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Abstract: This work estimates that if the growth of polymer production continues at its current rate of
5% each year, the current annual production of 395 million tons of plastic will exceed 1000 million tons
by 2039. Only 9% of the plastics that are currently produced are recycled while most of these materials
end up in landfills or leak into oceans, thus creating severe environmental challenges. Covalent
adaptable networks (CANs) materials can play a significant role in reducing the burden posed by
plastics materials on the environment because CANs are reusable and recyclable. This review is
focused on recent research related to CANs of polycarbonates, polyesters, polyamides, polyurethanes,
and polyurea. In particular, trends in self-healing CANs systems, the market value of these materials,
as well as mechanistic insights regarding polycarbonates, polyesters, polyamides, polyurethanes,
and polyurea are highlighted in this review. Finally, the challenges and outlook for CANs are
described herein.
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1. Introduction

Polymers are used for a myriad of applications. In 2018, the annual production of plastics reached
359 million tons [1]. The yearly growth of plastics is expected to be in the range of 4–5% [2–4].
We estimated the annual plastic production from 2019 to 2025, both at 4% and 5% yearly growth rate
(Figure 1). Approximately ~505 million tons of plastics will be produced in 2025. Based on 5% annual
growth rate, plastic production will exceed 1000 million tons/year in 2039. Most of the polymers that
are produced eventually end up in landfills and some of these materials contaminate the environment,
thus posing daunting environmental, societal, and economic challenges. Thermosets, which account
for more than 20% of the polymers used annually, end up in landfills as thermosets are difficult to
recycle due to their permanent crosslinked structures. This review article is focused on the emerging
crosslinked materials that behave as thermosets at room temperature but can be reused/recycled at the
end of their lifecycle.
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Figure 1. Estimated plastic production between 2019 and 2025. The annual growth is projected both 
at 4% and 5%. 

Chemical bonds (primary and/or secondary) that reversibly break and reform can be categorized 
into dynamic non-covalent interactions and dynamic covalent bonds. The dynamic non-covalent 
interactions are characterized by the rapid exchange of the secondary bonds in their networks. While 
this rapid exchange offers faster self-healing properties, but they often have poor mechanical 
properties and have low creep resistance [5]. Dynamic covalent bonds (DCBs) are reversible covalent 
bonds at elevated temperature but are stable at ambient temperatures [6]. DCBs network materials 
are getting more popular because of their dimensional stability, excellent self-healing properties, and 
their potential as sustainable alternatives for conventional thermosets as well as access to shape 
memory materials [7,8]. 

DCBs, when incorporated into polymer network materials, are referred to as covalent adaptable 
networks (CANs) [9]. These CANs bearing reversible bonds in their networks are categorized into 
two different types. Dissociative CANs, where a complete rupture of the existing bonds occurs upon 
heating and reformation of the bonds upon cooling. Diels-Alder chemistry is a well-known example 
of a dissociative CANs [10]. Associative CANs are those where existing covalent bonds are only 
broken when new ones are formed. Vitrimers is a special category of associative CANs, for which the 
criteria include: (i) they are covalently bound network of chains; (ii) their network topology can be 
changed by the exchange reactions, resulting in the thermal malleability of the network. These 
exchange reactions of CANs make them suitable for reprocessable thermosets [11–13]. 

The science of self-healing CANs is expanding rapidly due to the growing demand for 
sustainable materials [14]. Due to their promising potential applications, the number of research 
articles related to these materials is rapidly increasing (Figure 2). The self-healing theme is more 
common in literature than the CAN because the former covers covalent as well as non-covalent 
networks, while CAN covers only covalent networks. In addition, in the last three decades, the 
research focus has been mainly self-healing materials for coatings applications (e.g., anti-rust sector) 
where both intrinsic and extrinsic self-healing systems have been widely explored. In contrast, CAN 
is a newly emerging area. For example, only 6 publications for CANs were reported in 2014, and this 
number was 6-fold higher in 2019 (Figure 2D). On the other hand, the number of publications on self-
healing systems increased by ~3-fold in the same period (Figure 2A–C). More direct evidence for the 
rapid growth of CAN compared to the self-healing materials is the number of articles published in 
2020. In the case of CAN, the number of articles has already surpassed those of 2019, while self-
healing is somewhere 50%–60% of those reported in 2019. We anticipate excellent growth rate CANs 
articles in the future due to their applications in the numerous fields, ranging from recycling to 
flexible electronics and from soft robotics to wearable devices. 

Figure 1. Estimated plastic production between 2019 and 2025. The annual growth is projected both at
4% and 5%.

