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Abstract
We present a unified framework for modelling genomes and their rearrangements in a
genome algebra, as elements that simultaneously incorporate all physical symmetries.
Building on previous work utilising the group algebra of the symmetric group, we
explicitly construct the genome algebra for the case of unsigned circular genomes
with dihedral symmetry and show that the maximum likelihood estimate (MLE) of
genome rearrangement distance can be validly and more efficiently performed in this
setting. We then construct the genome algebra for a more general case, that is, for
genomes that may be represented by elements of an arbitrary group and symmetry
group, and show that the MLE computations can be performed entirely within this
framework. There is no prescribed model in this framework; that is, it allows any
choice of rearrangements that preserve the set of regions, along with arbitrary weights.
Further, since the likelihood function is built from path probabilities—a generalisation
of path counts—the framework may be utilised for any distance measure that is based
on path probabilities.
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1 Introduction

In the eight decades since Dobzhansky and Sturtevant observed that differences in
fruit fly genomes could be explained by a sequence of reversals of genome segments
(Dobzhansky and Sturtevant 1938), the study of evolution via genome rearrangement
has developed into a rich and active field, with diverse applications (Chen et al. 2018;
Darmon and Leach 2014; Oesper et al. 2017).Muchwork focuses on the calculation of
evolutionary distances under rearrangement models, with the distances subsequently
used to reconstruct phylogenetic trees. For example, minimal rearrangement distances
between genomes—and other distance estimates based on these—have been studied
extensively and, under various model restrictions, can be calculated efficiently (Bader
et al. 2001; Wang et al. 2006; Bader and Ohlebusch 2006; Oliveira et al. 2019). There
are, however, good arguments for applying stochastic methods that estimate genomic
distance, via rearrangement, as evolutionary time elapsed (Serdoz et al. 2017), partic-
ularly when such an approach allows various rearrangement models to be considered
(Terauds and Sumner 2019).

The maximum likelihood approach detailed in Serdoz et al. (2017) utilised the
theory of the symmetric and dihedral groups to model circular genomes and region
set-conserving rearrangements, motivated by earlier group-theoretical approaches to
rearrangement models (Francis 2014; Egri-Nagy et al. 2014). The combinatorial prob-
lem of calculating the maximum likelihood estimate (MLE) of evolutionary distance
was then converted into a numerical one in Sumner et al. (2017) via the representation
theory of the symmetric group algebra. In Terauds and Sumner (2019), the consider-
ation of symmetry was extended to include symmetry of rearrangement models, the
role of this in simplifying calculations was explored, and the concrete implementation
of the technique for a general model was described. Whilst the representation theory
approach reduces the complexity of the MLE computations, the complexity is still of
factorial order, meaning that computations for large number of regions remain, for the
moment, out of reach.

In this work, we suggest that the appropriate theoretical setting for such MLE com-
putations is in fact not the symmetric group algebra but a lower-dimensional algebra.
In the symmetric group algebra, the basis elements for computations are individual
permutations, each representing a rearrangement or a genome in a fixed orientation,
and symmetry is incorporated as an extra step in the calculations. To simplify this, we
construct an algebra that incorporates the inherent symmetry into each element. Here,
the basis elements are permutation clouds. These correspond to genomes, by simul-
taneously including all physical orientations; due to the corresponding symmetries of
the rearrangement model, they also represent rearrangements in a natural way.

This approach explains and removes the redundancy in the MLE computations that
was observed in Terauds and Sumner (2019). In developing the approach, we firstly
focus on the simple concrete case of uni-chromosomal circular genomes modelled
with unoriented regions and no distinguished positions, building on previous work
(Serdoz et al. 2017; Sumner et al. 2017; Terauds and Sumner 2019). Subsequently, we
demonstrate that our results may be applied more generally, for example to genomic
models that include region orientation and/or origin and terminus of replication. Fur-
ther, although our focus is on calculation of MLEs, our approach can be applied to
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calculate other measures of genomic distance under rearrangement; in particular, any
that utilise path counts or weighted path counts, such as minimum distance. Whilst
the framework does not specify a rearrangement model—indeed, one may choose the
allowed rearrangements and their weights—we note that the group-based approach
limits us to rearrangements that conserve the set of genomic regions, and thus can-
not accommodate insertions, deletions or duplications. We are currently working on
expanding the framework to a semigroup-based approach that could incorporate at
least some of these rearrangement types. Some of the algebra easily extends to the
semigroup case (see Remark 4.7, for example), however there is much yet to be done
and this is outside the scope of the present paper.

In the next section, we outline the details of the symmetric group algebra approach
to calculating MLEs (Sumner et al. 2017; Terauds and Sumner 2019) for pairs of
unsigned, circular genomes, which forms the foundation for the current work. Follow-
ing this, in Sect. 3, we construct the genome algebra, based on permutation clouds, for
this case and show that it provides a coherent framework for modelling such genomes
and region set-conserving rearrangements and for calculating MLEs. Section 4 out-
lines the extension of our results and techniques from permutations with dihedral
symmetry to an arbitrary group and symmetry group. This verifies that, as well as
incorporating flexibility in the rearrangement model, the framework is not specific to
one particular genomic model. The paper concludes with a brief discussion section.

2 Background: the permutation approach

In this section we set out the theoretical framework for rearrangement models based
on permutations, and recall the key elements of the technique for calculating the
maximum likelihood estimate of evolutionary distance. Full derivations and details
may be found in Terauds and Sumner (2019) and the earlier papers (Sumner et al.
2017; Serdoz et al. 2017). For the specific case study in this and the next section,
we model the evolution of single-strand, circular genomes; we do not consider the
regions to be oriented and do not distinguish any positions.1 Genomes that are to be
compared share N identified regions2 of interest and we consider only rearrangements
that conserve the set of regions. Accordingly, we use unsigned permutations, that is,
elements of the symmetric group, SN , to represent both genomes and rearrangements.
Explicitly: the regions and positions are each labelled by the integers {1, 2, . . . , N },
and a given genome is represented by a permutation σ ∈ SN , where

σ(i) = j ⇐⇒ region i is in position j .

Note that while the region labels are chosen once and are immutable, the position
labelling reflects a choice of reference frame (starting position and direction of num-
bering) that changes when we move the genome in space. Since we do not distinguish
any positions, there are 2N possible choices of reference frame and thus 2N distinct
permutations that represent any given genome; we denote these by

1 These latter two may be considered simplifying assumptions, since they reduce the size of the state space.
However, as will be shown later, the framework just as easily accommodates the alternate cases.
2 Here, a region is a contiguous section of the genome such as a sequence of genes (for an example of how
such genomic simplification may be enacted in practice, see Belda et al. 2005).
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[σ ] := {dσ : d ∈ DN } . (1)

Here, DN is the dihedral group, and the genome has dihedral symmetry.
SinceDN is a subgroup of SN , the sets [σ ] are cosets, that is, each [σ ] = DNσ is an

equivalence class of SN . Since a given genome exists independently of its orientation
in space, we may identify it with the entire coset (Serdoz et al. 2017; Egri-Nagy et al.
2014). However, in this initial formulation, we choose any one of the permutations
from the coset (1), say σ , to specify the genome, work with this single permutation at
first, and incorporate all permutations in the set [σ ] (all symmetries of the genome)
into the likelihood calculations in due course.

We model evolution as a sequence of discrete rearrangement events occurring in
continuous time. In this section, as in previous work, we consider a rearrangement
to be a single permutation acting on a single permutation; in the next section we
shall develop this into the notion of permutation clouds acting on permutation clouds.
For now, however, for a genome represented by σ ∈ SN , a rearrangement event is
represented by a permutation, a ∈ SN , acting on σ (on the left): σ �→ a σ . We refer
to permutations a acting in this way as “rearrangements”.

The full biological model for evolution is given by (M, w, dist), whereM ⊆ SN

is the set of allowed rearrangements, w : M → (0, 1] is the probability distribution
on this set, and dist is the probability distribution of the independent rearrangement
events in time. One may have biological evidence for including particular types and
sizes of rearrangements in the model with differing relative probabilities, or may wish
to compare distances computed under differing models (see Terauds et al. 2021 for
some specific examples of models and distance comparisons). The distribution dist
may similarly be chosen according to evidence or preference; in this treatment, we
use the Poisson distribution.

We shall emphasise at this stage that we make minimal further restrictions on the
set of allowed rearrangements M. Without loss of generality, we assume that M
generates the group SN ; this means that any permutation in SN may be obtained from
any other by applying a sequence of elements fromM. (Note that the case ofM not
generating SN is simpler: in this case M generates a subgroup, H ⊆ SN , and the
problem reduces to considering this smaller group, since any pair of elements would
simply be unrelated under the model or both be elements of a coset Hσ .) Elements of
DN are, formally, allowed in the set of rearrangements, although their action does not
actually alter the genome. This allows for full generality; for example, if one wishes
to include ‘all inversions’ in the model, then the inversion of a region of size N − 1 is
the same as flipping the genome over in space.

The first model condition simply states that the model should naturally possess the
same symmetry as the genome (in the current case, dihedral symmetry). Suppose, for
example, that (1, 2) ∈ M, meaning that the regions in positions 1 and 2 may swap
places. Then, since the position labelling is arbitrary, we should have (�, � + 1) ∈
M for all � = 1, 2, . . . , N − 1, and (N , 1) ∈ M, meaning that any two regions
in adjacent positions may swap places; further, these rearrangements should all be
equally probable. We refer to this property as dihedral symmetry of the model and,
mathematically, express the condition as

123



A new algebraic approach Page 5 of 32 49

for each a∈M and d∈DN , dad−1∈M and w(dad−1) = w(a) . (M1)

The second model condition ensures that the modelling is agnostic to the temporal
direction of evolution. More precisely, the condition states that for any rearrangement
that is allowed, its inverse is also allowed, with the same probability. That is,

for each a∈M, a−1∈M and w(a−1) = w(a) . (M2)

We refer to this property as rearrangement reversibility of the model, or simply model
reversibility. This condition is natural in the current group-based setting, where the
typical rearrangements are reversals (which are self-inverse) and translocations (whose
inverses are translocations). It is not essential for most of the construction, however
does have some nice implications. For example, when we interpret our model of
evolution as a Markov process, in Sect. 3.1, we will show that (M2) is equivalent to
the time reversibility of the Markov process.

