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Sepsis is a high-mortality disease that is infected by bacteria, but pathogens in individual patients are difficult to diagnosis.
Metabolomic changes triggered by microbial activity provide us with the possibility of accurately identifying infection. We
adopted machine learning methods for training different classifiers with a clinical-metabolomic database from sepsis cases to
identify the pathogen of sepsis. Records of clinical indicators and concentration of metabolites were obtained for each patient
upon their arrival at the hospital. Machine learning algorithms were used in 100 patients with clear infection and corresponding
29 controls to select specific biosignatures to discriminate microorganism in septic patients. The sensitivity, specificity, and AUC
value of clinical and metabolomic characteristics in predicting diagnostic outcomes were determined at admission. Our analyses
demonstrate that the biosignatures selected by machine learning algorithms could have diagnostic value on the identification of
infected patients and Gram-positive from Gram-negative; related AUC values were 0:94 ± 0:054 and 0:80 ± 0:085, respectively.
Pathway and blood disease enrichment analyses of clinical and metabolomic biomarkers among infected patients showed that
sepsis disease was accompanied by abnormal nitrogen metabolism, cell respiratory disorder, and renal or intestinal failure. The
panel of selected clinical and metabolomic characteristics might be powerful biomarkers to discriminate patients with sepsis.

1. Introduction

Despite advances in the management of septic patients,
sepsis remains the most common cause of death in noncar-
diac intensive care units (ICUs) and is the 10th leading cause
of death [1]. Early and appropriate use of antibiotics is a key
component for reducing mortality of affected patients with
severe sepsis and septic shock [2]. However, initial use of
antibiotics is usually empirical because accurate and reliable
rapid diagnostic methods to identify specific pathogens are
not currently available [3]. Conventional experiments,
including blood culture and biochemical identification,

immunological assay, nucleotide probe hybridization, and
PCR amplification, share a common shortcoming: only few
kinds of bacteria can be identified in a long-term cycle of
experiment [4]. These serial procedures are hard to use for
rapid and simultaneous detection of multiple pathogenic
bacteria. Therefore, rapid and accurate prediction of micro-
bial etiology remains a continuing challenge for clinicians
and medical workers worldwide [5].

Recent advances—in particular, the development of
systems biology tools such as metabolomics—have enabled
key insights into the change of chemical environment in
sepsis [6]. In addition, their use to explore the difference
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among different bacterial pathogens is critical for the
development of improved experiments to achieve rapid and
parallel identification of many common pathogenic bacteria
in one experiment. For example, in vitro and in vivo studies
have revealed fundamental differences in host response to
infection, including an increase in glycolytic intermediates
with decreased flux through the TCA cycle and elevated
multiple inflammatory markers [7]. Different infectious
mouse models showed that Streptococcus pneumoniae and
Staphylococcus aureus pneumonia induce distinct metabolic
responses [8]. Continuous broadening of the applications of
plasma metabolomic biosignatures in prediction of infectious
disease progression is evident from a surge of publications in
this field, including virus infection [9], bacterial infection
[10], protist infection [11], fungal infection [12], and parasite
infection [13, 14]. All research studies suggest that through
exploring plasma pathogen-specific metabolomic biosigna-
tures, we may develop a method allowing fast and reliable
microorganism identification of sepsis cases. By comparison,
however, metabolomics in microorganism discrimination is
a relatively late comer and no attempts have been undertaken
to extensively investigate the value of metabolomic biosigna-
tures in direct identification of microbial etiology among
sepsis patients.

The limitation of metabolomic datasets from high-
throughput technologies lies in the small number of samples
versus the larger number of features represented. Machine
learning methods can help integrate these large-scale omics
datasets and identify key features from the dataset. Particularly,
machine learning and systems metabolomic approaches can
integrate clinical day andmetabolite data by using data mining
and predictive algorithms, pointing out that the approaches
can support a more powerful identification of pathogens than
an analysis using only a single data type [15, 16]. Therefore,
there is an acute need for the development of the microorgan-
ism identification platform based on the framework of
machine learning and metabolomic approaches using clinical
data and metabolite data.