Chemical bonds (primary and/or secondary) that reversibly break and reform can be categorized
into dynamic non-covalent interactions and dynamic covalent bonds. The dynamic non-covalent
interactions are characterized by the rapid exchange of the secondary bonds in their networks.
While this rapid exchange offers faster self-healing properties, but they often have poor mechanical
properties and have low creep resistance [5]. Dynamic covalent bonds (DCBs) are reversible covalent
bonds at elevated temperature but are stable at ambient temperatures [6]. DCBs network materials are
getting more popular because of their dimensional stability, excellent self-healing properties, and their
potential as sustainable alternatives for conventional thermosets as well as access to shape memory
materials [7,8].

DCBs, when incorporated into polymer network materials, are referred to as covalent adaptable
networks (CANs) [9]. These CANs bearing reversible bonds in their networks are categorized into
two different types. Dissociative CANs, where a complete rupture of the existing bonds occurs upon
heating and reformation of the bonds upon cooling. Diels-Alder chemistry is a well-known example of
a dissociative CANs [10]. Associative CANs are those where existing covalent bonds are only broken
when new ones are formed. Vitrimers is a special category of associative CANs, for which the criteria
include: (i) they are covalently bound network of chains; (ii) their network topology can be changed by
the exchange reactions, resulting in the thermal malleability of the network. These exchange reactions
of CANs make them suitable for reprocessable thermosets [11–13].

The science of self-healing CANs is expanding rapidly due to the growing demand for sustainable
materials [14]. Due to their promising potential applications, the number of research articles related to
these materials is rapidly increasing (Figure 2). The self-healing theme is more common in literature
than the CAN because the former covers covalent as well as non-covalent networks, while CAN
covers only covalent networks. In addition, in the last three decades, the research focus has been
mainly self-healing materials for coatings applications (e.g., anti-rust sector) where both intrinsic and
extrinsic self-healing systems have been widely explored. In contrast, CAN is a newly emerging
area. For example, only 6 publications for CANs were reported in 2014, and this number was 6-fold
higher in 2019 (Figure 2D). On the other hand, the number of publications on self-healing systems
increased by ~3-fold in the same period (Figure 2A–C). More direct evidence for the rapid growth of
CAN compared to the self-healing materials is the number of articles published in 2020. In the case of
CAN, the number of articles has already surpassed those of 2019, while self-healing is somewhere
50–60% of those reported in 2019. We anticipate excellent growth rate CANs articles in the future due
to their applications in the numerous fields, ranging from recycling to flexible electronics and from soft
robotics to wearable devices.
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Figure 2. Articles published in the last 10 years related to: (A) self-healing materials; (B) self-healing 
coatings; (C) self-healing polymers and (D) covalent adaptable networks. These numbers were 
generated from the “Web of Science database” using the keywords “self-healing materials” for (A), 
“self-healing coatings” for (B), “self-healing polymers” for (C), and “covalent adaptable networks” 
for (D). (Date data acquired: 15 July 2020). 

The range of functional groups used to acquire reversibility is expanding rapidly, as can be seen 
in Scheme 1. The most commonly reported CANs utilized for the self-healing properties include 
Diels-Alder reactions [15,16], nitroxides [17], acylhydrazone bonds [18], disulfide-bonds [19,20], 
hemiaminal linkages [21], as well as those involved in ring-opening [22], and trans-esterification 
reactions [23]. Non-covalent adaptable networks (Non-CANs) such as those based on van der Waals 
forces [24], transition metal–ligand interactions [25], π−π interactions [26], host–guest chemistry [27], 
and hydrogen bonding [28,29], are also commonly reported to exhibit self-healing performance. 
Among the CANs reported, polyesters, polyamides, polycarbonates, polyurethanes, and polyureas 
are of great interest due to their widespread use. Therefore, this review article is focused on the use 
of CANs in the above systems with an emphasis on their growth trends, market analysis, mechanistic 
insights, potential applications, and outlook. 

Figure 2. Articles published in the last 10 years related to: (A) self-healing materials; (B) self-healing
coatings; (C) self-healing polymers and (D) covalent adaptable networks. These numbers were
generated from the “Web of Science database” using the keywords “self-healing materials” for (A),
“self-healing coatings” for (B), “self-healing polymers” for (C), and “covalent adaptable networks” for
(D). (Date data acquired: 15 July 2020).