The evolutionary distance measure we consider in this paper is the maximum like-
lihood estimate of time elapsed (MLE). This is the maximum value of the likelihood
function, which gives the probability, for any given time T , that the reference genome
has evolved into the target genome in this amount of time. To be precise, for ref-
erence genome represented by the identity permutation e ∈ SN and target genome
represented by σ ∈ SN , the MLE is the maximum of the function L(T |σ), where

L(T |σ) := P(σ |T ) =
∞∑

k=0

P(e �→[σ ] via k events)P(k events in time T ). (2)

Of course, the likelihood function need not have amaximum; this simplymeans that no
evidence of an evolutionary relationship between the reference and the target under the
given model can be discerned. This scenario, familiar from DNA sequence alignment
paradigms such as the Jukes–Cantor correction (Felsenstein 2004), was discussed in
the context of genome rearrangement models in Serdoz et al. (2017) and Terauds and
Sumner (2019), where it was observed to occur in a substantial proportion of cases
(independently of the chosen biological model).

For each k, the factor P(k events in time T ) in the likelihood expression is deter-
mined by the distribution dist . The first factor, P(e �→[σ ] via k events) is the genome
path probability, which we shall denote by αk(σ ). Since the target genome may be
represented by any permutation from the set [σ ], ‘e �→ [σ ]’ is shorthand for “the
permutation e is transformed into any permutation from the set [σ ]” and we calculate
the genome path probability as a sum of permutation path probabilities, denoted by
βk(σ ). That is,

αk(σ ) := P(e �→[σ ] via k events) =
∑

d∈DN

P(e �→dσ via k events) =
∑

d∈DN

βk(dσ) .

Given a permutation σ ∈ SN and a model (M, w, dist), we specify each permutation
path probability βk(σ ) by considering the set Pk(σ ) of all k-length sequences of
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permutations, chosen fromM, that transform e intoσ . Sincewe assume rearrangement
events to be independent, the permutation path probability is then the sum of the
probabilities of all such sequences, that is,

βk(σ ) =
∑

(a1,a2,...,ak )∈Pk (σ )

w(a1)w(a2) . . . w(ak) .

We note that permutation path probabilities vary for different elements of [σ ] (that
is, in general, βk(σ ) 	= βk(dσ) for σ ∈ SN , d ∈ DN ). However, genome path proba-
bilities are of course constant on the cosets [σ ]. In fact, themodel symmetry conditions
(M1) and (M2) ensure that there are bigger classes of permutations that all have the
same path probabilities (and thus likelihoods). The following results were established
in Serdoz et al. (2017) ((i)) and Terauds and Sumner (2019) ((i i) and (i i i)).

Theorem 2.1 Let (M, w, dist) be a full biological model for evolution. For all k ∈ N0
and σ ∈ SN , the following hold.

(i) αk(σ1) = αk(σ2) for all σ1, σ2 ∈ [σ ] = {dσ : d ∈ DN }.
(ii) If the model has the dihedral symmetry property (M1), then αk(σ1) = αk(σ2) for

all σ1, σ2 in the set

[σ ]D := {d1σd2 : d1, d2 ∈ DN } .

(iii) If the model has the dihedral symmetry property (M1) and the reversibility prop-
erty (M2), then αk(σ1) = αk(σ2) for all σ1, σ2 in the set

[σ ]DR := {d1σd2 , d1σ
−1d2 : d1, d2 ∈ DN } .

It was shown in Sumner et al. (2017) that the combinatorial problem of calculating
path probabilitiesmay be converted into a linear algebra problemvia the representation
theory of the symmetric group algebra, C[SN ]. For full details in the general model
setting, we refer the reader to Terauds and Sumner (2019). We recall the essential
steps in the derivation here, since we shall undertake a similar procedure in a lower
dimensional algebra in the next section.

Here, we use the term algebra to mean a vector space equipped with a bilinear
product. In particular, we require the group algebra C[SN ] consisting of all formal
linear combinations of elements of the group SN ; this algebra has natural basis SN ,
and thus dimension N !. For detailed background on the symmetric group algebra, and
algebras more generally, we refer the reader to Sagan (2001) and Etingof et al. (2011)
respectively. The following group algebra elements are key to our calculations.

Definition 2.2 Let (M, w, dist) be a biological model for evolution of genomes with
N regions. We define the model element, s, and the symmetry element, z, of the group
algebra C[SN ] by

s :=
∑

a∈M
w(a) a and z := 1

2N

∑

d∈DN

d .
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To reformulate the path probabilities, we firstly observe that

sk =
∑

τ∈SN

βk(τ ) τ . (3)

Then, for σ ∈ SN , wemultiply (3) on the left by σ−1 to see that βk(σ ) is the coefficient
of e in the expansion of σ−1sk . The representation theory of the symmetric group
algebra tells us that this is exactly ( 1

N ! times) the trace of the regular representation of
σ−1sk . That is,

βk(σ ) = 1
N !χreg(σ

−1sk) . (4)

Thus, for σ ∈ SN , the kth genome path probability is

αk(σ ) =
∑

d∈DN

βk(dσ) = 1
N !

∑

d∈DN

χreg(σ
−1dsk) = 2N

N ! χreg(σ
−1zsk)

= 2N
N !

∑

p
N

Dpχp(σ
−1zsk) , (5)

where we have used the linearity of the characters to incorporate the symmetry ele-
ment z. The final equality is gained by decomposing the regular representation of
C[SN ] into irreducible representations. Recall that the irreducible representations of
C[SN ] correspond to the integer partitions of N (Sagan 2001, Prop. 1.10.1); here, we
denote a partition of N by p 
 N and index the representations and related objects
accordingly. Specifically, for each partition p 
 N , ρp is the irreducible representation
corresponding to p, Dp is its multiplicity (and dimension), and χp is the character of
this representation.

The above derivation of the permutation path probabilities follows that of Sumner
et al. (2017); in that paper it was also noted that an alternative derivation is possible
via the theory of the Fourier transform on SN . That is, one may extend the probability
distribution w on M to w′ on the whole of SN , notice that the Fourier transform
of w′ with respect to an irreducible representation ρp is equal to ρp(s) and that w′
convolved with itself k times is exactly the function βk on SN , and then apply the
Fourier inversion formula to obtain (4).

Now, for a model with rearrangement reversibility (M2), the irreducible represen-
tations of the model element s are diagonalisable (Terauds and Sumner 2019) and we
obtain

αk(σ ) = 2N
N !

∑

p
N

Dp

rp∑

i=1

(λp,i )
k tr(ρp(σ

−1z)Ep,i ) ,

where for each p, the eigenvalues of ρp(s) are {λp,i : i = 1, . . . , rp} and, for each
p and i , Ep,i is the projection onto the eigenspace of λp,i . Substituting this into the
likelihood expression (2) and setting the distribution of events in time to be dist =
Poisson(1), we obtain
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L(T |σ) = e−T 2N
N !

∑

p
N

Dp

rp∑

i=1

tr(ρp(σ
−1z)Ep,i )e

λp,i T , (6)

where we have observed that the expression is in fact a power series and, accordingly,
have been able to eliminate the infinite sum from the expression.

We note that, for a given model, one need only calculate the eigenvalues of each
ρp(s) once. Thus the bulk of the calculation burden is now in calculating the partial
traces, that is, for any given genome, the set

{
tr(ρp(σ

−1z)Ep,i ) : p 
 N , i = 1 . . . rp
}

of coefficients that correspond to the distinct eigenvalues in the likelihood equation.
In implementing the likelihood calculations using the expression (6), we observed

that for all genomes, most of these partial trace coefficients were zero (Terauds and
Sumner 2019). That is, most of our calculations ended up not contributing to the final
likelihood function. In the next section, we explain the occurrence of these zeroes and
show that the redundancy can be removed from the computations.

3 The circular genome algebra

The calculations outlined above are performed in the group algebra C[SN ], where
each permutation in SN is a distinct basis element. However, we (and, indeed, the
computations) do not distinguish between different permutations that represent the
same genome—that is, between elements of each equivalence class

[σ ] = {dσ : d ∈ DN } ,

for σ ∈ SN . We now construct a lower-dimensional algebra by combining these
equivalent permutations together to form basis elements—permutation clouds—that
correspond to circular genomes. Until otherwise stated, assume that we have fixed
a number of regions N and a biological model for evolution (M, w, dist) that has
dihedral symmetry and is reversible, that is, satisfies (M1) and (M2).

Definition 3.1 For symmetry element z ∈ C[SN ], the circular genome algebra for N
regions is

A := zC[SN ] = {zτ : τ ∈ C[SN ]} .

Any element of A of the form zσ , where σ ∈ SN , is called a permutation cloud.

One easily verifies thatA is a subalgebra ofC[SN ]. To see thatA has a natural basis
that is in correspondence with the set of genomes, firstly observe that any element of
A can be written as a linear combination of permutation clouds zσ , for σ ∈ SN . Thus
there exists a basis for A of the form {zσ1, . . . , zσK }, for σi ∈ SN . Now,

zσi = 1
2N

∑

d∈DN

dσi ,
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so that each basis element is a weighted sum of elements from a set [σi ], representing
a particular genome. Since the sets are equivalence classes, for any σ1, σ2 ∈ SN we
have

zσ1 = zσ2 ⇐⇒ σ1, σ2 ∈ [σ ] for some σ ∈ SN .

This means that the set of distinct permutation clouds corresponds to the set of distinct
genomes, and these form a basis forA. Finally, noting that for all σ ∈ SN ,

∣∣[σ ]∣∣ = 2N ,
we see that

dim(A) = ∣∣{[σ ] : σ ∈ SN }∣∣ = N !
2N =: K . (7)

For the remainder of this section, we fix a basis for A,

B := {zσ : σ ∈ SN } = {zσ1, . . . , zσK } , (8)

where we have chosen a representative σi ∈ SN of each equivalence class [σi ] for
notational convenience. We set the first basis element to correspond to [e] = DN , so
that zσ1 = z. Having used the symmetry of the genomes to construct the algebra, we
now incorporate the symmetry of the model to extract some useful properties.