Thus, to shorten the time for identification of microor-
ganism of sepsis patients, in the present study, we adopted
machine learning methods for training different classifiers
with a clinical-metabolomic database from sepsis cases to
identify the pathogen of sepsis.

2. Materials and Methods

2.1. Data Sources. The data came from the Community
Acquired Pneumonia and Sepsis Outcome Diagnostics (CAP-
SOD) study (ClinicalTrials.gov NCT00258869). The patient
samples and clinical relative measurements have been
described in detail previously by Langley et al. [17]. Briefly,
1152 patients with suspected sepsis (≥2 systemic inflamma-
tory response syndrome (SIRS) criteria and certain infection)
from emergency departments at three hospitals of the United
States between 2005 and 2009 were enrolled into the CAPSOD
cohort. 129 subjects were chosen in this retrospective study:
100 patients with clear infection (Gram-positive (N = 67)
and Gram-negative organisms (N = 33)) and corresponding
29 controls. Besides, three common pathogenic bacteria that

caused sepsis, including Staphylococcus aureus (N = 27),
Streptococcus pneumoniae (N = 28), and Escherichia coli
(N = 17), were also chosen for classification. Patient demo-
graphics, medical history, physical test, and acute illness scores
(APACHE II) were recorded; corresponding blood samples
with blood routine examination were collected at admission
(t0). Patients were clearly defined as culture-negative or as
confirmed bacterial infections by Gram-positive, Gram-
negative organisms, and others by the microbiological analysis
of cultures or PCRs.

2.2. Metabolomic Biomarkers. Metabolites in plasma with a
mass-to-charge (m/z) ratio of 99-1000 were measured using
ultra-high-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS; positive or negative mode) and
gas chromatography-mass spectrometry (GC-MS). The num-
ber of metabolites with clearly annotated information was 214
at t0, which can be grouped as follows: (1) amino acid, (2)
carbohydrate, (3) cofactors and vitamins, (4) energy, (5) lipid,
(6) nucleotide, (7) peptide, and (8) xenobiotics. We excluded
xenobiotics from our study, in consideration of confusion of
unusual substrates containing drugs or harmful food additives.

2.3. Data Analyses. According to the purpose of research, we
separated the samples at t0 or t24 into two predictive subsets:
subset 1: validation of infection or not; subset 2: distinction
between Gram-positive and Gram-negative. Categorical
variables of each group were presented as percentages, and
continuous variables were showed as mean ± standard
deviation. Mann-Whitney tests were applied to evaluate the
relationship between two patient groups. The level of statisti-
cal significance for all analyses was p < 0:05. We used
XGBoost [18] combined with three feature selection methods:
variance threshold [19], maximal information coefficient
(MIC) [20], and relief [21], to perform classification selection
among aforementioned 6 predictive subsets, respectively,
using the total variables obtained from clinical and metabolo-
mic characteristics. The processing of feature selection can be
summarized as three steps. Firstly, the most informative
individual features were chosen. Then, feature subsets ranged
from one to maximum sizes were tested for optimum predic-
tion effect by 10-fold crossvalidation. Lastly, voting was
applied for selecting the features with the major amount of
votes. Voting is a combined strategy for classification in
machine learning. The basic idea is to select the output with
the most class by machine learning algorithms. The model’s
performance was estimated by test set, which was measured
on sensitivity, specificity, and AUC. To reduce overfitting
and derive a reliable estimate of the performance of the model,
this process was repeated 500 times with random training and
testing sets. The final performance of eachmodel was obtained
by averaging over the 500 evaluations. Before applying
machine learning algorithms, missing values were interpolated
by adopting multivariate imputation using the DMwR R
package [22], which imputed an incomplete variable by
generating the corresponding values among the set of adjacent
samples. The standard normalization with mean of 0 and
variance of 1 was performed for the features to reduce the
effect of large feature range variation. The version of R
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software used for analysis in this article was 3.4.0. The sklearn
and numpy libraries of python, version 3.5.0 [23], were
adopted for the implementation of machine learning models.

