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Abstract

Background: Lead (Pb) pollution in soil has become one of the major environmental threats to plant growth and
human health. Safe utilization of Pb contaminated soil by phytoremediation require Pb-tolerant rapeseed (Brassica
napus L) accessions. However, breeding of new B. napus cultivars tolerance to Pb stress has been restricted by
limited knowledge on molecular mechanisms involved in Pb tolerance. This work was carried out to identify
genetic loci related to Pb tolerance during seedling establishment in rapeseed.

Results: Pb tolerance, which was assessed by quantifying radicle length (RL) under 0 or 100 mg/L Pb stress
condition, shown an extensive variation in 472 worldwide-collected rapeseed accessions. Based on the criterion of
relative RL > 80%, six Pb-tolerant genotypes were selected. Four quantitative trait loci (QTLs) associated with Pb
tolerance were identified by Genome-wide association study. The expression level of nine promising candidate
genes, including GSTUs, BCATs, UBP13, TBR and HIPPOT, located in these four QTL regions, were significantly higher
or induced by Pb in Pb-tolerant accessions in comparison to Pb-sensitive accessions.

Conclusion: To our knowledge, this is the first study on Pb-tolerant germplasms and genomic loci in B. napus. The
findings can provide valuable genetic resources for the breeding of Pb-tolerant B. napus cultivars and
understanding of Pb tolerance mechanism in Brassica species.

Keywords: Lead (Pb) tolerance, Phytoremediation, SNP markers, GWAS, Rapeseed

Background

Lead (Pb) pollution in soil, from anthropogenic activities
such as burning of fossil fuels, mining, discharge of un-
treated industrial wastes and effluents, and unreasonable
disposal of lead batteries, has become a worldwide envir-
onmental issue [1, 2]. Pb in soil, is easily transferred to
plant tissues, can not only influence various morpho-
logical, physiological and biochemical processes in plant,
can also threats to human health through food chains
[3—5]. Several alleviating techniques such as phytoreme-
diation (including Phytostabilization and Phytoextrac-
tion) have been applied for safe utilization of Pb
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contaminated soil [6, 7]. Development of new cultivars
tolerance to Pb toxicity will be the first step for safe
utilization of Pb polluted soil by phytoremediation [8—
10].

Rapeseed (Brassica napus L.), an ideal plant for phy-
toremediation, is an important source of edible vegetable
oil, vegetable, animal fodder, green manure and biodiesel
[11]. Breeding rapeseed cultivars with Pb-tolerant re-
quire germplasms and genetic loci related to Pb toler-
ance. Whereas, more and more genotypes tolerance to
Pb toxicity have been selected in rice, ramie and willow
populations, very few Pb-tolerant B. napus germplasm
has been investigated [12-17]. At the vegetative and
adult stage, Pb toxicity in rapeseed was evident from ele-
vated levels of oxidative stress and subcellular damage
that significantly inhibited plant growth, leaf chlorophyll
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contents, gas exchange parameters and photosynthetic
attributes [18—21]. But at the initial growth stages (the be-
ginning of life cycle, such as seedling establishment), serve
as an important indicator in determining the toxicity ef-
fects of heavy metals (HMs) on plants, only cadmium (Cd)
toxicity effect has been reported in rapeseed [22, 23].
Unlike in other plants, few data is available on molecular
mechanisms involved in Pb tolerance in rapeseed. In Arabi-
dopsis AtACBPI (Acyl-CoA-binding domain-containing
protein), AtPSAE1 (Photosystem I reaction center subunit
IV A) and several ABC (ATP-binding cassette) transporter
genes (AtATM3, AtPDRS, and AtPDRI12) have been identi-
fied as being involved in tolerance to Pb stress [24—27]. Pre-
vious research has also demonstrated that HvCBT1 (CaM
binding transporter) in barley, AtCNGCI (cyclic
nucleotide-gated ion channel) in Arabidopsis and NtCBP4
in tobacco, as one of the nonselective entry pathways used
by Pb [28-31]. For further exploring genetic factors
responding to Pb stress, Genome-wide association study
(GWAS), a powerful tool to detect the genetic architecture
of complex traits, has been widely used in rice, maize and
grasses [12, 32-39]. GWAS has also been used to study
HMs concentration, tolerance to Cd and other abiotic
stress related quantitative trait loci (QTLs), but not the mo-
lecular mechanism of Pb tolerance in B. napus [23, 40-43].
The objectives of this study were screening elite germ-
plasms tolerance to Pb stress at seedling establishment
stage among 472 worldwide-collected rapeseed accessions
and identification of QTLs and candidate genes related to
Pb tolerance by GWAS for the first time in B. napus. The
findings can provide valuable genetic resources for breeding
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of Pb-tolerant cultivars and understanding of the molecular
mechanisms responding to Pb stress in Brassica species.