Proposition 3.2 The model and symmetry elements, s, z ∈ C[SN ], have the following
properties.

(i) z is idempotent;
(ii) s and z commute.

Proof (i) Since DN is a group, we have

z2 = 1
(2N )2

∑

d∈DN

∑

f ∈DN

d f = 1
(2N )2

∑

d∈DN

∑

f ∈DN

f = 1
2N

∑

f ∈DN

f = z .

(ii) Now we use the dihedral symmetry (M1) of the model to rewrite the model as m
base rearrangements, a1, . . . , am ∈ SN , along with their symmetries. That is,

M = {da1d−1, da2d
−1, . . . , damd

−1 : d ∈ DN } . (9)

Then, using the same idea as in (i),

zs = 1
2N

∑

f ∈DN

m∑

i=1

∑

d∈DN

w(ai ) f dai d
−1 = 1

2N

∑

f ∈DN

m∑

i=1

∑

d∈DN

w(ai )daid
−1 f = sz .

�
The above properties translate immediately into properties of the representations

of z and s.
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Corollary 3.3 Let p 
 N and ρp : C[SN ] → MDp (C) denote the corresponding
irreducible representation of the symmetric group algebra. Then

(i) the only eigenvalues of ρp(z) are 0 and 1;
(ii) ρp(z) and ρp(s) are simultaneously diagonalisable, with real eigenvectors.

Proof Claim (i) is immediate since z, and thus ρp(z), is idempotent. To show (ii),
we firstly choose the representation ρp to be orthogonal on SN (Sagan 2001). Then
the rearrangement reversibility of the model ensures that ρp(s) is symmetric (Terauds
and Sumner 2019) and, similarly, one may verify directly that ρp(z)T = ρp(z). Thus,
since z and s commute, the representation matrices commute and are simultaneously
diagonalisable. In particular, since these matrices are real symmetric, the orthonormal
set of simultaneous eigenvectors may be chosen to be real. �

Now fix p 
 N and choose a set of orthonormal vectors {v1, v2, . . . , vDp } ⊆ R
Dp

that are eigenvectors for both ρp(z) and ρp(s), ordered so that the first kp of them are
eigenvectors for the eigenvalue 1 of ρp(z). Take an eigenvalue, λp,i of ρp(s) and let
Ji ⊆ {1, 2, . . . , Dp} such that {v j : j ∈ Ji } are the eigenvectors for λp,i . Then, for
σ ∈ SN , the partial trace for λp,i may be written as

tr(ρp(σ
−1z)Ep,i ) =

∑

j∈Ji

vTj ρp(σ
−1z)v j , (10)

where for each j ,

vTj ρp(σ
−1z)v j = vTj ρp(σ

−1)ρp(z)v j =
{

vTj ρp(σ
−1)v j , if j ≤ kp ;

0, if j > kp.
(11)

We see then that ρp(z) “knocks out” parts of the partial traces; in particular, it does
this independently of the genome. We shall establish shortly that, in total, 2N−1

2N of the
partial traces are knocked out in this way, thus explaining the observation in Terauds
and Sumner (2019) that most of the calculated partial traces were zero.

The key to performing MLE computations in the symmetric group algebra is the
relationship between the character of the regular representation and the identity ele-
ment, e ∈ C[SN ]: the character χreg(τ ) counts occurrences of the identity in a generic
element τ ∈ C[SN ]. Since z is idempotent, it is a left identity (but not a right identity)
in the algebra A. We now construct the regular representation, ρA

reg, of A and show

that its character, the regular character χA
reg, functions in exactly this way for the left

identity z ∈ A.
We construct the regular representation of A via the left action of elements of

A on the basis B = {zσ1, . . . , zσK } fixed above (8). We need only consider the
representation of a generic basis element, zσ for σ ∈ SN , since one may extend
linearly to all of A. For arbitrary σ ∈ SN , the i j th entry of the matrix ρA

reg(zσ) is the
coefficient of zσi in the expansion of (zσ)(zσ j ), that is,

(
ρA
reg(zσ)

)
i j = 1

2N

∣∣{d ∈ DN : σdσ j ∈ [σi ]}
∣∣ . (12)
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One readily verifies that ρA
reg(z) is the K × K identity matrix and that ρA

reg(zσ)T =
ρA
reg(zσ

−1). The regular character χA
reg is the trace of the regular representationmatrix.

For a generic basis element zσ ∈ A,

χA
reg(zσ) =

K∑

i=1

(ρA
reg(zσ)i i = 1

2N

K∑

i=1

∣∣{d1 ∈ DN : σd1σi ∈ [σi ]}
∣∣

= 1
2N

K∑

i=1

∑

d2∈DN

∣∣{d1 ∈ DN : σd1σi = d2σi }
∣∣

= 1
2N

K∑

i=1

∑

d2∈DN

∣∣{d1 ∈ DN : σd1 = d2}
∣∣

= 1
2N K

∑

d2∈DN

∣∣{d1 ∈ DN : d1 = σ−1d2}
∣∣

=
{
K if σ ∈ DN ;
0 if σ /∈ DN .

(13)

Since zσ = z if and only if σ ∈ DN , this shows that we can use the character of the
regular representation of the algebra A to track coefficients of the left identity z, just
as we do for the identity e in C[SN ]. Further, we can express the regular character
of A as a sum over the irreducible characters of C[SN ], and thus see that the regular
characters of A and C[SN ] coincide on A.

Proposition 3.4 For arbitrary τ ∈ A,

(i) 1
K χA

reg(τ ) is the coefficient of z in τ ;
(ii) χA

reg(τ ) =
∑

p
N

χp(e)χp(τ ) =
∑

p
N

Dpχp(τ ) = χreg(τ ) .

Proof (i) Given τ ∈ A and the basis B from (8), there exist c1, . . . , cK ∈ C such that
τ = c1z + c2zσ2 + . . . + cK zσK . Then

χA
reg(τ ) = c1χ

A
reg(z) +

K∑

i=2

ciχ
A
reg(zσi ) = c1 K ,

from (13).
(ii) It suffices to consider a generic basis element zσ ∈ A, since the characters are

linear. We shall apply the dual orthogonality relations on the irreducible characters of
SN (see for example (James and Liebeck 2001, Thm. 16.4)), given for σ, τ ∈ SN by

∑

p
N

χp(σ )χp(τ ) = δ(σ, τ )
∣∣centSN (σ )

∣∣ , (14)
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where centSN (σ ) := {γ ∈ SN : γ σ = σγ } is the centraliser of σ and the map
δ : SN → {0, 1} is defined by

δ(σ, τ ) =
{
1 , if σ, τ are in the same conjugacy class in SN ;
0 , otherwise .

(15)

Recall that for p � N and τ ∈ SN , χp(τ ) = χp(τ
−1).3 Then for σ ∈ SN , we have

∑

p
N

χp(e)χp(zσ) = 1
2N

∑

d∈DN

∑

p
N

χp(e)χp(σ−1d)

= 1
2N

∑

d∈DN

δ(e, σ−1d)
∣∣centSN (e)

∣∣

=
{

N !
2N if σ ∈ DN ;
0 if σ /∈ DN .

= χA
reg(zσ) ,

by (13), recalling that K = N !
2N . �

An immediate consequence of the above is an expression for the dimension of A
in terms of the characters χp of C[SN ]:

dim(A) = K = N !
2N =

∑

p
N

χp(e)χp(z) =
∑

p
N

Dpkp , (16)

where, for each p � N , kp is the multiplicity of the eigenvalue 1 of ρp(z). The first
part of this can also be seen directly from the dual orthogonality relations.

To perform theMLE calculations in the algebraA efficiently, wewill need a decom-
position of the regular character in terms of irreducible characters of A. Firstly, we’ll
observe that irreducible submodules of A = zC[SN ] can be produced by acting with
z on the irreducible submodules of C[SN ]. This is straightforward and, in fact, true
in a more general context (see, for example, Steinberg 2016, Lemma 4.15), however
we include the details here since we’ll use them in our subsequent constructions. We
denote the irreducible submodules of C[SN ] by Vp = C

Dp for p � N , that is, we
write

C[SN ] ∼=
⊕

p
N

DpVp . (17)

Theorem 3.5 The non-trivial modules gained by acting with the symmetry element
z on the irreducible submodules of C[SN ] are irreducible modules of the genome
algebra A.

3 Recall that the irreducible characters of SN are all real valued, however we use the general form of the
result here, since we apply the same argument to an arbitrary group in Sect. 4.
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Proof Let p � N . As above, wemay take a set {v1, v2, . . . , vDp } of (real, orthonormal,
linearly independent) eigenvectors for both ρp(s) and ρp(z), ordered such that the
first kp of them correspond to the eigenvalue 1 of ρp(z). Then Vp = spanC{vi : i =
1, . . . , Dp} and

Wp := z · Vp = spanC{ρ(z)vi : i = 1, . . . , Dp} = spanC{vi : i = 1, . . . , kp} .

(18)

It is clear that Wp is an A-module; we need show that it is either {0} or irreducible.
Suppose that there exists Up ⊆ Wp such that Up is an A-module, and 0 	= u ∈ Up.
Then

Up ⊇ spanC{ρp(zσ)u : σ ∈ SN } = z · spanC{ρp(σ )u : σ ∈ SN } = z · Vp = Wp ,

so that Up = Wp. �
It was shown in Terauds and Sumner (2019) that there exist p � N for all N > 3

such that χp(z) = kp = 0; that is, there are always some C[SN ]-modules that are
projected down to zero in A. We note that this is not true in the more general case
considered in Sect. 4 (for example if z is constructed from a different symmetry group).

