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Abstract
The emergence and prevalence of drug resistance demands streamlined strategies to iden-

tify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly

used to understand and predict drug resistance rely on limited clinical studies from patients

who are refractory to drugs or on laborious evolution experiments with poor coverage of the

gene variants. Here, we report an integrative functional variomics methodology combining

deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug

resistance alleles from complex variant populations. Dihydrofolate reductase, the target of

methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles

correlated with methotrexate resistance. This systematic approach identified previously

reported resistance mutations, as well as novel point mutations that were validated in vivo.
Use of this systematic strategy as a routine diagnostics tool widens the scope of successful

drug research and development.

Author Summary

One of the most profound outcomes of fast, reliable genome sequencing is the ability to
tailor drug therapy to an individual’s genotype. This ‘personalized’ or ‘precision medicine’
is the realization of a decades-long effort to maximize drug effect and limit unwanted side
effects. An undesirable consequence of such targeted therapies, however, is the emergence
of drug resistance. This outcome is the result of an evolutionary process where mutations
in the drug target render the drug perturbation allow such mutant cells to proliferate.
Because of the unbiased, and stochastic nature of the emergence of drug resistance, it is
impossible to predict. We developed a test where hundreds of thousands of mutant cells
are exposed to a drug simultaneously and those cells that modulate resistance survive. This
method is innovative because it partners a high-throughput experimental protocol with a
tailored statistical model to identify all mutations that modulate resistance. Finally, we
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used synthetic biology to re-create these mutations and demonstrate that they were, in
fact, bona fide drug-resistant variants. These mutations were further extended and con-
firmed to also be resistant in the human orthologue. This combined biological-computa-
tional approach allows one to identify drug’s degree of resistance to both guide treatments
and future drug discovery.

Introduction
Drug resistance is a worldwide health concern that affects all drug classes, including anti-infec-
tives and anti-cancer agents [1–3]. Recent reports illustrate that first-line antibiotic treatment
failure rates have increased 12% from 1991–2012 [4]. Cancer drug resistance has increased, in
part due to the use of highly specific targeted therapeutics [1,5]. While attempts to combine
drugs into “smart cocktails” hold some promise to reduce emergence of resistance, in the
majority of cases drug resistance is inevitable. Therefore, it is important to understand the
causative mechanisms of resistance to improve the use and targeting of therapeutics.

Current strategies for understanding the mechanisms of resistance include: i) observational
trials [1,6], ii) in situmutagenesis [7–10] and iii) computational approaches [7,11–13]. However,
each of these methods suffer from limitations with respect to throughput, resolution and accu-
racy. Hence, a rapid, systematic and cost-effective strategy to identify gene variants that modulate
drug resistance over time is required to improve our understanding of resistance mechanisms.

Here, we present such a streamlined method to identify the emergence and persistence of
modulators of drug resistance. Our integrative approach combines a strategic parallel competi-
tive in vivo resistance assay with a Bayesian statistical model [14,15] that is both systematic and
quantitative. We applied this assay to the anti-cancer drug methotrexate (MTX) in its well-
characterized target, dihydrofolate reductase. Our pipeline takes advantage of the S. cerevisiae
variomics collection, which contains libraries of 2 x 105 random plasmid-borne point mutation
alleles for every yeast gene [16]. These alleles are packaged within haploid-convertible hetero-
zygous diploid yeast gene knockouts which can be grown competitively and quantified with
massively parallel sequencing.

Yeast dihydrofolate reductase (DFR1) is a validated functional orthologue of human dihydro-
folate reductase (hDHFR), which is commonly used to study the MTXmechanism of action and
enzymology [15,17,18]. In previous work, yeast has been employed to study genome-wide gene-
drug interactions [19–23], and is a well-established model for anticancer drug research
[6,17,24,25]. Methotrexate acts as an antimetabolite that targets the enzyme dihydrofolate reduc-
tase, which functions to maintain folate homeostasis in nucleus and mitochondria by reducing
dihydrofolate into tetrahydrofolate as a key element of thymidylate and protein synthesis [15].
Due to the high degree of conservation between yeast and human cellular pathways, the results
obtained for the yeast dihydrofolate reductase can provide insights into how tumors acquire drug
resistance, which is a major barrier to effective cancer treatment [26–28] and point mutations in
DHFR active site have been shown to affect MTX binding affinity altering in turnMTX efficacy
[8–10,29–37]. Thus, systematically surveying the causativeDFR1 point mutations that correlate
with poor MTX response and understanding how resistant dfr1 alleles interact with MTX will
help develop MTX analogues with a potentially lower likelihood of resistance.