Results
Screening elite B. napus germplasms tolerance to Pb
stress
To investigate the tolerance to Pb stress of different B.
napus genotypes, the radicle lengths (RL) of 472 acces-
sions grown under 0 or 100 mg/L Pb stress condition for
seven days were compared. Although the RL varied sig-
nificantly among all the accessions under both normal
and Pb stress conditions (with a range from 31.15 to
130.50 mm (mm), and 8.67 to 80.60 mm, respectively), the
RL of all accessions under Pb stress condition were
shorter than that under normal condition (Fig. la, Add-
itional file 1: Figure S1). The average of RL under normal
growth condition was 85.18 + 0.08 mm, whereas the aver-
age of RL under Pb stress condition was 39.77 + 0.05 mm
(Fig. 1a). This is consistent with previous reports [23, 44].
To eliminate the genetic variations in RLs under nor-
mal condition, the relative radicle length (RRL) was
employed to evaluate the tolerance to Pb stress of B.
napus as reported previously [23, 45]. We found that the
RRL was ranged from 12.94 to 98.88, 12.17 to 99.84,
20.34 to 98.42 in three replications, respectively (Fig. 1b,
Additional file 5: Table S1). And the coefficient of vari-
ation ranged from 26.37 to 28.57% in three replications
(Additional file 5: Table S1). These results indicate that
this B. napus population exhibited a broad variation of
Pb tolerance.
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Fig. 1 Distributions and correlation matrixes of traits. a Violin plot of radicle length (RL) under control (CK) and Pb stress (Pb) condition. b
Distributions and correlation matrixes of relative radicle length (RRL). RRL1, RRL2, RRL3 represent the RRL in replication 1, 2 and 3 respectively.
RRL_Means was the average value of three RRLs
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To select stable Pb-tolerant genotypes for potentially
used in phytoremediation or new cultivar breeding, we
performed correlation analyses, and found that the RRLs
of three replications were significantly correlated with
each other with a correlation coefficient value over 0.85
(Fig. 1b). Based on the values of RRLs of all the acces-
sions, six Pb-tolerant genotypes (RRL >80%) were se-
lected (Additional file 6: Table S2).

Detection of QTLs associated with Pb tolerance

To select a most suitable model for GWAS analysis of Pb
tolerance in the population, the native, population struc-
ture (Q), principal component analysis (P), kinship (K),
Q+K and P+K models were tested. As shown in
quantile-quantile plots (Q-Q) plot, the distribution of ob-
served -loglO(p) from Q + K model provided the best fit
with the expected distribution (Additional file 2: Figure
S2). Therefore, to decrease the rate of false-positive, Q + K
model was chosen for subsequent analysis.
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Six significantly associated single nucleotide polymor-
phisms (SNPs) (-loglO(p) >4.3) and three moderately
associated SNPs (3.5 < -loglO(p) <4.3) located on
chromosome A09, C03 and C04 were detected (Fig. 2).
Almost all of them (except for Bn-scaff 16614 _1-
p658026 and Bn-scaff_18559_1-p175628) were identified
in more than two replications, and four out of the nine
SNPs were detected in all replications (Table 1). In
addition, the significant difference of RRLs between al-
leles in all nine SNPs were confirmed by ¢-test (Fig. 3).