2.4. Bioinformatics Analysis. Pathway and enrichment analy-
ses for metabolites were performed with the MetaboAnalyst,
which is a comprehensive tool for metabolomic analysis and
interpretation [24] (http://www.metaboanalyst.ca/). All of
the metabolites selected by the model in the test datasets were
feed into the MetaboAnalyst pathway analysis program.
After processing and normalization of metabolite compo-
nents, the pathway analysis algorithm of the hypergeometric
test was applied to search statistically significant pathways,
which was defined as p value < 0.05. Similarly, the features
of efficiently distinguishing infection were performed using
metabolite set enrichment analysis (MSEA) among 344
blood disease-associated metabolite sets to explore metabolic
diseases associated with sepsis.

3. Results

3.1. Characteristics of Clinical and Metabolomic Biomarkers
for Patients Infected by Bacteria. A total of 100 microbiologi-
cally well-defined patients were enrolled in this study, together
with 29 noninfection controls. Of these patients, 67 (67%)
were diagnosed with Gram-positive infection (Table 1).

A broad range of clinical and metabolomic biomarkers
were measured at hospital admission and 24 hours later. 199
metabolomic biomarkers were chosen for following feature
selection and model prediction at t0, which covered the tricar-
boxylic acid (TCA) cycle, protein metabolism, and lipid trans-
formation (Figure 1(a)). Hierarchical clustering of pairwise
Pearson correlations of 199 metabolomic biomarkers in 129
subjects at t0 illustrated the 3 clearest clusters (Figure 1(b)).

3.2. Feature Selection Methods Identify Patients with Sepsis.
Initially, we attempted to identify patients with sepsis from
noninfected controls defined as systemic inflammatory
response syndrome (SIRS). The prediction model trained
on training sets using XGBoost classifier was applied on
testing sets, and the model performance was evaluated
according to the area under the receiver operating character-
istic curve (AUC). From the head of the ranked list of
variables, new models were built and assessed on feature
subsets by adding one variable at a time in 10-fold crossvali-
dation (Figure 2(a)). In consideration of divergence among
each training set leading to inconsistency of selected features,
we adopted a voting method to achieve optimal features with
the major amount of votes (Supplementary Excel file: S
table 1A). The final feature list based on MIC was
reassessed on the testing sets to successfully demonstrate
availability of discrimination between septic infections and
SIRS, with the optimum biomarker combination comprising
57 features (AUC = 0:94 ± 0:054, sensitivity = 0:99 ± 0:019,
and specificity = 0:53 ± 0:165). In comparison, the predictive
performance of features determined by variance threshold
and relief was slightly less powerful (AUC = 0:94 ± 0:038 or
0:93 ± 0:044), indicating lower degrees of sensitivity
(sensitivity = 0:97 ± 0:040 or 0:95 ± 0:042) and specificity

(specificity = 0:38 ± 0:147 or 0:30 ± 0:216) and comprising
94 and 46 features, respectively (Figure 2(b), Supplementary
Excel file: S table 1B). Although the 3 feature selection
models yielded different sets of biomarkers, clinical variables
like platelet count, white cell count, and blood lactate were
selected in each, which suggested that the traditional
indicators showed an auxiliary effect on the discrimination
of septic infections.

Besides, we performed pathway analysis of the metabolites
filtered by the MIC model. Five pathways, like aminoacyl-
tRNA biosynthesis; nitrogen metabolism; glycine, serine, and
threonine metabolism; arginine and proline metabolism; and
D-glutamine and D-glutamate metabolism, were identified
with significant p values (p < 0:05) (Figure 2(c), Table 2).
Interestingly, after enrichment analysis of disease-associated
metabolite sets, the metabolites were highly enriched for
disease categories relating to neonatal intrahepatic cholestasis,
ornithine transcarbamylase deficiency, schizophrenia, acute
seizures, refractory localization-related epilepsy, propionic
acidemia, and different seizure disorders (p < 0:05), which
implied deterioration of liver metabolism in septic patients
(Figure 2(d), Supplementary Excel file: S table 1D).