Now, the dimension expression (16) suggests that we will not be able to decompose
the algebraA into a direct sum of irreducible submodules aswe can forC[SN ] (17). By
(Etingof et al. 2011, Thm. 3.5.8), if this were possible with the irreducible submodules
Wp from above, then the dimension ofAwould be

∑
p�N k2p. We have not yet verified

here that these Wp comprise all irreducible submodules of A, nor that they are all
distinct (not isomorphic to one another), but this is indeed the case (Steinberg 2016,
Thm. 4.23). The difference between the dimension of A and that gained from the
irreducible modules here is signalling that not all of the information about A can be
represented by the action of A—in this case, the left action of A on its irreducible
modules, and on itself, is not injective.

To see this, letW be an irreducible module ofA. Then, since z is a left identity inA,
z must act as the identity on W . But then, for any zσ, zσ ′ ∈ A such that zσz = zσ ′z,

(zσ) · w = (zσ) · (z · w) = (zσz) · w = (zσ ′z) · w = (zσ ′) · w , (19)

for all w ∈ W .
From Theorem 2.1(ii), such zσ 	= zσ ′ ∈ A correspond to physically distinct

genomes that share the same path probabilities and likelihood functions: we have
zσz = zσ ′z if and only if σ ′ ∈ [σ ]D = {dσd ′ : d, d ′ ∈ DN }.

In the language of algebras, A has a non-trivial radical (Etingof et al. 2011, Def.
3.5.1), since (for N > 3) there are non-zero elements zσ − zσ ′ ∈ A that annihilate
all irreducible modules of A. As a concrete example, consider the following.

Example 3.6 Let σ = (1, 2), σ ′ = (2, 3) ∈ SN . Setting r = (1, 2, . . . , N ) ∈ DN , we
observe that σ ′ = rσr−1, so that zσz = zσ ′z. But there exists no d ∈ DN such that
σ = dσ ′, and thus zσ 	= zσ ′. ♦
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For our practical purposes, this is perfect: the algebra sees genomes as distinct
entities, but their representations do not distinguish between genomes corresponding
to an equivalence class [σ ]D , whose likelihood functions are the same. Further, whilst
zσ and zσ ′ correspond to distinct genomes, if we consider them as rearrangements,
they are not distinct, since they have the same action. We shall return to this presently,
when we define models in the genome algebra.

Proposition 3.7 Let zσ, zσ ′ ∈ A. Then ρA
reg(zσ) = ρA

reg(zσ
′) if and only if σ ′ ∈ [σ ]D.

Proof For the reverse implication, we argue as above, replacing w in (19) by each
basis element zσi to verify that the matrices are the same. Conversely, if the regular
representations coincide, then we immediately have that (zσ)z = (zσ ′)z. �

We now explicitly consider the irreducible representations of A on the irreducible
submodules and use these to rewrite the regular character ofA in terms of irreducible
characters of A. Let p � N such that kp > 0 and consider the module Wp of A
which, as in the proof of Theorem 3.5, has a basis {v1, . . . , vkp } ⊆ R

d of orthonormal
eigenvectors. Now, the action of A on Wp = z · Vp is inherited from the action of
C[SN ] on Vp, so for arbitrary τ ∈ A, we define the (kp × kp) representation matrix
ρA
p (τ ) on Wp via the action of ρp(τ ) on the basis vectors v j :

(
ρA
p (τ )

)

i j
:= vTi ρp(τ )v j .

More concisely, setting Qp to be the (Dp ×kp)matrix with {v1, . . . , vkp } as columns,
we have

ρA
p (τ ) = QT

pρp(τ )Qp . (20)

Clearly (also c.f. (19)), ρA
p (z) is the (kp ×kp) identity matrix for each such p � N .

For each p � N such that kp = 0, we formally define ρA
p to be the zero representation.

Now we may calculate the irreducible characters χA
p of A and see that they coincide

with the irreducible characters χp of C[SN ] restricted to A.

Proposition 3.8 For each p 
 N and τ ∈ A, χA
p (τ ) = χp(τ ).

Proof Let p � N . By linearity, we need only verify the claim on a generic basis
element, zσ ∈ A. Again utilising the orthonormal eigenvectors {v1, . . . , vDp } of
ρp(z), where those for i ≤ kp correspond to the eigenvalue 1 and the remainder to the
eigenvalue 0, we have

χA
p (zσ) =

kp∑

i=1

(
ρA
p (zσ)

)

i i
=

kp∑

i=1

vTi ρp(zσ)vi =
Dp∑

i=1

vTi ρp(zσz)vi

= χp(zσz) = χp(zσ) ,

where in the final step we have used the cyclicity of the trace and the idempotency of
z (Proposition 3.2). �
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Combining Propositions 3.4 and 3.8 gives the desired character decomposition.

Corollary 3.9 For arbitrary τ ∈ A,

χA
reg(τ ) =

∑

p
N

Dpχ
A
p (τ ) .

�
Having defined and decomposed the regular character ofA, we are ready to return to

the likelihood calculations. Using the equivalence of the characters ofA andC[SN ] on
the algebraA, along with the the interplay between the genome and model symmetry,
wenowverify thatwemaywork entirely inA to calculate the genomepathprobabilities
and thus the likelihood functions, as defined in the previous section (2).

Theorem 3.10 Let σ ∈ SN and k ∈ N0. Then

αk(σ ) = 2N
N ! χ

A
reg(zσ

−1zsk) = 2N
N !

∑

p
N

Dp χA
p (zσ−1zsk) . (21)

Proof From (5), αk(σ ) = 2N
N ! χreg(σ

−1zsk) = 2N
N ! χreg(zσ−1zsk), since z and s com-

mute, z is idempotent and the trace is cyclic. The first equality is then clear from
Proposition 3.4 and the second from Corollary 3.9. �

Wehavementioned the importance of the ‘identity counting’ property of the regular
character, that is, Proposition 3.4 (i), but this combinatorial component is somewhat
hidden in the proof of Theorem 3.10. To highlight it, one may begin with the identity
(3) stated in the previous section and, for any given genome zσ (σ ∈ SN ), multiply
by zσ−1z to obtain

zσ−1zsk = 1
2N

∑

τ∈SN

αk(τ ) zσ−1τ .

By observing that there are exactly 2N values of τ ∈ SN for which zσ−1τ = z, one
thus sees directly that the coefficient of z in the expansion of zσ−1zsk is αk(σ ).

Note that we could have simplified the above character expression (21) a little, that
is,

χA
p (zσ−1zsk) = χA

p (zσ−1skz) = χA
p (zσ−1sk) .

However, as we did in the algebra C[SN ], we want to diagonalise the matrices repre-
senting the model element, namely the matrices ρA

p (zs). So we keep the middle z and
write

χA
p (zσ−1zsk) = tr

(
ρA
p

(
zσ−1(zs)k

)) = tr
(
ρA
p (zσ−1)ρA

p (zs)k
)

.

For each p � N , as in the proof of Corollary 3.3, we can choose ρp(s) to be symmetric;
thus by the definition (20) each matrix ρA

p (zs) is symmetric and thus diagonalisable.
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Then we obtain

αk(σ ) = 2N
N !

∑

p
N

Dp

Rp∑

i=1

λkp,i tr(ρ
A
p (zσ−1)EA

p,i ) , (22)

where EA
p,i is the projection onto the eigenspace of the i th eigenvalue, λp,i , of ρA

p (zs).
Now, finally substituting the path probabilities (22) into the theoretical likelihood

expression (2), we obtain

L(T |σ) = e−T 2N
N !

∑

p
N

Dp

Rp∑

i=1

tr(ρA
p (zσ−1)EA

p,i )e
λp,i T . (23)

It is clear from Theorem 3.10 that the likelihood expression (23), involving only
elements of the genome algebra A, is equal to that (6) gained via the group algebra
C[SN ]. We now show that the above is, really, a simplified version of (6): that is, by
working in the smaller algebra we have eliminated the many eigenvalue terms that
occur with zero coefficients.

Proposition 3.11 For each p 
 N such that Wp 	= {0}, the eigenvalues of the matrix
ρA
p (zs) are exactly the eigenvalues of ρp(s) that occur with non-zero coefficient in the

likelihood expression (6).

Proof Let p � N such thatWp 	= {0}. As above, take the set {v1, v2, . . . , vDp } ⊆ R
Dp

of orthonormal eigenvectors for both ρp(z) and ρp(s), with the first kp corresponding
to the eigenvalue 1 of ρp(z), and form the matrix Qp with the first kp vectors as
columns. Then, as in (20),

ρA
p (zs) = QT

pρp(zs)Qp = QT
pρp(sz)Qp = QT

pρp(s)Qp =

⎛

⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0

. . .

0 0 . . . λkp

⎞

⎟⎟⎟⎠ ,

(24)

where each λi is clearly an eigenvalue of both ρA
p (zs) and ρp(s) (and the λi are not

necessarily distinct). Suppose λ′ is an eigenvalue of ρp(s) that does not appear in
the matrix of (24). Then λ′ has corresponding eigenvector(s) {v j : j ∈ J ′}, where
J ′ ⊆ {kp+1, kp+2, . . . , Dp}. But then, for any σ ∈ SN , the coefficient of the λ′ term
in the likelihood expression is the partial trace

∑

j∈J ′
vTj ρp(σ

−1z)v j = 0 ,

by (10) and (11). �
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Note that, although in the proof of Proposition 3.11 we construct each ρA
p (zs) as a

diagonal matrix (in which case the projections onto the eigenspaces would be diagonal
matrices of 1s and 0s), we do this only to verify that the representation has the required
properties, and we utilise the eigenvectors of the representation ρp(s). In practice, the
whole point is to not calculate the much bigger representations ρp(s). That is, when
implementing calculations, we would expect to construct a basis for each irreducible
module Wp directly, hence the general form of the projections in (23).

We note that the equivalence of the path probabilities and thus likelihoods on the
classes [σ ]D and [σ ]DR stated inTheorem2.1 can alternatively be obtained byworking
directly in the genome algebraA. We omit the proof here since we shall prove a more
general version of the result in Sect. 4.

Since dim(C[SN ]) = N ! =
∑

p
N

D2
p and dim(A) = N !

2N =
∑

p
N

Dpkp, we have

∑

p
N

Dpkp =
∑

p
N

Dp
Dp
2N . (25)

Note that this does not imply that kp = 1
2N Dp for each (or any) p 
 N , rather that on

average, and asymptotically, the dimension of each irreducible submoduleWp ofA is
1
2N th of the dimension of the irreducible submodule Vp of C[SN ]. To put this another
way, on average, 2N−1

2N ths of the computations in the group algebra, as documented in
Terauds and Sumner (2019), resulted in zeroes.