Further studies with linkage disequilibrium (LD) analyses
indicated that these nine associated signals were located in
four QTLs. QTL Pbh-C03—-1 (204.55 kb, position from 1,241,
778 bp to 1,446,328 bp on chromosome C03) contained six
SNPs, with a peak SNP Bn-scaff_16614_1-p721297 which
gave a 5.61% contribution to the phenotypic variance (Fig. 4,
Table 1). Whereas, QTL Pb-A09 (265.76 kb, position from
8,148,958 bp to 8,414,720bp on chromosome A09, Add-
itional file 3: Figure S3a), QTL Pb-C03-2 (18.14 kb, position
from 58,079,114 bp to 58,097,249 bp on chromosome C03,
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Fig. 2 Manhattan plots of association analysis for RRLs using Q + K model. The red, pink, blue and green dots represent the association signals for
RRL_Means (average value of three RRLs), RRL1 (RRL in replication 1), RRL2 (RRL in replication 2) and RRL3 (RRL in replication 3), respectively. The
blue and red horizontal lines indicate the significantly associated threshold (—log10(1/19,945) = 4.3) and moderately associated threshold
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Table 1 Genome-wide association signals of Pb tolerance
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Marker informations

Association analysis

Markers Chromosomes Positions Alleles -Log(p) MarkerR? Traits

Bn-A09-p9135388 A09 8,316,886 A/G 373 381 RRL2,RRL_Means
Bn-scaff_16614_1-p847623 03 1,241,778 A/G 4.84 5.34 RRL1T,RRL2,RRL3,RRL_Means
Bn-scaff_16614_1-p847505 o3 1,241,796 T/C 4.84 5.34 RRL1,RRL2,RRL3,RRL_Means
Bn-scaff_16614_1-p725210 03 1,377,666 T/G 4.56 507 RRL2,RRL_Means
Bn-scaff_16614_1-p724502 03 1,378,275 A/G 4.95 546 RRL1T,RRL2,RRL3,RRL_Means
Bn-scaff_16614_1-p721297 o3 1,381,475 A/C 5.1 561 RRL1,RRL2,RRL3,RRL_Means
Bn-scaff_16614_1-p658026 03 1,446,328 A/G 3.8 4.21 RRL2
Bn-scaff_18559_1-p175628 03 58,079,114 T/G 433 443 RRL2
Bn-scaff_18712_1-p326442 Co4 14,028,410 A/C 4.25 4.31 RRL1,RRL2,RRL3,RRL_Means

RRL1, RRL2, RRL3 represent the relative RRL in replication 1, 2 and 3 respectively. RRL_Means was the average value of three RRLs

Fig. 4) and QTL Pb-CO4 (186.37 kb, position from 14,028,
410bp to 14,214,776 bp on chromosome C04, Additional
file 3: Figure S3b) all contained only one associated SNP,
and respectively gave a 3.81, 4.43 and 4.31% contribution to
the phenotypic variance (Table 1).

Identification of candidate genes related to Pb tolerance
For the identification of candidate genes related to Pb toler-
ance, all the 115 genes located in the QTL regions (29, 41,
24 and 21 genes in QTL regions Pb-A09, Pb-C03-1, Pb-
C03-2 and Pb-C04, respectively) were annotated by nucleic
acid basic local alignment search tool (BLASTN) with A.
thaliana genome and Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases. The top 20 enriched meta-
bolic pathways were shown in Additional file 4: Figure S4
and Additional file 7: Table S3. Based on the criterion qva-
lue <0.05, three genes, BnaA09¢14510D, BnaA09¢g14520D
and BnaA09¢14540D, enriched in glutathione metabolism
pathway, and  three  genes,  BnaC03g68440D,
BnaC03g68450D, and BnaC03g68460D, enriched in the
biosynthesis pathway of pantothenate and CoA, as well as
in the biosynthesis degradation pathways of valine, leucine
and isoleucine were selected for further analyses (Additional
file 7: Table S3). The other three candidate genes,
BnaC03g02630D, BnaC03g02690D and BnaC04g16200D,
which were homologous with AtU/BP13 (ubiquitin-specific
protease 13), AtTBR (Trichome birefringence) and
AtHIPPOI (heavy metal-associated isoprenylated plant pro-
tein) respectively, were also selected for further analyses. All
these nine candidate genes may contribute to Pb tolerance
in B. napus by regulating glutathione metabolism, cell wall
development, ubiquitination and amino acid metabolism,
respectively (Table 2).