In contrast to conventional statistical methods focused on
significant difference of variables, the features selected by MIC
were not all pronouncedly different between patients with
sepsis and patients with SIRS (Supplementary Excel file: S
table 1E). Our analyses demonstrated the advantages of
feature selection approaches to successfully separate two
types of patients. Overall, the method of feature selection can
effectively identify septic patients from SIRS by combining
clinical and metabolomic biomarkers.

3.3. Biomarkers for Effective Discrimination between Gram-
Negative and Gram-Positive Bacteria. It is a challenge to
identify Gram-negative from Gram-positive infection for
new hospitalized patients in the clinic. Meanwhile, machine
learning offers a way to solve this dilemma. Here, the MIC
model was employed to select biomarker signatures that reli-
ably distinguished patients with Gram-negative from samples
with Gram-positive bacterial infection (Figure 3(a) and Supple-
mentary Excel file: S table 2A). According to the filtered 10
features voted by 10-fold crossvalidation, the classifier showed
great potential in identifying between Gram-negative and
Gram-positive (AUC = 0:80 ± 0:085, sensitivity = 0:86 ± 0:063
, and specificity = 0:48 ± 0:171) (Figure 3(b), Supplementary
Excel file: S table 2B).

Pathway analysis pointed out divergency of ubiquinone
and other terpenoid-quinone biosynthesis and D-arginine
andD-ornithinemetabolism (Figure 3(c), Supplementary Excel
file: S table 2C). Chronic renal failure and short bowel
syndrome (permanent intestinal failure) were regarded as
major metabolic diseases adopting enrichment analysis of
disease-associated metabolite sets (Figure 3(d), Supplementary
Excel file: S table 2D).

4. Discussion

Due to the time-consuming identification of pathogens and
rapid progression of symptoms, patients with sepsis are at
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high risk of insufficient quality of treatment and poor post-
discharge outcomes [25]. Early diagnostic strategies for sepsis
are thus urgently demanded to improve patient survival rate
by reducing the time required to establish the diagnosis and
provide appropriate treatment to avoid unnecessary
antibiotics. In this study, machine learning algorithms were
utilized to create a prediction system for accurate discrimina-
tion of patients with sepsis through combination of clinical
and metabolomic biomarkers. Depending on the feature sets
selected by machine learning models, classifiers achieved
satisfactory performance to distinguish (1) patients with
sepsis from SIRS and (2) Gram-negative infection from
Gram-positive, with AUC of 0:94 ± 0:054 and 0:80 ± 0:085,
respectively. Pathway analysis pointed out that these feature
sets were mainly involved in the following metabolic pro-
cesses: aminoacyl-tRNA biosynthesis; nitrogen metabolism;
ubiquinone and other terpenoid-quinone biosynthesis;

primary bile acid biosynthesis; glycine, serine, and threonine
metabolism; alanine, aspartate, and glutamate metabolism;
and glycerophospholipid metabolism. Moreover, the break
of concentration balance of these feature sets exacerbated
metabolic disorder of the liver, intestines, and circulatory
system.

It is different from previous studies which only explored
several metabolites to identify bacterial infection in septic
patients or just screened out the metabolites that are signifi-
cant between the infective group and controls [26] [27]
[28]. Traditional strategies using the significant difference
of metabolites are unable to achieve accuracy of discrimina-
tion of infectious agents [26]. Along with medical data explo-
sion, machine learning has gained unprecedented advantages
among disease diagnosis, outcome prediction, and medica-
tion instruction, especially identification of pathogens via
combination of demographic data and multiple dimension

Table 1: Characteristics of the patients in our study.