Given that the dimension of the algebra A is still N !
2N , this does not significantly

reduce the computational complexity.However, since themultiplicity of the irreducible
submodules inA is the same as in the group algebra (25), the reduction in the dimension
of the irreducible submodules is (relatively) much larger than the reduction in total
dimension.

Example 3.12 Consider N = 6. There are N ! = 720 permutations in S6, so the dimen-
sion of the regular representation of C[S6] is 720. The dimensions of the irreducible
modules Vp of C[S6] (given as a list rather than a set as they are not all distinct) are

[Dp : p 
 6] = [1, 5, 9, 10, 5, 16, 10, 5, 9, 5, 1] .

Moving to the genome algebra, there are N !
2N = 60 distinct genomes, so the dimen-

sion of the regular representation of A is 60. The dimensions of the corresponding
irreducible modules Wp = z · Vp of A are

[kp : p 
 6] = [1, 0, 2, 0, 0, 1, 1, 2, 0, 1, 0] .

Thus, for any rearrangement model, each likelihood expression will be a sum of at
most eight terms, corresponding to at most eight distinct eigenvalues. ♦

We note that such dimension reductions are less striking for larger N . In any case,
we see a significant theoretical gain here: the genome algebra A incorporates the
symmetry of the genomes and models into a unified framework, within which the
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problem can be formulated and the computations performed. To highlight this, we
next consider the regular representations of s in the algebra C[SN ] and of zs in the
algebra A as Markov matrices; then we conclude this section by re-formulating the
model in the genome algebra framework.

3.1 TheMarkov interpretation

In the group algebra, C[SN ], the rows and columns of the regular representation are
determined by the N ! permutations σi ∈ SN . In particular,

ρreg(s) =
∑

a∈M
w(a)ρreg(a) ,

where for each rearrangement permutation a ∈ M, the i j th entry of ρreg(a) is 1 if
aσ j = σi and 0 otherwise, so that the ρreg(a)matrices have exactly one ‘1’ in each row
and column. Then ρreg(s), as a convex sum of Markov matrices, is itself a Markov
matrix. The j th column of ρreg(s) contains |M| non-zero entries, each equal to a
unique w(a), since for the distinct permutations a ∈ M, the permutations aσ j are all
distinct.

Thus ρreg(s) is the transition matrix of a discrete Markov chain where the states
are the N ! permutations in SN and the i j th entry is the probability of permutation σ j

transitioning into permutation σi via one rearrangement chosen from the model M.
That is,

ρreg(s)i j =
{

w(a) if a = σiσ
−1
j ∈ M ,

0 otherwise .

It is clear from this formulation that the matrix ρreg(s) is symmetric if and only if
the model has the rearrangement reversibility property (M2). Thus, since the station-
ary distribution on the Markov chain is the uniform distribution on the states, the
reversibility property (M2) of the model is equivalent to reversibility of the Markov
model.

Now, in the algebra A, the corresponding matrix representing the model element
is

ρA
reg(zs) =

∑

a∈M
w(a)ρA

reg(za) . (26)

As above, the matrices on the right hand side represent basis elements of the algebra,
here za for a ∈ M. Although the basis elements here do not form a group (so their
regular representations are not, in general, zero-one matrices), each of the ρA

reg(za) is

again a Markov matrix: for a given a ∈ M, the i j th entry of ρA
reg(za) is the coefficient

of zσi in the expansion of (za)(zσ j ) and, since z = 1
2N

∑
d∈DN

d, the expansion is a

convex sum. Thus the entries in each column of each ρA
reg(za) sum to one and ρA

reg(zs),
as a convex sum of Markov matrices, is indeed a Markov matrix.
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Each basis element zσi corresponds to a genome, so ρA
reg(zs) is the transitionmatrix

of a Markov chain where the states are genomes. The i j th entry, which we calculated
as the proportion of the expansion of (zs)(zσ j ) that is equal to zσi , is of course the
probability of the genome (zσ j ) transitioning into the genome zσi in one step, via the
model.

3.2 Permutation clouds: a unifying concept

In the permutation approach detailed in Sect. 2, we considered rearrangement events
to be individual permutations acting on individual permutations. In the setting of
the genome algebra, we represent both genomes and rearrangements by permutation
clouds, each of which is a sum of permutations weighted by their probabilities (zσ =
1
2N

∑
d∈DN

dσ ). A single rearrangement event is here modelled by a permutation
cloud za acting on a permutation cloud zσ . Mathematically, this event results in a
convex combination of permutation clouds

∑
cizσi ; biologically, it results in one of

the genomes zσi , according to the probability distribution given by the coefficients ci .
The permutation cloud view of circular genomes seems to us quite natural. To

observe a genome, we fix an orientation and a reference frame, and assign to it a single
permutation (anyone, from the appropriate equivalence class [σ ],with probability 1

2N ).
We refer to this as an instanceof the genome.Theoretically, however, the genome exists
simultaneously as all of its possible physical orientations in space; it is the cloud, zσ .

What about rearrangements? For a rearrangement permutationa ∈ SN andd ∈ DN ,
the result of the action da on σ ∈ SN is d(aσ) ∈ [aσ ], that is, it results in the same
genome as a acting on σ . So we can think of za acting on zσ as encompassing (all
orientations of (a acting on (all orientations of σ ))).

Of course, the action of za on zσ also incorporates the dihedral symmetries of a
as an action, that is, dad−1 for d ∈ DN . For a biological model (M, w, dist) for
evolution of genomes as permutations, under the assumption of dihedral symmetry,
we wrote (9)

M = {da1d−1, da2d
−1, . . . , damd

−1 : d ∈ DN } ⊆ SN , (27)

where for each ak and all d ∈ DN , w(dakd−1) = w(ak). Since dakd−1 ∈ [ak]D , the
action of z(dakd−1) on zσ is the same as the action of zak on zσ (see Proposition 3.7)
and thus each ρA

reg(z(dakd
−1)) = ρA

reg(zak).
Having shown that the MLE computations can be performed in the genome algebra

A, and discussed the representation of both genomes and rearrangements as permuta-
tion clouds in this algebra, it remains to reformulate the model within this framework.
Given themodel (27) in the permutation framework, the equivalentmodel for evolution
in the genome algebra setting is (MA, wA, dist), where

MA := {za1, . . . , zam} ⊆ A ,

and wA(zai ) = 2Nw(ai ) for each i .
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Since the dihedral symmetry of the genomes is built into the algebraA, specifying
the model to consist of elements of A in this way makes the dihedral symmetry
requirement (M1) redundant. Model reversibility in this setting is formulated as

for each za∈MA, za−1∈MA and wA(za−1) = wA(za) . (M2A)

This condition is sufficient to ensure that the irreducible representations of zs are
diagonalisable, which is convenient for computations. Although the algebra A has a
left identity, it does not contain inverses, so za−1 is not (in general) an inverse of za.
However, as we shall see in the next section, model reversibility is, further, equivalent
to the reversibility of the Markov model. We conclude this section with an example to
illustrate some of these key concepts.

Example 3.13 Suppose we wish to consider a model consisting only of “small inver-
sions”, which we will take to be inversions of two or three regions. In the permutation
framework, we would define this model to be

M := {d(1, 2)d−1, d(1, 3)d−1 : d ∈ DN }
= {(1, 2), (2, 3), . . . , (N − 1, N ), (N , 1), (1, 3), (2, 4), . . . , (N − 1, 1), (N , 2)}.

Here there are N , rather than 2N , distinct instances of each rearrangement type, since
for inversions,4 each flip coincides with a rotation.

For the rearrangement probabilities, one could choose the uniform distribution,
w(a) = 1

2N for all a ∈ M, or one may consider the larger inversions to be less likely
and set, for all a ∈ M,

w′(a) =
{

2
3N , if a = d(1, 2)d−1, some d ∈ DN ;
1
3N , if a = d(1, 3)d−1, some d ∈ DN .

In the genome algebra, the model is simpler to express; we take the rearrangement
instances (1, 2) and (1, 3) and the model is

MA := {z(1, 2), z(1, 3)} .

The weight functions corresponding to the above would then be wA(z(1, 2)) =
wA(z(1, 3)) = 1

2 or wA′ (z(1, 2)) = 2
3 , w

A′ (z(1, 3)) = 1
3 .

One may recall from Example 3.6 that z(1, 2) 	= z(2, 3), however, one need not
(and indeed should not) include both of these in the rearrangement model since they
have the same action: z(1, 2) · zσ = z(2, 3) · zσ for any genome zσ ∈ A, since
z(1, 2)z = z(2, 3)z. Further, one must be aware of complementary rearrangements.

For example, in the case N = 5, the actions of z(1, 2) and z(1, 3) coincide: inverting
a two-region segment is, under dihedral symmetry, the same rearrangement as inverting
the complementary three region segment (correspondingly, when N = 5, z(1, 2)z =
z(1, 3)z). ♦

4 In this non-oriented region case.
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One can easily eliminate the possibility of such ‘rearrangement redundancies’ by
reformulating the model in the genome algebra as a set of elements of the form zaz;
we do this in the next section (30). More on such considerations, along with explicit
examples of rearrangementmodels in the oriented region case,maybe found inTerauds
et al. (2021); a deeper algebraic consideration of rearrangements is given in Stevenson
et al. (2022).

4 More general models of genomes

The construction of the genome algebra A = zC[SN ] in Sect. 3 was determined
by assumptions we made about how to model the genomes. In particular, following
on from previous work (Serdoz et al. 2017; Sumner et al. 2017; Terauds and Sumner
2019),we chose tomodel circular genomes,without considering orientation of regions,
whichmeant an instance of the genome could be represented by a permutationσ ∈ SN .
We modelled the genomes without a distinguished position, which meant the genome
symmetries corresponded to the dihedral group DN . In this section, we outline how
the constructions and techniques presented for this specific case can be generalised to
cover different genomic models: any for which genome (and rearrangement) instances
can be represented as elements of a group G.