Exploring the expression level of candidate genes
To investigate the expression levels of these candidate
genes under both normal and Pb stress conditions in

both Pb-tolerant and Pb-sensitive accessions, we

performed quantitative real time polymerase chain reac-
tion (QRT-PCR) assay. We observed that the expression
level of BnaA09¢14520D, BnaA09¢14520D and
BnaA09¢14540D located in QTL Pb-A09, and
BnaC03g02630D and BnaC03g02690D located in QTL
Pb-C03-1, were extremely higher in Pb-tolerant geno-
types than in Pb-sensitive genotypes (Fig. 5a, b, ¢, d, e).
BnaA09¢14520D and BnaC03g02690D were significantly
induced by Pb stress only in two Pb-tolerant accessions
(Fig. 5b, e). BnaA09¢14540D and BnaC03g02630D were
significantly up-regulated in a Pb-tolerant accession III-
229 and only slightly up-regulated in the other acces-
sions under Pb stress (Fig. 5¢, d).

BnaC03g68440D, BnaC03g68450D and
BnaC03g68460D located in QTL Pb-C03-2 were
enriched in the same pathways. We found that

BnaC03g68440D and BnaC03g68450D were significantly
induced by Pb stress in III-229 (Fig. 5f, g), and the ex-
pression levels of BnaC03g68440D and BnaC03g68450D
in Pb-sensitive genotype EH3143 were extensively lower
in comparison to Pb-tolerant genotypes (Fig. 5f, g). Simi-
larly, a higher expression level of BnaC03g68460D was
also observed in the two Pb-tolerant genotypes than in
two Pb-sensitive genotypes (Fig. 5h). Under Pb stress
condition, BnaC04g¢16200D, located in QTL Pb-C04, was
remarkably up-regulated in Pb-tolerant genotype I1I-229
and down-regulated in Pb-sensitive genotype 6024-1
(Fig. 5i).

Discussions

Pb-tolerant accessions provide valuable resources for
phytoremediation

Pb, as known to be a non-essential HMs, causes a series
of severe phyto-toxicities including growth inhibition,
declines in photosynthesis, respiration and mineral nu-
trition, and even death. Especially in the initial stages,
seed germination and seedling establishment were ex-
tremely inhibited by high concentration of Pb stress [22,
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46]. In this study we also found that the RL of B. napus
was seriously short under Pb stress in comparison to
under normal condition (Fig. 1a, Additional file 1: Figure
S1) during seedling establishment. This phenomenon is
principally because radicle is the first tissue of plants ex-
posed to HMs [23, 47].

Pb tolerance, represent the ability of plants to adapt to
and cope with Pb stress, was commonly evaluated by
relative growth indexes under both normal and Pb stress
conditions [45]. Considering the severe inhibition of Pb
stress on radicle elongation, the RRL has been employed
to evaluate the tolerance of B. napus to Pb stress. Exten-
sive phenotypic variation for Pb tolerance in B. napus

population (Fig. 1b, Additional file 5: Table S1), as well
as HMs tolerance in many other plant species, has been
observed [47-49]. Six Pd-tolerant genotypes (Additional
file 6: Table S2) selected from the population can pro-
vide valuable plant resources which is usable for the
breeding of Pb-tolerant B. napus cultivars [6, 9].

Specific QTLs for Pb tolerance were identified in B. napus

To detect Pb tolerance related QTLs by GWAS in B. napus,
the Q + K model which was also used in seed weight and
seed quality, branch angle and flowering time studies, was
utilized in this study [50—52]. Nine associated signals located
in four QTLs were obtained (Fig. 2, Table 1). To determinate
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whether these four QTLs is specific for Pb tolerance in B.
napus, comparison analysis was conducted. We found that
no QTL was overlapped with previous reported Cd respon-
sive QTLs in B. napus [23, 40], although several protein such
as AtHMA2 (Heavy Metal ATPases) and AtPDR8 can trans-
port both Cd and Pb in plant [25, 53]. This might be caused
by the different populations used for GWAS and the large
difference of genetic factors between Pb and Cd stress re-
sponses [9, 54]. Thus, the four QTLs might be specific gen-
etic factors for tolerance to Pb stress in B. napus.