Clinical variable
Control Gram-positive Gram-negative

No. % No. % No. %

n 29 — 67 67 33 33

Age (years) 65:79 ± 13:40 56:33 ± 17:04 60:18 ± 17:80
<50 4 13.79 23 34.33 8 24.24

50-60 8 27.59 17 25.37 8 24.24

60-70 7 24.14 12 17.91 8 24.24

70-80 4 13.79 7 10.45 4 12.12

≥80 6 20.69 8 11.94 5 15.15

Sex

Male 12 41.38 41 61.19 17 51.52

Female 17 58.62 26 38.81 16 48.48

Race

Black 21 72.41 45 67.16 21 63.64

White 7 24.14 17 25.37 11 33.33

Other 1 3.45 5 7.46 1 3.03

Pathogen

S. aureus N/A 27 N/A

S. pneumoniae N/A 28 N/A

E. coli N/A N/A 17

APACHE II 16:26 ± 7:43 15:55 ± 7:18 16:79 ± 8:20
Temperature (°C) 36:82 ± 1:08 38:01 ± 1:44 38:05 ± 2:07
MAP (mmHg) 89:31 ± 29:58 79:06 ± 17:94 77:12 ± 16:09
Heart rate 107:07 ± 19:71 119:61 ± 21:24 108:03 ± 22:54
Respiratory rate 25:24 ± 6:32 26:61 ± 8:30 23:22 ± 6:57
Serum sodium (mM) 136:86 ± 4:33 136:64 ± 6:03 136:52 ± 4:05
Serum potassium (mM) 4:69 ± 1:26 4:30 ± 1:10 4:19 ± 0:98
Serum creatinine (mg/dl) 2:71 ± 3:67 3:34 ± 3:88 2:45 ± 2:48
Blood lactate (mg/dl) 4:29 ± 4:38 2:75 ± 2:14 3:30 ± 2:82
Hematocrit 34:79 ± 6:45 36:30 ± 6:73 34:82 ± 6:43
White cell count 10:80 ± 4:13 17:16 ± 18:96 16:27 ± 9:42
Platelet count 275:52 ± 97:19 226:19 ± 135:68 243:03 ± 110:35
Data are presented as mean ± standard deviation. MAP: mean arterial pressure; N/A: not available.
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omics data [15, 16]. Here, we applied the supervised machine
learning model to discriminate bacterial infections [29]. And
we applied feature selection methods to provide best feature
combination to precisely diagnose pathogens. Variance
threshold is a simple baseline approach to remove features
which cannot pass the defined threshold [19]. Compared to
mutual information which is a measure of strength of the
linear or nonlinear association between two variables,
Maximal Information Coefficient (MIC) converts mutual
information into a metric by searching for an optimal
discretization method to overcome the difficulties of normal-
ization and discretization. The relief algorithm gives different
weights to features according to the correlation of each
feature and category; the feature whose weight is less than a
threshold will be removed [30]. Our conclusion showed that
machine learning not only improved the accuracy of bacterial
infection prediction but also provided the cognition about
the metabolic process of organisms in the process of sepsis
by the features selected with three models.

Although the 3 feature selection models yielded different
sets of biomarkers, clinical variables like platelet count, white
cell count, and blood lactate were selected in each, which
suggested that the traditional indicators showed an auxiliary
effect on the discrimination of septic infections [31]. As
traditional clinical indicators, like platelet count, white cell
count, or blood lactate, all of them are considered valuable
biomarkers to monitor the progress of sepsis. The normal
range of platelet count in adults is 150000–400000/μl. On
the contrary, this value fell to a lower level of 80000/μl in
most severe septic patients [32]. Therefore, platelet count is
an important signal in the diagnosis of sepsis, which suggests

that greater levels of platelet count are associated with higher
risk of death. White cell count is very sensitive to pathogens,
which plays a key role to determine sepsis with too low or
high levels [27]. Mitochondrial damage induced by hypoper-
fusion due to infection can inhibit aerobic respiration and
promote lactate production [32]. Although these clinical
characteristics can be used as a detection index on sepsis,
the sensitivity and specificity of AUC are not satisfactory.