Suppose, for example, that one wanted to vary the above model to include an
origin of replication in the circular genomes. We would model this as a distinguished
position and the genomes would then have no rotational symmetry, only reflectional.
The symmetry groupwould thus be ZN = {e, f }, the symmetry element z = 1

2 (e+ f ),
and each genome an element zσ = 1

2 (σ + f σ) ∈ zC[SN ]. The model would naturally
reflect this symmetry, with rearrangements taking the form za, a ∈ SN . In particular,
this case allows for rearrangements at different positions on the genome, relative to the
origin of replication, to be assigned different probabilities. With appropriate choices
of rearrangements, this framework could also be used to represent linear genomes.

To include orientation of genes, one would use a different underlying group, for
example the hyperoctahedral group HN of signed permutations (as outlined in Egri-
Nagy et al. 2014), and a symmetry group of choice (for example, a copy of the dihedral
group in the case of a circular genome with no distinguished positions). An explicit
consideration of the genomealgebra for the signed region case, including somedetailed
examples, may be found in Terauds et al. (2021).

To construct the general genome algebra, we begin with a groupG, whose elements
represent instances of the genomes of interest, and a subgroup Z ⊆ G that represents
the physical symmetries of these genomes.5 We consider rearrangements such that a
single rearrangement event for an instance g ∈ G of a genome can be modelled via the
left action of a particular element a ∈ G on g. The terms in the following definition
reflect our applications of the objects, but obviously the subsequent results concerning
the algebras hold whether or not one applies them to genomes.

5 To model genomes as possessing no symmetries, one takes the symmetry group to be trivial; this case
thus fits within the framework, but each genome simply corresponds to a single permutation.
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Definition 4.1 Let G be a finite group with subgroup Z ⊆ G. Define

z := 1
|Z |

∑

z∈Z
z , A := zC[G] and A0 := zC[G]z .

We call A the genome algebra of G with Z , A0 the class algebra of G with Z and z
the symmetry element of A and A0.

Rather thanproceeding as inSects. 2 and3 ,wherewefirst defined the rearrangement
model, path probabilities and likelihoods for genome instances (group elements) and
then showed that the calculations could be performed in the genome algebra, we will
here formulate these concepts (and then perform the computations) entirely in the
genome algebra A. We include the class algebra A0 for completeness. Following the
observations in the previous section, it seems a natural next step to consider the algebra
formed by combining together the elements ofA that act indistinguishably. However,
we shall see that this lower dimensional algebra is not the appropriate setting for our
calculations.

Lemma 4.2 Let G be a finite group with subgroup Z ⊆ G.

(i) For each g ∈ G, define [g] := {zg : z ∈ Z}. Then the sets {[g] : g ∈ G} are
equivalence classes of G. For each g ∈ G, |[g]| = |Z |.

(ii) For each g ∈ G, define [g]D := {zgz′ : z, z′ ∈ Z}. Then the sets {[g]D : g ∈ G}
are equivalence classes of G.

Proof Since the sets [g] and [g]D for g ∈ G are respectively right cosets and double
cosets ofG with respect to the subgroup Z , it is clear that they are equivalence classes.

�
We use the label ‘D’ for the classes defined in (ii) above to refer to the double coset

structure of the sets [g]D (noting that this conveniently coincides with the original
usage (Terauds and Sumner 2019) of the label, which referred to the dihedral symmetry
in the circular genome case). The following statements can be derived directly from
the subgroup properties of Z and Lemma 4.2 (c.f. the corresponding results in Sect. 3).

Proposition 4.3 Let G be a finite group with subgroup Z ⊆ G. Let A andA0 respec-
tively be the genome algebra and the class algebra of G with Z and z the symmetry
element of A and A0. Then

(i) z is idempotent, z is a left identity in A, and z is the identity in A0;
(ii) A has a basis of the form {zg : g ∈ G} = {zg1, . . . , zgK } and

K := dim(A) = ∣∣{[g] : g ∈ G}∣∣ = |G|
|Z | ;

(iii) A0 has a basis of the form {zgz : g ∈ G} = {zg1z, . . . , zgLz} and

L := dim(A0) = ∣∣{[g]D : g ∈ G}∣∣ .

�
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For the remainder of this section, we fix a basis for each of A and A0, as defined
in (ii) and (iii) above.

Remark 4.4 Each equivalence class [g]D can be viewed as an orbit of G under an
action of the group Z × Z and thus, from (iii) above, the dimension L of A0 may be
calculated via Burnside’s lemma (James and Liebeck 2001, Prop. 29.4). By combining
this with the dual orthogonality relations on the group G, one can directly obtain the
dimension result stated below in Theorem 4.5 (i).

We note that working ‘entirely’ in the genome algebra does not mean that we
forget about the group G. In practice, one would observe a genome with a particular
orientation and reference frame, thus as an instance g ∈ G, and then identify the
genome as the cloud zg ∈ A for the purposes of computation. There are K = |G|

|Z |
distinct genomes, corresponding to the distinct basis elements zg of the genomealgebra
A. Similarly, one would conceive a rearrangement initially as an instance a ∈ G and
then lift to za in the genome algebra. Considering all orientations of a rearrangement
instance on all orientations of a genome corresponds to a left action of the algebra
A on itself. Distinct elements of A that correspond to the same element of A0 act
indistinguishably, since

(za) · (zg) = (zaz) · (zg) . (28)

Thus there are L = dim(A0) distinct rearrangement actions.6

The (left) regular representations ρA
reg of the genome algebraA and ρ0

reg of the class
algebra A0 can be constructed in the usual way (c.f. (12)) via the bases fixed above.
As in Sect. 3, one readily verifies that ρA

reg(z) is the K × K identity matrix and that

ρA
reg(zg)

T = ρA
reg(zg

−1). Since z is an identity in A0, ρ0
reg(z) is the L × L identity

matrix. In this case, the equivalence classes [g]D need not be the same size and thus,
in general, ρ0

reg(zgz)
T 	= ρ0

reg(zg
−1z).7 We denote the regular characters of A and

A0 by χA
reg and χ0

reg respectively and note that these take real values on any algebra
element that is a real linear combination of basis elements.

Recall that, by Maschke’s theorem (Etingof et al. 2011, Thm. 4.1.1), the group
algebra C[G] of any finite group G can be written as a direct sum over its irreducible
modules.

Theorem 4.5 Let G be a finite group with subgroup Z ⊆ G. Denote the distinct
irreducible submodules of C[G] by Vi , with dim(Vi ) = Di for each i so that

C[G] ∼=
M⊕

i=1

DiVi ,

and denote the corresponding irreducible representations and characters of C[G] by
ρi and χi respectively. Then the following hold.

6 We note that most of these mathematically possible rearrangements would not correspond to biologically
plausible ones, so would not appear in rearrangement models in practice. For a deeper consideration of
biologically plausible rearrangements from an algebraic perspective, see Stevenson et al. (2022).
7 One can verify via a simple counting argument that

(
ρ0reg(zgz)

)
i j = |[gi ]D |∣∣[g j ]D

∣∣
(
ρ0reg(zg−1z)

)
j i .
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(i) For each i , Wi := z · Vi is either {0} or an irreducible A0-module and

A0 ∼=
⊕

1≤i≤M
Wi 	={0}

kiWi , (29)

with ki = dim(Wi ) = χi (z) for each i . Thus, dim(A0) = L =
M∑

i=1

χi (z)2.

(ii) The modules {Wi : 1 ≤ i ≤ M,Wi 	= {0}} comprise all irreducible modules of
A. Denoting the corresponding irreducible representations of A and A0 by ρA

i
and ρ0

i respectively,

ρA
i (zg) = ρA

i (zgz) = ρ0
i (zgz) ,

for all g ∈ G and all (relevant) 1 ≤ i ≤ M.Thus for all g ∈ A0,ρA
i (g) = ρ0

i (g).
(iii) Denoting the corresponding characters ofA andA0 by χA

i and χ0
i respectively,

and defining χA
i = χ0

i ≡ 0 for each i such that Wi = {0},

χi (zg) = χA
i (zg) = χ0

i (zgz) ,

for all g ∈ G and all 1 ≤ i ≤ M. Thus the characters χi , χ
A
i and χ0

i coincide
on A0.

(iv) For all g ∈ A,

χA
reg(g) =

M∑

i=1

Diχ
A
i (g) = χreg(g) ,

where χreg and χA
reg denote the regular characters of C[G] and A respectively.

(v) For any g ∈ A,
(

1
K ·χA

reg(g)
)
is the coefficient of z in g.

Proof For (i), we use (Steinberg 2016, Prop. 4.18, Thm. 4.23). For the remaining
results, we use the observation (28) and proceed just as for the corresponding results
in Sect. 3. Note that in this general setting we cannot assume that the irreducible
representations ρi are orthogonal on G, but we can choose them to be unitary (Etingof
et al. 2011, Thm. 4.6.2). This means that the corresponding irreducible representations
of z in C[G] are self adjoint, and thus each ρi (z) is unitarily diagonalisable, so that
its eigenvectors form an orthonormal basis for CDi ∼= Vi . Since the eigenvectors need
not be real, the only difference in the proofs is that we need the conjugate transposes,
not just transposes, of these vectors. �

The above results imply that A0 ∼= A/Rad(A) (Etingof et al. 2011, Thm. 3.5.4),
which formalises the relationship between the genome algebra and the class alge-
bra: A0 is obtained from A by factoring out the elements of A that act trivially. We
have previously expressed this as A0 combining together the elements of A that act
indistinguishably. Another aspect of this is the following.
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Corollary 4.6 Let G be a finite group with subgroup Z ⊆ G. For any g ∈ G and each
irreducible representation ρA

i of A, ρA
i (zg) = ρA

i (zg′) for all g′ ∈ [g]D. For any
g, g′ ∈ G, ρA

reg(zg) = ρA
reg(zg

′) if and only if g′ ∈ [g]D. �

Remark 4.7 We note that (Steinberg 2016, Prop. 7.14) implies part of Theorem 4.5
(iii) (namely, that χ0

i (g) = χi (g) for g ∈ A0) in the more general case of G being
a semigroup. Extending the framework to algebras based on semigroups would allow
us to model further types of rearrangements, such as insertions and deletions (Francis
2014), and we intend to investigate this possibility in future work.