Higher expression of GSTs contributes to Pb-tolerant

Glutathione S-transferases (GSTs) contributed to HMs
tolerance mainly by playing important roles in the cellu-
lar antioxidant defense mechanisms and serving as non-
enzymatic carriers for intracellular transport [55, 56].
We identified three GSTs genes, BnaA09¢14510D,
BnaA09¢14520D, and BnaA09¢14540D, in QTL Pb-A09

(Table 2). qRT-PCR assays demonstrated that the ex-
pression levels of these three genes were extremely
higher in Pb-tolerant genotypes than in Pb-sensitive ge-
notypes (Fig. 5a, b and c). Furthermore, an induced ex-
pression of BnaA09¢14520D and BnaA09¢14540D by Pb
exposure in Pb-tolerant accessions were also observed as
reported previously [55]. Therefore, increasing the activ-
ity of GSTs might be an efficient way to develop hyper-
tolerant B. napus for phytoremediation [56, 57].

Ubiquitination and de-ubiquitination co-regulate Pb
tolerance

In QTL Pbh-A03-1, BnaC03g02630D is homologous with
AtUBP13 (Table 2). AtUBPI13, similar to AtUBPIG6,
AtUBP6, ZmUBPI15, ZmUBP16 and ZmUBP19, which
can increase plant tolerance to HMs stress, all belong to
the de-ubiquitinating enzymes family [53, 58—60]. In our
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study, the expression level of BnaC03g02630D was sig-
nificantly higher in Pb-tolerant accessions than in Pb-
sensitive accessions (Fig. 5d). Whereas, NtUBCI and
GmARI1, which can modify protein by ubiquitin, can
also enhance HMs tolerance in plants [61, 62]. We infer
that both modification of protein by ubiquitin and de-
ubiquitin can alleviate HMs toxicity, in which the target
proteins may be the critical factor for HMs tolerance in
plant. Further studies will be conducted to investigate
the targets of BnaC03g02630D to increase the tolerance
of B. napus to HMs stress.

TBR protein was associated with Pb tolerance by
regulating cell wall development

Trichome birefringence (TBR) contributes to the synthe-
sis and deposition of secondary wall cellulose, and helps
to maintain the esterification of pectin [63, 64]. It has
been demonstrated that increasing cell wall capacity for
the compartmentalization of Pb is a major approach for
plant cell to protect protoplasts from Pb toxicity [9, 65—
67]. In this study, BnaC03g02690D, a homology of TBR
(AT5G06700) gene, was also identified in QTL Pbh-A03-
1 (Table 2). The expression level of BnaC03g02690D
was significantly higher and induced by Pb in Pb-
tolerant accessions than in Pb-sensitive accessions (Fig.
5e). Therefore, the TBR protein encoded by
BnaC03g02690D contribute to Pb detoxification by in-
creasing cell  wall capacity ~ through  the
compartmentalization of Pb in B. napus.

BCAA metabolism regulation can mediate Pb tolerance
Branched-chain-amino-acid aminotransferase (BCAT),
which catalyzes both the last anabolic step and the
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first catabolic step of branched-chain-amino-acids
(BCAAs, including valine, leucine and isoleucine) me-
tabolism, can mediate HMs tolerance in plant [68—
71]. In QTL Pb-C03-2, BnaC03g68440D,
BnaC03g68450D, and BnaC03g68460D, enriched in
the biosynthesis pathway of pantothenate and CoA, as
well as in the biosynthesis degradation pathways of
valine, leucine and isoleucine (Additional file 7: Table
S3). BnaC03g68440D and BnaC03g68450D, which
encoded a BCAT, were highly induced by Pb in Pb-
tolerant accession III-229 (Fig. 5f, g). The expression
level of BnaC03g68460D was higher in Pb tolerance
genotypes than in Pb-sensitive genotypes (Fig. 5h).
ALL these results suggest that these three genes, de-
tected in QTL Pb-C03-2, contribute to Pb tolerance
of B. napus by regulating BCAAs metabolism.