Metabolomic profiling reflects flux of metabolic sub-
strates from both the host and the pathogen in vivo, which
offers direct insights into the chemical environment for infec-
tious diseases [33]. Early research pointed out that during the
sepsis processing in rat, protein decomposition promoted the
increase of nitrogen in the blood and accelerated the metab-
olism of nitrogen [28]. Karinch et al. also demonstrated that
severe infection causes the release of glutamine from skeletal
muscle and accelerated absorption by the liver [21]. Hence,
the metabolic response to sepsis induces changes of protein
and amino acid metabolism, which increase protein degrada-
tion, amino acid decomposition, and nitrogen metabolism.
Interestingly, in our study, we also selected blood metabolites
involved in the identification of pathogens by the machine
learning method. Severe sepsis-induced multiorgan failure
is accompanied with mitochondrial dysfunction [34].
Coenzyme Q10 (CoQ10) is regarded as a key cofactor in
the mitochondrial respiratory chain, whose levels were asso-
ciated with the processing of septic shock [35]. Even more,
researchers tried to inject ubiquinol (reduced CoQ10) into
septic shock patients and tested curative effect [36]. In our
prediction model, the pathway of ubiquinol was filtered by
the feature selection model to identify Gram-negative from
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Figure 1: Characteristics of metabolomic biomarkers for septic patients at hospital admission. (a) The heat map showed that 199
metabolomic biomarkers can be categorized into 7 kinds of metabolites among patients (Gram-negative or Gram-positive) and controls.
(b) Correlation analysis of 199 metabolomic biomarkers illustrated the 3 clearest clusters.
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Gram-positive Escherichia coli infections among common
bacteria causing sepsis. Recently, high-performance liquid
chromatography-high-resolution mass spectrometry (HPLC-
HRMS) revealed that serum bile acid concentration was
significantly fluctuation in both septic adults and neonates
compared to healthy controls [37]. The cause of the phenom-
enon is endotoxin, produced by microbial activity, interfering
the normal signaling pathways, greatly reducing bile flow,
and resulting in sepsis-associated cholestasis [38].

Besides amino acid or bile acid metabolism, glyceropho-
spholipid levels were also proved to be a kind of great
biomarkers for developing prognostic tools [39]. Compared
to the SIRS level, sepsis samples showed significantly higher
glycerophospholipid concentration due to response to
infection-induced inflammation [40]. Findings demonstrated
a downregulation of lipoproteins in the circulatory system, in
particular high-density lipoprotein and low-density lipopro-
tein, which promoted the increase of glycerophospholipid

[41, 42]. Parts of enzymes are located in the inner membrane
of mitochondria, while impaired mitochondrial function due
to tissue hypoperfusion in sepsis suppresses function of
enzymes for lipid catabolism, which further intensifies the
increase of glycerophospholipid concentration [43].

Multiple organ failure induced by sepsis, such as the liver,
kidneys, and intestines, is a hallmark of sepsis [44]. We found
that certain metabolic pathways of bacterial infection
coincide with the metabolic pathways of genetic diseases, like
Lesch-Nyhan syndrome. It is a rare inherited disorder caused
by a deficiency of the enzyme hypoxanthine-guanine
phosphoribosyltransferase (HGPRT), which promotes the
accumulation of uric acid in the child body. Growing evi-
dence demonstrated the relationship between the levels of
serum uric acid and septic diagnosis or prognosis [45, 46].
Similarly, the most common form of ornithine transcarbamy-
lase deficiency is often accompanied by dysfunction of the
urea cycle. Certain reports showed that hyperammonemia
from the accumulation of urea generally appears in patients
with severe septic shock [47]. In addition, features applied to
discrimination of Gram-negative from Gram-positive were
enriched in chronic renal failure and short bowel syndrome.
Severe sepsis or septic shock will cause kidney failure, which
is often among the first to be affected. Based on observational
clinical investigation, kidney failure will accelerate mortality,
caused by uremia or microelement reabsorption disorder
[48]. Abnormal intestinal function or biliary atresia also
induces higher risk for infectious complications.