We are ready to proceedwith the formulation of path probabilities and the likelihood
function within the genome algebraA. Firstly, we formally define a biological model
for evolution in the genome algebra to be (M, w, dist), where

M := {za1z, za2z, . . . , zaqz} ⊆ A , (30)

for some a1, . . . , aq ∈ G, w : M → (0, 1) is the probability distribution on M,
and dist is the probability distribution of rearrangement events in time. Note that
we have used the form zaz rather than za to avoid duplicating rearrangements in the
model (that is, elements za, za′ ∈ A that are distinct but have the same left action, c.f.
Examples 3.6 and 3.13 ). Presently, we shall also add the condition that the model be
reversible, that is, that za−1z ∈ M for every zaz ∈ M, and w(za−1z) = w(zaz).

We fix the reference genome to be z ∈ A (whose instances are the elements of Z ,
in particular e ∈ Z ). Then, for any target genome zg (where we have observed the
instance g ∈ G) and each k ∈ N0, we define the path probability αk(zg) to be

αk(zg) := P(z �→ zg via k rearrangements) ,

where z �→ zg means “genome z is transformed into genome zg”. As usual, to find
the path probability for an arbitrary genome zh to be transformed into target genome
zg, we can simply translate to the reference; that is, this is exactly the path probability
for z to be rearranged into zgh−1, which is αk(zgh−1).

Given a model M, we define the corresponding model element of A to be

s̃ :=
q∑

i=1

w(zaiz)zai .

We write s̃ to distinguish the model element here from the previous definition of s in
the group algebra (c.f. Definition 2.2), and choose to sum over rearrangements of the
form zai rather than zaiz for simplicity (recall from (28), these have the same action,
so either form may be used).

It remains to connect the path probabilities to the regular character of powers of the
model element (c.f (3) in Sect. 2). Recall from Sect. 3.1 that za · zg gives a convex
combination of genomes, that is,
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za · zg =
K∑

i=1

pizgi ,

where {zg1, . . . , zgK } is our fixed basis for A and each pi is the proportion of the
expansion of zazg that is equal to zgi or, equivalently, the probability that the rear-
rangement za acting on the genome zg will result in the genome zgi . Thus

s̃ · z =
q∑

j=1

w(za jz)za jz =
q∑

j=1

w(za jz)
K∑

i=1

p j,izgi =
K∑

i=1

⎛

⎝
q∑

j=1

w(za jz)p j,i

⎞

⎠ zgi ,

where we have rearranged and collected terms in the final step so that, for each i ,∑q
j=1 w(za jz)p j,i is the total probability that the genome z will be transformed into

the genome zgi via some (single) rearrangement chosen from the model. Thus

s̃ · z =
K∑

i=1

α1(zgi )zgi

and, by repeatedly applying s̃ , one sees that

s̃ kz =
K∑

i=1

αk(zgi )zgi . (31)

Now, for g ∈ G an instance of the genome of interest, multiply (31) on the right by
g−1 to obtain

s̃ kzg−1 =
K∑

i=1

αk(zgi )zgi g−1 .

Since zgi g−1 = z if and only if zgi = zg, we see that αk(zg) is the coefficient of z in
the expansion of s̃ kzg−1, and thus

αk(zg) = 1
K · χA

reg

(
s̃ kzg−1

)
(32)

by Theorem 4.5 (v).

Theorem 4.5 allows us to decompose the regular character in (32) into irreducible
characters, however we also will need to diagonalise the irreducible representation
matrices.

Lemma 4.8 Let G be a finite group with subgroup Z ⊆ G. Let (M, w, dist) be a
biological model for evolution of genomes represented by elements zg ∈ A of the
genome algebra (where g ∈ G) and let s̃ ∈ A be the corresponding model element.
If the model is reversible, then the following hold.
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(i) The irreducible representation matrices of the model element s̃ in A are diago-
nalisable.

(ii) The regular representation of s̃ in A is symmetric.

Proof (i) Suppose that the model is reversible and let 1 ≤ i ≤ q. We have (c.f. (20))

ρA
i ( s̃ ) = ρA

i ( s̃ z) := Q
T
ρi ( s̃ z)Q ,

where Q is the Di × ki matrix of orthonormal eigenvectors for ρi (z). Since G is
a finite group, we may choose the irreducible representation ρi on G to be unitary.
Then, writing ρi ( s̃ z) as a sum of matrices of the form w(zaz)

(
ρi (zaz) + ρi (za−1z)

)

(omitting the second term if a = a−1), each of which is self adjoint, we see that ρi ( s̃ z)
is self-adjoint and thus so is ρA

i ( s̃ ). For claim (ii), we proceed similarly, using the
observation that ρA

reg(za)T = ρA
reg(za

−1). �
Theorem 4.9 Let G be a finite group with subgroup Z ⊆ G. Let (M, w, dist) be a
reversible biological model for evolution of genomes represented by basis elements
of the genome algebra A of G with Z and let s̃ ∈ A be the corresponding model
element. Let g ∈ G be an observed instance of a genome zg ∈ A. Then the following
hold.

(i) For any k ∈ N0, the probability that the reference genome z is transformed into
the genome zg via k rearrangements chosen from the model is

αk(zg) = |Z |
|G|χ

A
reg( s̃

kzg−1) = |Z |
|G|

M∑

i=1

Di

Ri∑

j=1

λki, j tr(ρ
A
i (zg−1)EA

i, j ) ,

where for each i , EA
i, j is the projection onto the eigenspace of the j th eigenvalue

λi, j of ρA
i ( s̃ ).

(ii) If the distribution of rearrangement events in time is dist = Poisson(1), then
the probability that the reference genome z is transformed into the genome zg via
the given model in time T is given by the likelihood function

L(T |g) = e−T |Z |
|G|

M∑

i=1

Di

Ri∑

j=1

tr(ρA
p (zg−1)EA

i, j )e
λi, j T .

(iii) For any genome zh ∈ A with an instance h ∈ [g]D ∪ [g−1]D, the path probabil-
ities and likelihood functions of zg and zh coincide.

Proof The first expression for the path probability αk(zg) was gained above (32). To
gain the second, we use the decomposition of the regular character from Theorem 4.5
(iv), and then for each i , use the cyclicity of the trace to write

χA
i ( s̃ kzg−1) = tr

(
ρA
i (zg−1)

(
ρA
i ( s̃ )

)k)
.
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Then, from Lemma 4.8, we may diagonalise ρA
i ( s̃ ) to gain the second expression.

Analogously to the definition in Sect. 2, but with genomes instead of elements of G,
we define the likelihood function as

L(T |g) := P(zg|T ) =
∞∑

k=0

P(z �→zg via k events)P(k events in time T )

=
∞∑

k=0

αk(zg) e
−T T k

k! .

Then substituting in the expression from (i) and simplifying the power series
gives (ii).
(iii) Let h ∈ G such that zhz = zgz or zhz = zg−1z. We show that αk(zg) = αk(zh)

for all k ∈ N0, which implies (iii). Let k ∈ N0. Since the trace is cyclic, we have

χA
reg( s̃

kzg−1) = tr
(
ρA
reg(zg

−1)ρA
reg( s̃ )k

)
= tr

(
ρA
reg( s̃ )kρA

reg(zg)
)

= χA
reg( s̃

kzg) ,

where the second equality was obtained by taking the transpose of the argument and
applying Lemma 4.8. Then from (i) it is clear that αk(zg) = αk(zg−1) and these
coincide with αk(zh) by Corollary 4.6. �

Since the regular representation of the model element is symmetric, by Lemma 4.8,
and the equilibrium distribution is the uniform distribution on the set of genomes,
reversibility of the model M is equivalent to time reversibility of the underlying
Markov process. As in Sect. 3.1, the regular representation of the model element in
A is the transition matrix for a Markov chain with states being genomes, with the
probability that genome zg j transitions into genome zgi via k rearrangement steps
from the model given by

ρA
reg( s̃

k)i j = αk(zgi g
−1
j ) .

Reversibility then means that for any genomes zg, zh ∈ A, the probability of zg
transforming into zh in k steps via the givenmodel is the sameas that of zh transforming
into zg in k steps. In terms of path probabilities,

αk(zgh−1) = αk(zhg−1) ,

which is just a special case of Theorem 4.9 (iii). Model reversibility thus implies that
the MLE distance is ‘directionless’, or symmetric, as is any evolutionary distance
measure based on path probabilities calculated in this framework.

To conclude this section, we return briefly to the class algebraA0. By constructing
simple examples, one can verify that, in general, the regular representation matrices
of non-identity basis elements in A0 have non-zero entries on the diagonal, and thus
see that we do not have an analogue of Theorem 4.5 (v) for A0. That is, the regular
character ofA0 is not counting occurrences of the identity in elements of this algebra,
and thus cannot be used to calculate path probabilities as in Theorem 4.9.
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Consider the underlying Markov model here, with transition matrix given by the
regular representation of the model element analogue ρ0

reg( s̃ z). Now the states are
the basis elements zgiz, each corresponding to an equivalence class [gi ]D . Since
each equivalence class [g]D is the disjoint union of |[g]D |

|Z | equivalence classes of the

form [gz] for some z ∈ Z , each basis element zgz is the average of |[g]D |
|Z | distinct

genomes of the form zgz for some z ∈ Z . Thus an arbitrary element of the matrix
gives us the average probability of a genome from a certain class transitioning into a
genome from another class (and a diagonal element gives the probability of a transition
within a class). This is not refined enough for our purposes, since, given one genome
zg and two more genomes zg′ and zg′′ that are in the same class (g′ ∈ [g′′]D), the
probability of transitioning between zg and zg′ need not be the same as the probability
of transitioning between zg and zg′′.

The information is not entirely lost, however; one can use the first column of this
Markov matrix to calculate path probabilities. Given an observed instance g ∈ G of
a genome, we find the appropriate basis element zg�z of A0 such that g ∈ [g�]D , and
then

αk(zg) = |Z |
|[g�]D |

(
ρ0
reg(( s̃ z)

k)
)

�1
.