BnaHIPPO1 might contribute to detoxification of Pb stress
It is well known that HIPPs, containing HM-binding
domain (HMA, pfam00403.6), have important func-
tions in plant responses to both biotic and abiotic
stresses [72, 73]. In Arabidopsis, the AtHIPP20,
AtHIPP22, AtHIPP26 and AtHIPP27 genes were in-
volved in Cd detoxification [74, 75]. We found that
BnaC04¢16200D, the homolog of AtHIPPOI, was sig-
nificantly up-regulated in Pb-tolerant genotype III-229
and down-regulated in Pb-sensitive genotype 6024-1
under Pb stress (Fig. 5i). These findings suggest that,
BnaC04¢16200D might contribute to the detoxifica-
tion of Pb stress, as did BuHIPP27 to Cd stress in B.
napus [23].

Table 2 A list of the most promising candidate genes for Pb tolerance in rapeseed

QTLs  Candidate Locations Distance to associated  A. thaliana Annotations
Genes SNPs (kb) orthologs
Pb-A09 BnaA09g14510D strand - (chrAQ9: 20.69 AT1G59700 AtGSTUT16, Glutathione S-transferase
8337575..8338088)
BnaA09g14520D strand - (chrA09: 283 AT1G59700 AtGSTU16, Glutathione S-transferase
8345181.8345671)
BnaA09g14540D strand - (chrA09: 55.79 AT1G59670 AtGSTU15, Glutathione S-transferase.
8372673.8373944)
Pb- BnaC03902630D strand - (chrCO3: 17.204 AT3G11910 AtUBP13,ubiquitin-specific protease 13
C03-1 1250190..1259000)
BnaC03902690D  strand + (chrC03: 43,066 AT5G06700 AtTBR, Protein trichome birefringence
1282603..1284862)
Pb- BnaC03g68440D strand - (chrCO3: 4322 ATIG50110 AtBCAT6, Branched-chain-amino-acid aminotrans-
C03-2 58120344.58122336) ferase 6,
BnaC03g68450D strand - (chrCO3: 4738 AT1G50090 AtBCATY7, Putative branched-chain-amino-acid
58123734.58126490) aminotransferase 7.
BnaC03g68460D strand - (chrCO3: 57.94 - -
58136020.58137057)
Pb-C04 BnaC04g16200D strand + (chrC04: 179.58 AT2G28090 AtHIPPO1, Heavy metal-associated isoprenylated

14207994.14209539)

plant protein 1
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J
Conclusions These findings can provide valuable genetic resources

To our knowledge, this is the first study on Pb-tolerant
germplasms and genomic loci in B. napus. We found
that Pb tolerance shown an extensive variation in 472
worldwide-collected rapeseed accessions. Based on the
criterion of relative RL > 80%, six Pb-tolerant genotypes
were selected. Four QTLs associated with Pb tolerance
were identified by GWAS. Nine promising candidate
genes, including GSTUs, BCATs, UBP13, TBR and
HIPPOI, located in these four QTL regions were se-
lected. The expression level of these nine genes were sig-
nificantly higher or induced by Pb in Pb-tolerant
accessions in comparison to Pb-sensitive accessions.

for the breeding of Pb-tolerant B. napus cultivar and un-
derstanding of Pb tolerance mechanism in Brassica
species.

Methods

Pb tolerance evaluation of 472 B. napus accessions

A total of 472 representative B. napus accessions (266
accessions originated from Asia, 128 from Western Eur-
ope, 20 from Oceania, 26 from North America and 32
from Eastern Europe, Additional file 8: Table S4) used
for association analysis were collected from the National
Mid-term Gene Bank for Oil Crops in Wuhan, China, as
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described previously [47]. In order to find out the opti-
mal method for Pb tolerance evaluation at seedling es-
tablishment stage in rapeseed, we first performed a trial.
The radicle length (RL) of six randomly-selected rape-
seeds under 100 mg/L Pb stress was showed wider vari-
ation than under other Pb stress groups (50 mg/L and
200 mg/L). Thus, 100 mg/L was selected as an optimal
concentration for screening Pb-tolerant rapeseed acces-
sions at seedling establishment stage.