Results
We first describe our novel integrative experimental and statistical analysis method. We then
apply this method to the identification of variants that modulate resistance to methotrexate in
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its target, dihydrofolate reductase. We next present validation studies using reconstituted indi-
vidual mutations grown in isolation. Finally, we use a DFR1 protein model to provide struc-
ture/function relationship analysis of the validated mutations.

Parallel in vivo screening combined with parallel sequencing
The functional variomics technology was adapted in our study by using the original dfr1 vario-
mics library, which contains 2 x 105 point mutations in DFR1 [16]. To recover as many distinct
dfr1MTX resistant-alleles as possible, we exploited the variomics tool by screening the diploid
and haploid dfr1 pools using an improved screening assay (Fig 1 and Methods). Specifically,
we wanted to test if the resulting alleles differed depending on if the wild-type DFR1 allele was
present, as is the case for the DFR1/dfr1Δ heterozygote strain, or absent as in the haploid dfr1Δ
strain. For haploids, the dfr1 allele must maintain viability and provide drug resistance whereas
in the diploid case, the wild type allele can in principle allow separation-of-function alleles (i.e.
resistance without viability) to be recovered.

We tuned the parameters of the drug resistance assay to maximize for the enrichment of dfr1
alleles in parallel competitive conditions in an attempt to mimic the environment in which het-
erogeneous tumors are exposed to cytostatic drugs [38,39] (Fig 1). The dfr1 diploid library was
first grown without drug selection to generate a dfr1 pool with ~50-fold coverage per variant for
each of the 2 x 105 independent variants (see Methods for details). The pool was then induced to
sporulate to generate a haploid dfr1 pool of 2.2 x 104 viable dfr1 alleles which were then chal-
lenged with drug in liquid media. To minimize the loss of rare dfr1 alleles, drug exposure was
limited to a 6-day treatment of the diploid and haploid pools in liquid media at a MEC100 dose of
MTX (Fig 1 and S1 Fig). Treated samples were collected every 2 days (equivalent to 8 generations
of growth) and the remaining dfr1 pools were further propagated in fresh media with MTX (S2
Fig). MTX-treated pools were harvested at each time point and plasmid-borne dfr1 alleles were
PCR amplified and sequenced at a median coverage of 10K (Fig 1 and S1 Table; Methods).

Rare Variant Detection (RVD) analysis method to identify dfr1 variants
that modulate resistance to methotrexate
The sequencing data was collected in separate runs for the diploid and haploid experiments
and each processed independently (see Methods for details). To call variants and estimate their
associated allele frequencies in the mixed dfr1 pools, we used our previously published rare var-
iant detection statistical model (RVD2) [14]. We estimated the parameters of the model for
each time point and for the wild-type control using the default Gibbs sampling and Markov
chain monte carlo parameters (4000 Gibbs samples, 10 Metropolis-Hastings samples per gibbs
sample, 20% warm-up, thinning rate of 2). Finally, we called variants using the somatic test
function in RVD2. This test identifies variants where the difference in the non-reference read
rate is between 0.1% and 100% between a designated case and control sample (95% posterior
confidence). This test also filters for variant loci that have non-uniform, non-reference read
counts to eliminate false-positive calls due to generally elevated sequencing error rates.

We used RVD2 to compare the non-reference read rate at the starting time point “T0” to that
of all later time points (T1, T2, and T3). We denote the model’s estimate of the true non-refer-
ence read rate at each locus the Variant Allele Frequency (VAF) at that locus. This analysis iden-
tified 66 variant positions in theDFR1 locus in the diploid pool and 49 variant positions in the
haploid pool (Fig 2; S2 and S3 Tables; and S3 Fig). Among the 35 (53%) coding mutations in the
diploid pool, 28 were missense mutations. Exactly 11 of these 28 mutations (39%) correspond to
highly conserved residues (Fig 2; S2 Table; and S3 and S4 Figs). We noted that missense muta-
tions that affect M35V andM35T residues, which were previously shown to affect MTX binding
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affinity and/or MTX resistance, were recovered in our screen [14] (S2 Table). In the haploid pool
in contrast, only 8 out of 17 coding mutations (47%) were found to be missense mutations, 3 of
which correspond to residues that are conserved in hDHFR (Fig 2; S3 Table; S3 and S4 Figs).