Despite of excellently discriminatory results, some
important limitations of our predictive system should be
noticed. The data including clinical and metabolomic charac-
teristics applied for feature selection or model prediction
were derived from the article published by Langley et al.
The system development and panel evaluation were only

0

0.0 0.1 0.2 0.3
Pathway impact

0.4 0.5

2

4

6

8

–L
og

 (p
)

10

12

Amino
ac

yl-
tR

NA bi
os

yn
th

esi
s

Nitr
og

en
 m

eta
bo

lis
m

Glyc
in

e s
er

in
e a

nd
 th

re
on

in
e m

eta
bo

lis
m

Arg
in

in
e a

nd
 pr

oli
ne

 m
eta

bo
lis

m
D-G

lut
am

ine
 an

d D
-g

lut
am

ate
 m

eta
bo

lis
m

14

(c)

Neonatal intrahepatic cholestasis

Ornithine transcarbamylase deficiency (OTC)

Schizophrenia

Acute seizures

Refractory localization-related epilepsy

Propionic acidemia

Different seizure disorders

Fold enrichment
0 3 6

0.00602

3.57e–05

(d)

Figure 2: Identification of clinical and metabolomic features associated with sepsis at hospital admission. (a) Performance of feature selection
models based on variance threshold, MIC, and relief for the prediction of sepsis against all other controls. Image illustrated area under the
receiver operating characteristic curve (AUC) values change depending on the number of features. (b) Sensitivity and specificity of the
selected features by receiver operating characteristic analysis. (c) Pathway analysis of the metabolites filtered by the MIC model. (d)
Enrichment analysis of blood disease-associated metabolites.

Table 2: Pathway analysis of the metabolites associated with sepsis
at hospital admission.

p values
Pathway
impact

Aminoacyl-tRNA biosynthesis
1.70E
-06

0.055

Nitrogen metabolism 0.00034 0

Glycine, serine, and threonine
metabolism

0.0068 0.21

Arginine and proline metabolism 0.0072 0.22

D-Glutamine and D-glutamate
metabolism

0.013 0.35
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based on above data; additional validation with more patients
should be tested before medical practice. Furthermore, the
overlap rate of biomarkers was low among panels, which
increased the cost and time of detection. It would be useful
to explore more efficient machine learning methods and
optimize panel biomarker candidates.

5. Conclusion

In conclusion, it is very meaningful to successfully develop an
efficient classifier utilizing the combination data of clinical
and metabolomic features to identify specific pathogens in
septic patients. The approach combining machine learning
and specific biosignatures provides an efficient diagnosis
strategy among septic patients with low cost and time-saving,
which is only based on several clinical and metabolite indica-
tors. According to the given diagnosis purposes, the bio-
markers generated by each label can be developed into
corresponding diagnosis kits. The panel containing specific
biomarkers will speed up the detection efficiency of bacte-
rial infection. Without doubt, these panels could improve
the accuracy of diagnosis and reduce the mortality of the
septic patients.
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Figure 3: Clinical and metabolomic features for effective discrimination between Gram-negative and Gram-positive bacteria at hospital
admission. (a) Performance of feature selection models based on variance threshold, MIC, and relief for the prediction of sepsis against all
other controls. Image illustrated area under the receiver operating characteristic curve (AUC) values change depending on the number of
features. (b) Sensitivity and specificity of the selected features by receiver operating characteristic analysis. (c) Pathway analysis of the
metabolites filtered by the MIC model. (d) Enrichment analysis of blood disease-associated metabolites.
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