 é g é g% 8 é lactate dehydrogenase, aldo-keto reductase, and thioredoxin
§ Sy s i é g s g g g 2 i E g domain-containing protein 17 [ZXNDCZ7]) indicate dimin-
= T =2 = T =2 = D = . . . e e, . .
£ 5 T 8% oy s g T 2% é 5 ished mitochondrial activities which were also further evident
c : = = c
S B 'é 2 23 % E £ 2 Ei % 8 853 from the decreased levels of fat metabolism-related proteins.
= B S S S~ ©% s S 35 . . . .
-~ Nl 2SS =8 38% 58 36 ;8 88 The fat metabolism-associated proteins such as fatty acid syn-
' © ol §1 12 Siu @1 g S . . . .
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Figure 3. Phorbol myristate acetate-induced down- and upregulated proteins in different biological processes.

Table 3. KEGG pathways affected by PMA treatment.

NO. PATHWAY ID PATHWAY DESCRIPTION

Downregulated pathways

COUNT IN GENE SET FALSE DISCOVERY RATE

1 03010 Ribosome 14 1.37¢17
2 00010 Glycolysis/gluconeogenesis 5 1.54e-0.05
3 01120 Microbial metabolism in diverse environments 6 6.01e-0-05
4 01230 Biosynthesis of amino acids 4 0.000701
5 01200 Carbon metabolism 4 0.00317
6 00620 Pyruvate metabolism 3 0.00443
7 01100 Metabolic pathways 10 0.0116

8 03018 RNA degradation 3 0.0164

9 04512 ECM-receptor interaction 3 0.0238
10 04510 Focal adhesion 4 0.0301
11 00051 Fructose and mannose metabolism 2 0.0444
12 00640 Propanoate metabolism 2 0.0444
Upregulated pathways

1 04110 Cell cycle 3 0.0121

2 04114 Oocyte meiosis 3 0.0121

3 04141 Protein processing in endoplasmic reticulum 3 0.0199

help not only in energy production but also their transporta-
tion along with other lipophilic substances such as cholesterol
and triglycerides thereby playing key roles in membrane bio-
synthesis and signaling functions.?-23 Intestinal tissues consti-
tutively produce FABPs which transport dietary lipids and
fatty acids.?*%7 Decreased levels of both FABP and ApoA1l in
PMA-treated enterocytes suggest decreased lipid metabolism
and their transport that can affect membrane biosynthesis and

remodeling. Phorbol myristate acetate was shown to induce
transcriptional suppression of ApoA4 in human hepatic and
intestinal cells.?® Song et al* reported the negative effects of
phorbol on membrane remodeling based on their studies with
human intestinal epithelial cells. Both nuclear and nucleolar
functions of enterocytes were also suppressed by PMA which
were evidenced by the decrease in the levels of several riboso-
mal proteins, histone, elongation factor, and nucleophosmin
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proteins that are involved in transcription, translational activi-
ties, ribosome biogenesis, and degradation. Phorbol myristate
acetate also affected both protein maturation and degradation
functions indicated by differential changes in HSPs and other
chaperon proteins such as peptidyl prolyl cis-trans isomerase
(PPIB), thioredoxin domain containing 17, and protein
disulfide isomerase (PDIA) family of proteins.*® The chaperon
proteins, particularly the HSPs, are stress proteins that are
involved in a variety of functions which include peptide trans-
location, folding, stabilization, and the degradation of mis-
folded proteins.3'33 The HSPs protect the cells against
apoptosis and have been implicated in some gastrointestinal
diseases.>*3¢ HSPs appeared to be differentially regulated by
PMA. The HSPs 90, GRP-78, and PDIA3 were upregulated
by PMA, the HSPs 47 and 60, and PPIB, whereas PDIA4
were downregulated on PMA treatment. The differential regu-
lations of these stress proteins in the enterocytes are not under-
stood but reciprocal regulations of different stress proteins such
as GRP 78 and HSP 70 have been observed in other cells.?” In
certain neurodegenerative diseases, the FHHSPs 90 and 70 have
been shown to have opposing roles on the stability of their
respective interacting proteins and their proteosomal degrada-
tions.3® HSPs help maintain intestinal integrity and provide
defense against epithelial permeability and their decreased
expressions have been reported in conditions that increase gut
permeability.34 HSP 47 (SERPINHI), which decreased in
PMA -treated enterocytes, has been implicated in the etiology
of intestinal fibrosis in experimentally induced colitis.*!
Because fibrosis is a condition that relates to the overproduc-
tion and deposition of collagens,* a decreased expression of
HSP 47 in PMA-treated enterocytes, along with the decrease
in collagen content, observed in this study seems consistent.
Phorbol myristate acetate also induced differential changes
in several cytoskeletal and structural proteins which affect
extracellular matrices (ECMs)-receptor interactions and focal
adhesion of cells. These included actin, nonmuscle myosin, and
keratin 19, all of which were downregulated whereas some oth-
ers, particularly the intermediate filament-associated proteins,
and desmin, and vimentin were upregulated along with kerat-
ins 3 and 8. The relationship and the differential regulation of
different cytoskeletal proteins are not understood, but it can be
related to their metabolic dynamics such as their turnover rates.
The dysregulations of cytoskeletal proteins and the adhesion of
the cells to their ECM are known to affect their morphology
and survival. Activation of PKC affect cell polarization also
causes their morphological changes through mechanisms regu-
lating actin cytoskeleton and other stress fibers.#*> Similarly,
the collagens which are an important component of ECM play
significant role in cell-matrix interactions and influence cell
attachment and their spreading, and contribute to their pheno-
types.* Both type I and type III collagens were significantly
downregulated in PMA-treated enterocytes. Although there
are no data of enterocytes producing collagens, there are many

reports of different epithelial cells producing collagens.*”-0 In
addition, the PMA-treated enterocytes showed a downregula-
tion in protein named RPSA which is a receptor for laminin
present in ECM that facilitates cell adhesion.>! Taken together,
it appears that the changes in cytoskeletal proteins along with
the decrease in their collagen production likely affect their
spreading and dystrophic changes in the enterocytes.

Phorbol myristate acetate also affected signaling function
proteins indicated by the reductions in the level of a mitochon-
drial, voltage-dependent, anion-selective channel protein 2
that is responsible for ATP channeling and a GTP binding
RAS-related nuclear proteins which contribute to the nuclear
activities of the cells. Similarly, there were other signal trans-
duction proteins that were upregulated in the enterocytes on
PMA treatment. These were three 14-3-3 proteins—beta/
alpha, theta, and gamma—which bind to different kinases,
phosphatases, and transmembrane receptors. Heightened
expressions of these proteins have been linked to different
pathological conditions.”? The other upregulated proteins were
a Rous sarcoma virus transcription enhancer factor II and a
clathrin light chain A protein, both of which can increase the
cell’s susceptibility to microbial invasions.

In conclusion, our results show that PMA downregulates
mitochondrial function, impairs energy metabolism and nuclear
functions of the enterocytes such as their transcriptional and
translational activities, and disrupts cytoskeletal homeostasis
and focal adhesion which most likely contribute to cellular dys-
trophy, cachexia, and distension of intercellular spaces.
Extrapolating it to an in vivo situation, such changes in entero-
cytes can inevitably increase intestinal permeability and cause
epithelial damage resulting in enteropathy. The PMA-induced
changes in enterocytes may help understand the “leaky-gut”
problem which is linked to several avian intestinal diseases.
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