We estimated the diversity in the diploid and haploid pools at each time point by comparing
the number and frequency of the variants under selection to the number and frequency of

Fig 1. Workflow for methotrexate resistance screen. The plasmid-borne dfr1 variomics library contains ~2 x 105

independent dfr1 alleles maintained in a diploid DFR1/dfr1Δ heterozygote strain. The diploid pool was sporulated
and cultured in haploid selective media to generate a dfr1 pool in a dfr1Δ haploid background. Both diploid and
haploid strains were grown in the presence of MTX (2 mM) or DMSO solvent control (2% v/v) over a 6-day
timecourse (details in S2 Fig). MTX-treated cultures were subsequently harvested for plasmid extraction followed
by PCR amplification of the dfr1 alleles. Nextera XT libraries were prepared for DFR1-amplicon sequencing, and
non-reference dfr1 variant alleles were identified using the RVD analysis tool. Candidate dfr1 point mutations were
validated by constructing the individual dfr1mutants and their MTX resistance confirmed in growth assays.

doi:10.1371/journal.pgen.1006275.g001
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variants in the background strain, which carries only the wild-type allele on the parental plas-
mid. This procedure accounts for changes in the number and relative abundance of variant
alleles, and sequencing variation (see Methods for details). Because the wild-type allele-bearing
strain was only sequenced with one replicate, the sensitivity of RVD is low and few variants
were called. We record a—when fewer than two variants were called at a time point and no
diversity score can be computed. For the haploid strain, the diversity scores for T0 - T3 were
1.37, -, -, - respectively. For the diploid strain, the diversity scores for T0 –T3 were -, 9.20, 7.13,
4.66 respectively. The diversity of the haploid strain is lower than the diversity of the diploid
strain at any time point, as would be expected due to the viability requirement imposed on any
haploid allele. The diploid diversity score decreases monotonically from T1 to T3. These results
align with our expectation that diversity is higher for the diploid pool than the haploid pool
and that diversity decreases with time under drug selection.

Fig 2. Single nucleotide variant allele frequency estimates for DFR1 loci associated with methotrexate
resistance. Estimated variant allele frequencies (VAFs) are shown for DFR1 loci that have a significantly
different VAF compared to the starting T0 time point (as described in Methods). Each VAF estimate is based
on a sample size of n = 3 following the sample collection design in S2 Fig. Loci are depicted along the rows
and time points along the columns. The heatmap shows the relative change in the VAF at each time point
compared to T0, in the diploid (left panel) and haploid (right panel) pools. The estimated VAF at T0 is shown
along the left side of the heatmap. The promoter and terminator are delineated from the coding sequence by
black and blue bars respectively to the right of the heatmap. Non-synonymous mutations are indicated by the
wild-type and variant residue. A bullet beside the residue indicates that the locus is conserved with hDHFR.

doi:10.1371/journal.pgen.1006275.g002
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The nucleotide coding sequence positions called in the diploid and haploid backgrounds do
not overlap, except for one (627T>C) (S2 and S3 Tables). We reasoned this is likely due to the
random genetic drifts introduced by the sporulation and haploid conversion events (see Meth-
ods for details). Furthermore, two positions in the coding sequence identified in the diploid
strain showed two minor allele changes over the MTX timecourse e.g. 187T>G (at T1 time
point) and 187T>A (at T2 time point), which result in non-synonymous mutations S63A and
S63T, respectively (S3 Fig and S2 Table). The emergence of all of these nucleotide changes at
given time points suggests that these silent and non-synonymous mutations can have marginal
effects in modulating MTX resistance in the diploid genetic background.

We compared the spectrum of variants in the haploid pool to those in the diploid pool prior
to selection (T0), because dfr1mutants that survive conversion to the haploid state must be via-
ble. We found some DFR1 positions had high variant allele frequencies (VAFs) in the diploid
and haploid pools (Fig 2). The pre-existing dfr1 haploid allele frequency did not predict the
emergence of MTX-resistant variants in later time points (Fig 2; S3 Fig; and S3 Table). In con-
trast, in the diploid state, 5 out of 6 positions with high initial VAFs (over 10%) increased in
abundance upon MTX exposure (Fig 2; S3 Fig; and S2 Table). These observations are consis-
tent with a model in which pre-existing mutations required for viability are no more likely to
confer drug resistance, while resistant alleles can be found as pre-existing in the diploid state.
Our strategy of surveying dfr1 alleles in both diploid and haploid backgrounds allowed us to
distinguish dfr1mutations with dominant resistance phenotypes regardless of whether or not
such pre-existing mutants with competitive fitness advantages were already present.