The range of functional groups used to acquire reversibility is expanding rapidly, as can be seen
in Scheme 1. The most commonly reported CANs utilized for the self-healing properties include
Diels-Alder reactions [15,16], nitroxides [17], acylhydrazone bonds [18], disulfide-bonds [19,20],
hemiaminal linkages [21], as well as those involved in ring-opening [22], and trans-esterification
reactions [23]. Non-covalent adaptable networks (Non-CANs) such as those based on van der Waals
forces [24], transition metal–ligand interactions [25], π−π interactions [26], host–guest chemistry [27],
and hydrogen bonding [28,29], are also commonly reported to exhibit self-healing performance. Among
the CANs reported, polyesters, polyamides, polycarbonates, polyurethanes, and polyureas are of great
interest due to their widespread use. Therefore, this review article is focused on the use of CANs in
the above systems with an emphasis on their growth trends, market analysis, mechanistic insights,
potential applications, and outlook.
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Scheme 1. Examples of functional groups that are commonly used in covalent adaptable networks 
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Transcarbonation: Polycarbonates (PCs) are versatile materials that can easily be molded into 
various forms and shapes. Due to their unique mechanical properties and excellent thermal behavior, 
PCs are widely used in transportation, construction, packaging, electrical, and electronics optical 
media, medical devices, and airplane windows [30]. Due to widespread applications, the number of 
research articles related to PCs is increasing rapidly (Figure 3A). For example, ~46,235 articles have 
covered the topic of polycarbonates since 2010 to the mid of 2020. Approximately 6 million tons of 
PCs are produced annually [31]. According to a recent study, the global production of PCs is 
estimated to reach 7.72 million tons, with a value of USD 25.37 billion by 2024 [32,33]. Polyvinyl 
chloride (PVC) is getting controversial due to safety concerns. In addition, the recycling of PVC is 
challenging as it tends to form HCl as it degrades, which corrodes equipment during recycling 
processes. PCs are considered to be a natural replacement for PVC, and thus PCs are expected to 
become utilized in some markets that have traditionally relied on PVC. Traditionally, PCs are 
synthesized via the reaction of bisalcohols or biphenols with phosgene chloride [34]. PCs can also be 
synthesized via the copolymerization of epoxides with CO2 as an inexpensive, nontoxic, abundant, 
and renewable feedstocks [34,35] Scheme 2 depicts the synthesis of PCs from CO2 and epoxide via 
ring-opening polymerization (ROP) along with their CAN chemistry. Reversible covalent bonds in a 
polymer framework lead to self-healing, remoldability, plasticity, and potential recyclability. Some 
articles have been reported related to the dynamic bond in PCs [36–46]. In a similar matter, as occurs 
during transesterification, carbonates undergo transcarbonation exchange reactions with free 
hydroxyl groups [34,47]. The presence of free-hydroxyl groups is key for achieving dynamic 
exchange at the carbonate linkage. 

Scheme 1. Examples of functional groups that are commonly used in covalent adaptable networks
(CANs) and non-covalent adaptable networks (non-CANs) polymers.

Transcarbonation: Polycarbonates (PCs) are versatile materials that can easily be molded into
various forms and shapes. Due to their unique mechanical properties and excellent thermal behavior,
PCs are widely used in transportation, construction, packaging, electrical, and electronics optical
media, medical devices, and airplane windows [30]. Due to widespread applications, the number of
research articles related to PCs is increasing rapidly (Figure 3A). For example, ~46,235 articles have
covered the topic of polycarbonates since 2010 to the mid of 2020. Approximately 6 million tons of PCs
are produced annually [31]. According to a recent study, the global production of PCs is estimated to
reach 7.72 million tons, with a value of USD 25.37 billion by 2024 [32,33]. Polyvinyl chloride (PVC) is
getting controversial due to safety concerns. In addition, the recycling of PVC is challenging as it tends
to form HCl as it degrades, which corrodes equipment during recycling processes. PCs are considered
to be a natural replacement for PVC, and thus PCs are expected to become utilized in some markets
that have traditionally relied on PVC. Traditionally, PCs are synthesized via the reaction of bisalcohols
or biphenols with phosgene chloride [34]. PCs can also be synthesized via the copolymerization of
epoxides with CO2 as an inexpensive, nontoxic, abundant, and renewable feedstocks [34,35] Scheme 2
depicts the synthesis of PCs from CO2 and epoxide via ring-opening polymerization (ROP) along
with their CAN chemistry. Reversible covalent bonds in a polymer framework lead to self-healing,
remoldability, plasticity, and potential recyclability. Some articles have been reported related to the
dynamic bond in PCs [36–46]. In a similar matter, as occurs during transesterification, carbonates
undergo transcarbonation exchange reactions with free hydroxyl groups [34,47]. The presence of
free-hydroxyl groups is key for achieving dynamic exchange at the carbonate linkage.
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Scheme 2. The synthetic route toward polycarbonates via ring-opening polymerization (ROP),
and depiction of the dynamic bond exchange phenomenon. Reproduced from ref. [47] with permission
from the American Chemical Society.