Of course, the fact that this path probability information exists in the regular repre-
sentation does notmean that it is easy to obtain, in particular since the size of the regular
representation in A0 is likely to be rapidly increasing with the number of genomic
regions (for example for G = SN and Z = DN , dim(A0) is proportional to (N − 2)!)
and, being unable to retain the ‘first column’ information through diagonalisation (as
one can for the trace), one would need to calculate the kth power of the matrix for
each desired path probability. We further note that calculating the equivalence classes
themselves, and checking for membership of an equivalence class, is a non-trivial
exercise and simply not feasible for large numbers of regions.

In any case, the class algebra A0 is nicer in some ways than the genome algebra
A, in particular in that it is decomposable (that is, isomorphic to a direct sum of its
irreducible modules). This property is formally known as semisimplicity. Then, since
the irreduciblemodules ofA0 are identical to those of the algebraA and the irreducible
representations of the two algebras not only have the same dimension but coincide on
the objects of interest,

ρ0
p(zgz) = ρA

p (zgz) = ρA
p (zg) ,

one may in fact choose to implement the calculations of the irreducible representa-
tions in A or A0 and then, either way, combine the results together according to the
decomposition given in Theorem 4.9.
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5 Conclusion

We have presented a coherent algebraic framework for modelling some classes of
genomes and rearrangements in an algebra that incorporates the inherent physical
symmetries into each element. Algebraic frameworks for modelling genome rear-
rangement have been studied previously (Meidanis and Dias 2000; Moulton and Steel
2012; Francis 2014), and the importance of including genome symmetry in rear-
rangement distance calculations has been recognised (Egri-Nagy et al. 2014; Serdoz
et al. 2017), however our unified approach, incorporating symmetry into the position
paradigm framework (Bhatia et al. 2018), is new.

Beginning with the specific case of circular genomes modelled with unoriented
regions and dihedral symmetry, we explicitly constructed the genome algebra from the
symmetric group algebra, and showed that the MLE computations can be performed
entirely within this algebra. By identifying genomes and rearrangements with single
elements—permutation clouds—in the genome algebra, we have advanced previous
work that identified genomes with cosets of permutations (where each element of a
given coset represents an instance of a genome in a fixed physical orientation) but
used the permutations as the basis elements for computation (Egri-Nagy et al. 2014;
Serdoz et al. 2017; Sumner et al. 2017; Terauds and Sumner 2019). We have both
explained and removed the redundancy that we identified (Terauds and Sumner 2019)
in the implementation of the calculations in the symmetric group algebra.

In Terauds and Sumner (2019), we also signalled a desire to extend our technique
for calculating the MLE to other settings, for example to include oriented regions
or genomes with non-dihedral symmetry. We have not recorded the results of any
explicit computations here, however we have algebraically verified that the technique
can indeed be extended to a much more general case. For genomes where a single
physical orientation can be represented by elements of a group G, and their physical
symmetries by the subgroup Z ⊆ G, we defined the genome algebra of G with Z ;
here, as in the special case described above, genomes and rearrangements correspond
to basis elements (clouds). We showed that the path probabilities and thus the MLE
can be formulated and the computations performed entirely in this genome algebra.
An application of the framework to modelling signed circular genomes, using the
hyperoctahedral group and two possible symmetry groups, is presented in Terauds
et al. (2021), along with the results of some sample computations that illustrate how
the framework may be applied to compare different models and distance measures.

Although the genome algebra has lower dimension than the group algebra (by a
factor of 1

2N in the DN case and 1
|Z | in the general case), this does not significantly

reduce the computational complexity of calculating the MLE. We have performed
distance calculations, in reasonable time, for genomes with up to twelve unoriented
regions (unpublished) and up to six oriented regions (Terauds et al. 2021). Work to
extend our initial experimental calculations to implementation of the framework for
larger numbers of regions is ongoing. In particular, we are exploring the use of sim-
ulations and intend to apply numerical approximations to make distance calculations
tractable for genomes with larger numbers of regions.

Whilst the framework does not specify a particular rearrangement model (and
indeed, allows choice both in the type of rearrangements allowed and their rela-

123



A new algebraic approach Page 31 of 32 49

tive probabilities of occurring), we cannot currently model insertions, deletions, or
duplications, since the underlying group structure means we are restricted to rear-
rangements that do not alter the set of regions. This is a clear limitation of the current
approach. To address this, we are currently working on extending the framework to a
semigroup-based approach, with the aim of accommodating insertions and deletions.
Furthermore, whilst one can apply different probabilities to different rearrangements
(and, depending on the genome’s symmetry, rearrangements at different genomic
positions), the current approach does not incorporate intergenic regions or explicitly
consider breakpoints.Whether a group- or semigroup-based genome algebra approach
can be devised that incorporates these biological realities, and others such as multiple
chromosomes, is another question for future research.

Finally, we note that the applications of this algebraic framework are not limited
to calculating MLEs. The likelihood function is built from path probabilities; since
our fundamental results hold for these ‘building blocks’, other rearrangement distance
measures that are based onpath probabilitiesmaybe calculated via the genomealgebra.
We have shown that, via the regular representation of the genome algebra, the general
genome rearrangement model can be viewed as a discrete (or, with the addition of
the stochastic component, continuous time) Markov chain, and thus represented as a
connected graph, generalising the Cayley graph approach (Moulton and Steel 2012;
Clark et al. 2019). This facilitates the calculation of further distance measures, for
example mean first passage time, as demonstrated in Terauds et al. (2021).

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

BaderDavidA,Moret BernardME,YanMi (2001)A linear-time algorithm for computing inversion distance
between signed permutations with an experimental study. J Comput Biol 8(5):483–491

Bader M, Ohlebusch E (2006) Sorting by weighted reversals, transpositions, and inverted transpositions.
In: Research in computational molecular biology, 10th Annual International Conference, RECOMB
2006, Venice, Italy, April 2–5, 2006, Proceedings, pp 563–577

Belda E, Moya A, Silva Francisco J (2005) Genome rearrangement distances and gene order phylogeny in
y-proteobacteria. Mol Biol Evolut 22(6):1456–1467

Bhatia S, Feijão P, Francis AR (2018) Position and content paradigms in genome rearrangements: the wild
and crazy world of permutations in genomics. Bull Math Biol 80(12):3227–3246

Chen L, Chen P-Y, Xue X-F, Hua H-Q, Li Y-X, Zhang F, Wei S-J (2018) Extensive gene rearrangements
in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma
ostriniae (hymenoptera: Chalcidoidea: Trichogrammatidae). Sci Rep 8

Clark C, Egri-Nagy A, Francis A, Gebhardt V (2019) Bacterial phylogeny in the Cayley graph. Discrete
Math Algorithms Appl 11(05):1950059

Darmon E, Leach DRF (2014) Bacterial genome instability. Microbiol Mol Biol Rev 78(1):1–39

123

http://creativecommons.org/licenses/by/4.0/


49 Page 32 of 32 V. Terauds, J. Sumner

DobzhanskyT, SturtevantAH (1938) Inversions in the chromosomes ofDrosophila pseudoobscura.Genetics
23(1):28–64

Egri-Nagy A, Gebhardt V, TanakaMM, Francis AR (2014) Group-theoretic models of the inversion process
in bacterial genomes. J Math Biol 69(1):243–265

Etingof P, Golberg O, Hensel S, Liu T, Schwendner A, Vaintrob D, Yudovina E (2011) Introduction to
representation theory, volume 59 of Student Mathematical Library. American Mathematical Society,
Providence, RI. With historical interludes by Slava Gerovitch

Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland
Francis AR (2014) An algebraic view of bacterial genome evolution. J Math Biol 69(6–7):1693–1718
James G, Liebeck M (2001) Representations and characters of groups, 2nd edn. Cambridge University

Press, New York
Meidanis J, Dias Z (2000) An alternative algebraic formalism for genome rearrangements. In: Sankoff D,

Nadeau JH (eds) Comparative genomics. Comput Biol 1: 213–223
Moulton V, Steel M (2012) The ‘butterfly effect’ in Cayley graphs with applications to genomics. J Math

Biol 65(6–7):1267–1284
Oesper L, Dantas S, Raphael BJ (2018) Identifying simultaneous rearrangements in cancer genomes. Bioin-

formatics 34(2):346–352
Oliveira AR, Jean G, Fertin G, Dias U, Dias Z (2019) Super short operations on both gene order and

intergenic sizes. Algorithms Mol Biol 14(1):1–17
Sagan BE (2001) The symmetric group, volume 203 of Graduate texts in mathematics, 2nd edn. Springer,

New York
Serdoz S, Egri-Nagy A, Sumner J, Holland BR, Jarvis PD, Tanaka MM, Francis AR (2017) Maximum

likelihood estimates of pairwise rearrangement distances. J Theor Biol 423:31–40
Steinberg B (2016) Representation theory of finite monoids. Springer, Cham
Stevenson J, Terauds V, Sumner J (2022) Rearrangement events on circular genomes. arXiv preprint

arXiv:2202.01968
Sumner JG, Jarvis PD, Francis AR (2017) A representation-theoretic approach to the calculation of evolu-

tionary distance in bacteria. J Phys A Math Theor 50(33):335601
Terauds V, Sumner J (2019) Maximum likelihood estimates of rearrangement distance: implementing a

representation-theoretic approach. Bull Math Biol 81(2):535–567
Terauds V, Stevenson J, Sumner J (2021) A symmetry-inclusive algebraic approach to genome rearrange-

ment. J Bioinform Comput Biol 19(06):2140015
WangL-S,WarnowT,MoretBME, JansenRK,RaubesonLA (2006)Distance-based genome rearrangement

phylogeny. J Mol Evol 63(4):473–483

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2202.01968

	A new algebraic approach to genome rearrangement models
	Abstract
	1 Introduction
	2 Background: the permutation approach
	3 The circular genome algebra
	3.1 The Markov interpretation
	3.2 Permutation clouds: a unifying concept

	4 More general models of genomes
	5 Conclusion
	References