For decreasing experiment error, the 472 germplasms
were split into several sets (about 40 accessions per set).
In each set, seeds of these accessions were sterilized with
70% ethyl alcohol for 5min, then rinsed at least three
times with distilled water. Per treatment, fifty seeds of
each accession were sown in petri dishes with four layers
of filter paper soaked in 20 ml deionized water supple-
mented with 0 or 100 mg/L Pb. Seeds were kept in dark
for two days at 23°C with a relative humidity of 60—
70%, then in 16 h light/8 h dark photoperiod with a light
intensity of 300 umolm™>s™ ' for another five days. All
the treatments were replicated three times in a growth
chamber (MLR-352H-PC, Panasonic) with less
temperature fluctuation (+0.3 °C).

The RL of seven-day-old seedlings were measured with
a ruler. The RRL were calculated based on the RL under
control (RL_CK) and Pb stress (RL_Pb) condition with
the formula RRL (%)= (RL_Pb / RL_CK)x100. The
RRL_Means of each accession were calculated by RRL
values of three replications. Accessions with higher RRL
were genotypes more tolerant to Pb stress. The distribu-
tions of RL and RRL were plotted using ggplot package
in R software [76].

Genome-wide association study
Genotypic data of Single-nucleotide polymorphism
(SNP) had been implemented with 60 K Brassica Infi-
nium® SNP array in previous reports [50, 77]. In which
genotypic data was controlled by 12 doubled haploid
(DH) lines to avoid false rate of heterozygous calls and
paralogues or homeologues confusing the genotype ana-
lysis. SNP markers that appeared heterozygous within
any of these DH lines were excluded from our analysis.
SNPs with AA or BB frequency equal to zero, call fre-
quency < 0.8 or minor allele frequency <0.05 were ex-
cluded [50]. The probe sequences of remaining SNPs
were used to perform a BlastN search against B. napus
genome sequences [78]. Only the top blast-hits with an
E value cut-off of 1E-15 against the B. napus genome se-
quences were considered. Furthermore, blast matches to
multiple loci with the same E-value were excluded. At fi-
nally, a total of 19,945 high-quality SNP markers were
used for following analysis.

The principal component analysis (P), population
structure (Q) and kinship (K) matrix of the GWAS

Page 9 of 12

population were estimated by GCTA tool, STRUCT
URE 2.3.4, and TASSEL 4.0, respectively as described
in our previous studies [50, 77]. TASSEL 4.0 was used
to perform GWAS analysis with the native, Q, P, K,
Q+K and P+K models [79]. The native, Q and P
model were performed using a general linear model
with the following equation: y=Xa +e. The K, Q+K
and P + K model were performed using a mixed linear
model with the equation y=Xa+Kp+e. In these
equations, y represented phenotype, X represented
genotype, a was a vector containing fixed effects, K
was the relative kinship matrix, ¢ was a vector of ran-
dom additive genetic effects, and e was the unob-
served vector of random residual.

Q-Q plots and Manhattan plots were constructed
using qqman package in R software [80]. To reduce
the rate of false-positive, the best fitted mixed linear
model was selected for following analysis based on
the results of Q-Q plots. Significant association
threshold was estimated as -loglO(p) =4.3 (p=1/N,
where N =the number of SNPs used). Besides, to
avoid ignoring the effects of minor loci, SNPs passing
the threshold of 3.5 were also selected for subsequent
analysis as described previously [52]. The differenti-
ation analysis of RRLs between associated SNPs’ al-
leles was also performed using ggpubr package in R
software to control false positive.