Transesterification: Polyesters are widely used as commodity and engineering polymers.
In particular, they account for 8.5% of the market of all plastic materials, which holds the 5th
place, while highest amount polymer used in the packaging industry in the US [1,48,49]. Overall,
polyesters are known for their excellent mechanical stability and high resistance to shrinkage. Thanks
to these properties, polyesters are used in the packaging and textile sectors as well as in many other
industries. In 2018, polyester fiber production was estimated to be approximately 55.1 million metric
tons [50]. Polyesters are sometimes crosslinked in order to improve their mechanical properties but
unfortunately, this limits their recyclability. The presence of CANs as crosslinkers can help to facilitate
the recycling of lightly crosslinked polyesters. The chemistry of transesterification reactions involving
polyesters has been reported by various researchers [16,51–56]. For example, Kotliar has reviewed three
basic mechanisms through which the dynamic bonds of polyesters interchange [57–59]. These three
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basic mechanisms are classified as: (i) intermolecular alcoholysis, (ii) intermolecular acidolysis, and (iii)
transesterification, as illustrated in Scheme 3.

Polymers 2020, 12, x FOR PEER REVIEW 5 of 13 

 

 

Scheme 2. The synthetic route toward polycarbonates via ring-opening polymerization (ROP), and 

depiction of the dynamic bond exchange phenomenon. Reproduced from ref. [47] with permission 

from the American Chemical Society. 

Transesterification: Polyesters are widely used as commodity and engineering polymers. In 

particular, they account for 8.5% of the market of all plastic materials, which holds the 5th place, 

while highest amount polymer used in the packaging industry in the US [1,48,49]. Overall, polyesters 

are known for their excellent mechanical stability and high resistance to shrinkage. Thanks to these 

properties, polyesters are used in the packaging and textile sectors as well as in many other 

industries. In 2018, polyester fiber production was estimated to be approximately 55.1 million metric 

tons [50]. Polyesters are sometimes crosslinked in order to improve their mechanical properties but 

unfortunately, this limits their recyclability. The presence of CANs as crosslinkers can help to 

facilitate the recycling of lightly crosslinked polyesters. The chemistry of transesterification reactions 

involving polyesters has been reported by various researchers [16,51–56]. For example, Kotliar has 

reviewed three basic mechanisms through which the dynamic bonds of polyesters interchange [57–

59]. These three basic mechanisms are classified as: (i) intermolecular alcoholysis, (ii) intermolecular 

acidolysis, and (iii) transesterification, as illustrated in Scheme 3. 

 

Scheme 3. Mechanism of transesterification reactions involves in polyesters. This scheme is 

reproduced from ref. [58] with the permission of Wiley Publishers. 
Scheme 3. Mechanism of transesterification reactions involves in polyesters. This scheme is reproduced
from ref. [58] with the permission of Wiley Publishers.

Transamidation: Transamidation is the exchange of amide bonds in polyamides for self-healing
and recycling [58,60]. Repair and recycling of crosslinked polyamides has a multitude of benefits from
both environmental and economic standpoints. Polyamides have excellent mechanical properties,
including high impact strength (toughness), high tensile strength, good resilience, high flexibility,
and low creep. Due to this versatility, polyamides are often used in textiles, carpets, sportswear,
kitchen utensils, and in the automotive industry. Consequently, the transportation and garments
manufacturing industries are the major consumers of polyamides. According to “GLOBE NEWSWIRE”,
by 2026, the global market for the polyamide market is anticipated to be USD 38.3 billion [61,62].
Polyamides market is rapidly growing in various sectors; while the primary growth is witnessed in the
automotive industry. However, polyamide production creates nitrous oxide (N2O), which is 300 times
more potent than CO2 in terms of greenhouse effects [63]. Similarly, during the manufacturing of
nylon, a large amount of water is used to cool the fibers, which can lead to pollution as well as placing
a strain on global water supplies. Therefore, the recycling and reuse of polyamides will eliminate these
environmental issues that are currently encountered with the production of polyamides.

The mechanism of CANs in polyamide is shown in Scheme 4 [57–59]. Three possible exchange
reactions in which the chains are terminated by carboxyl or amine groups of the polyamides have been
proposed. These reactions include: (i) intermolecular acidolysis, (ii) intermolecular aminolysis, and (iii)
transesterification. Among these three routes, the most significant and efficient is intermolecular
aminolysis. Like transesterification in polyesters, the presence of excess COOH functional groups is
likely to promote the transamidation exchange.
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Scheme 4. Mechanisms of the exchange reaction that takes place in polyamides.

Transureafication: Self-healing polyureas are widely investigated for applications in the coating
industry. Transureafication facilitates the self-healing of polyureas. Excellent mechanical properties
and self-healing capabilities that minimize costs are critically important for real-world applications [64].
A variety of reprocessable and self-healable polyurea-based materials with dynamic bonds can be
prepared [65]. Various kinds of self-healable polyurea-based materials can easily be synthesized
considering the availability of a wide range of isocyanates and amines feedstocks. These self-healing
materials are expected to have considerable potential in a wide range of technical applications such as
coatings (including smart coatings) and paints. The existing healable polyurea systems rely on hindered
urea bond chemistry, which drives catalyst-free CANs in polyurea or urea-containing polymers [66].

Scheme 5 represents the general mechanism of the dynamic bond exchange that takes place in urea
systems [66–68]. Zinc catalysts increase the dissociation of urea via the formation of oxygen-bound
zinc complexes. The resultant fast exchanging polyurea CANs can undergo rapid self-healing from the
damage in the event of mechanical abrasion. In these cases, the self-healing could be readily controlled
by adjusting the temperature. Various kinds of novel self-healing polyurea-based polymeric materials
can be synthesized by this approach [69–71]. As a result, CAN polyurea-based materials are envisioned
to have substantial applications in smart surfaces, smart electronics, and 3D printing [72].
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Scheme 5. Dynamic bond exchange mechanism in: (A) polyurea and (B) polyurethane.

Transcarbamation: Polyurethanes belong to the most versatile class of materials as they have
numerous technical applications, and their properties can be readily tailored. In 2019 alone, more than
~21,000 articles were published on polyurethanes (Figure 4A). By varying the hard and soft domains
with the use of a number of chain extenders, the mechanical strength and self-healing performance
can be enhanced by inducing the formation of dynamic covalent bonds. Tailoring the nature of the
hard phase is vital in order to synergistically enhance mechanical properties and self-healing efficiency.
Coordinative bonds are helpful, as dynamic crosslinking joints can not only control chain displacement,
but they can also provide better self-healing capabilities than hydrogen bonds. For example, the authors
recently reported self-healing polyurethanes based on the transcarbamation chemistry of phenolic
urethane bonds (see Figure 5). Reversible disulfide bonds also play vital roles in self repairable or
self-healable materials, and they provide efficient platforms for the development of smart materials
such as wearable devices, smart coatings, and flexible electronics [73].Polymers 2020, 12, x FOR PEER REVIEW 9 of 13 
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2. Future Outlook and Conclusions

CANs offer a unique platform for sustainable functional materials with exciting applications in
the field of self-healing as well as recyclable materials. For example, CANs provide a multitude of
benefits, including: (i) increasing the longevity of materials; (ii) reducing maintenance costs due to
their self-healing in nature; (iii) preventing critical failures; and (iv) reducing the amount of materials
sent to landfills by enabling remolding and reuse of materials. Significant progress has been made
with CANs and self-healing materials, but many challenges exist that should be addressed in order to
enhance their applicability. For example, increasing the healing efficiency, achieving high healing rates,
short healing/relaxing time, improving the healability at ambient temperatures, and improvement
in the mechanical properties are the challenges that need to be addressed. If these drawbacks are
successfully navigated, CANs will have numerous applications in a variety of demanding scenarios as
high-performance materials for aerospace, automotive, machinery, underwater equipment, and so forth.
In addition, the cost is a crucial consideration for practical applications, and therefore, more research
related to the implementation of CANs and reversible functional groups in commodity materials such
as polyolefins, polystyrene, and so forth is recommended. Some studies related to the use of CANs in
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commodity materials have already been undertaken, but further investigation will be needed in this
direction [74]. Furthermore, the use of cost-effective and high-performance CANs materials will offer
sustainable and zero-waste alternatives to non-recyclable conventional thermosets (e.g., epoxy esters
and urethanes) and thus demands in depth research in this direction.

In conclusion, a brief overview of CANs system in polycarbonates, polyesters, polyamides,
polyurethanes, and polyurea is presented with emphasis on their growth trends, market analysis,
mechanistic insights, and potential applications. An outlook is given, which highlights the challenges
as well as opportunities in CANs research. If the identified challenges are addressed, CANs will bring
a paradigm shift in various sectors of real-world applications such as self-healing materials and the
recycling and reuse of the crosslinked materials with enormous economic and environmental benefits.
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