Identification of candidate genes

The associated QTLs were defined across regions of
SNPs with LD value (r*) >0.4 between the peak SNPs
and surrounding SNPs using the LDheatmap package in
R software. To further identify the candidate genes for
Pb tolerance, the flanking SNPs outside and adjacent to
the blocks were considered as the candidate regions’
boundaries. The local manhattan plots of QTLs were
drawn using qqman package in R software. Genes lo-
cated in the candidate regions were obtained from the
reference genome of the B. napus “Darmor-Bzh” (http://
www.genoscope.cns.fr/brassicanapus/) [78]. Pathway en-
richment analysis was also employed for gene annotation
in which genes in the candidate regions were blast to the
KEGG database (http://www.genome.jp/) [81]. Rich fac-
tor was used to represents enrichment intensiveness,
which means the ratio of the numbers of candidate
genes and whole genome genes have been annotated in
specific pathways. Qvalue, calculated by BH multiple
test, was used for determining the threshold of P value.
Pathways with qvalue less than 0.05 are significantly
enriched. For identifying more candidate genes, all genes
located in the candidate regions were also annotated by
performing BLASTN in A. thaliana genomic database
(https://www.arabidopsis.org/) [82].
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Gene expression level analysis

The expression level of candidate genes in two Pb-
tolerant (HANNA and III-229) and two Pb-sensitive
(6024—1 and EH3143) genotypes were evaluated by
quantitative real time PCR (qRT-PCR). Total RNA was
extracted from seven-day-old radicles grown under nor-
mal (0 mg/L) or Pb stress (100 mg/L) condition using
TransZol kit (Trans Gene Biotech). A total amount of
500 ng RNA was used to synthesize first strand cDNA
using HiScript® II Q Select RT SuperMix for qPCR
(+gDNA wiper) kit (Vazyme Biotech). The gene copy
specific primers of candidate genes were designed using
Primer Premier 5 (Additional file 9: Table S5). The qRT-
PCR assay was carried out using LightCycler® 480 SYBR
Green I Master kit (Roche Life Science) in LightCycler®
480 qPCR machine (Roche Life Science) according to
the manufacturer instructions. Data were collected from
three technical replicates. The relative expression level
was normalized by BuACTIN7 using a 2ACT method (Li
et al, 2017). The tukey test was employed for differenti-
ation analysis on relative gene expression level between
accessions and treatments.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6558-4.

Additional file 1: Figure S1. Histogram of radicle length (RL) under
control (CK) and Pb stress (Pb) condition.

Additional file 2: Figure S2. The quantile-quantile plot (QQ-plot) of
different models for RRL.

Additional file 3: Figure S3. Association mapping for RRL on
chromosome A09 and C04. (A) Association mapping for RRL in the QTL
Pb-A09 (from 8,148,958 to 8,414,720 bp on chromosome AQ9). (B)
Association mapping for RRL in the QTL Pb-C04 (from 14,028410 to
14,214,776 bp on chromosome C04) associated with RRL. The red, pink,
blue and green plots represent the association signals for RRL_Means
(average value of three RRLs), RRL1 (RRL in replication 1), RRL2 (RRL in
replication 2) and RRL3 (RRL in replication 3), respectively. The blue and
red horizontal line indicate the threshold of significantly associated SNPs
at —log10 (1/19,945) =4.3 and threshold of moderately associated SNPs
at 3.5 < -log10 (p) < 4.3, respectively as in Fig. 2. The heat maps span the
linkage disquilibrium (LD) region with the most strongly associated SNPs
(7> 04).

Additional file 4: Figure S4. The top 20 enriched pathways of genes in
the associated regions.

Additional file 5: Table S1. The phenotypic variation for RRLs in this
natural rapeseed population. SE, Standard Error; CV, Coefficient of
variation; RRL1, RRL2, RRL3 represent the relative RRL in replication 1, 2
and 3 respectively. RRL_Means was the average value of three RRLs; **
indicate significant correlation at the 1% level.

Additional file 6: Table S2. The details Pb-tolerant genotypes
screeneded from 472 global-coolected rapeseeds. RL_CK and RL_Pb rep-
resent the radicle length (RL) under control and Pb stress (100 mg/L), re-
spectively; RRL represent the relative radicle length.

Additional file 7: Table S3. The information for top 20 enriched
pathways for genes in the associated regions.

Additional file 8: Table S4. List of 472 rapeseed accessions used for
association study.

Additional file 9: Table S5. The primer sequences of gRT — PCR.
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