Validation of methotrexate-resistant dfr1 alleles
To validate the alleles identified by our high-throughput parallel assay as individual variants,
all mutant alleles were reconstructed de novo and assayed for MTX resistance in individual
growth assays (Methods). We selected all of the coding (non-synonymous and silent) muta-
tions that increased in VAF at the earliest time point (S2 and S3 Tables) and integrated a full
length synthetic gene into the chromosomal DFR1 locus of the isogenic DFR1/dfr1Δ or dfr1Δ
strains, such that these alleles were under the control of the endogenous promoter (Methods).
All of the DFR1mutations in the haploid background were viable, however 6 out of 10 dfr1
mutants exhibited a slow growth phenotype (Fig 3A and S5 Table). Also, 9 out of 10 dfr1 alleles
(not Q16Q) were reproducibly resistant to a sublethal dose of MTX (Fig 3A; Methods). The
majority of the alleles (7 out of 10) are recessive based on our observation that they were no
longer MTX resistant when a wild-type DFR1 copy was expressed (Fig 3A; Methods). In the
diploid background, 10 out of 27 DFR1/dfr1mutants that express non-synonymous mutations
were confirmed to exhibit strong resistance to MTX, with at least 80% retained growth relative
to each corresponding DMSO-treated strain (Fig 3B). Of these 10 DFR1/dfr1mutants, 2 exhibit
competitive fitness advantages while 3 represent hypomorphic alleles, (with predicted DFR1
catalytic defects) given their inability to survive under obligate respiratory conditions [40] (Fig
3B; S4 Table and Methods). These results, combined with the experimental differences between
initial screen vs. validation experiments (e.g. re-screened individually vs. growth in competitive
mixed culture) (Methods) suggest that some of the DFR1mutations with marginal MTX resis-
tance, including I55M, F68L, T156A, F178F, E187K and N209H might manifest resistance only
when expressed in combination.

Structure-function relationship of the resistance dfr1mutations
Ten of the validated MTX-resistant dfr1 alleles cluster in the functional binding pocket for
folate, the substrate of Dfr1p, or its NADPH cofactor (Fig 4). Specifically, mutations in L27,
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M35, F38 and T141 correspond to residues that directly interact with MTX (or folate) in
hDHFR (Fig 4B and 4C). We hypothesize that these mutations likely reduce MTX affinity to
render the drug ineffective. Similarly, mutations found in V127 and T156 correspond to resi-
dues situated in the NADPH binding cleft (Fig 4C). Previous work has shown that specific C.
galbrata DHFR inhibitors act by displacing the NADPH cofactor [41,42], suggesting that a
similar mechanism could be at work for the V127 and T156 mutations identified in our screen.
Other non-synonymous mutations identified in our screen, including F38Y, M35T and M35V,
have also been previously reported to lead to MTX resistance [30,32,33,35]. Further, we identi-
fied a W29R mutant, a residue known to be essential for enzyme function [43]. Specifically, the
side chain of W25 (W29 in yeast) forms hydrophobic aromatic stacking interactions with both
MTX (PDB ID 1U72)[10] and folate (Fig 5A) (PDB ID 1DHF)[44]. In the latter case, the pro-
tein-ligand interaction is further stabilized by a hydrogen bond formed between the Nε of W25
and the hydroxyl group of the folate pteridine ring. We also noted that a Trp residue is con-
served at this position, with the notable exception of the recently-identified hDHFR-like 1
(hDHFRL1) protein [45], which has an Arg residue at this position (S3 and S4 Figs). This is the
same substitution that we obtained in our screen (W29R) (Fig 2 and S2 Table). An arginine at
this position is unable to form the key hydrophobic interactions with MTX [46] and therefore
we hypothesized that hDHFRL1 may be resistant to MTX. To test this and to explore the possi-
bility that resistance arises from destabilizing hydrophobic contacts with antifolate [46] (Fig
5A), we investigated the growth fitness of a wild-type human hDHFRL1 construct bearing an
arginine at position 25 in a DFR1/dfr1Δ heterozygote strain (Methods). This change did indeed
render the cells resistant to MTX (Fig 5B and S6 Fig). To extend this observation, we con-
structed a hDHFRL1 construct containing the putative loss-of-resistance allele, R25W, in a

Fig 3. Validation of methotrexate resistant dfr1 mutations. The average fitness of the candidate dfr1 haploid (A) and diploid (B) mutants upon
exposure to MTX (1 mM sublethal dose) or DMSO solvent (2% v/v) were evaluated over 24 hours in a Tecan shaker-reader at 30°C. Mutant alleles
expressed in the presence of a wild-type DFR1 copy are listed with (+). Mutants are colored according to their relative doubling time in comparison to
the wild-type strains: BY4742 (WT, A) and DFR1/dfr1Δ (WT, B) with: blue for longer doubling time (Slower thanWT), grey for comparable doubling time
(Fit as WT), and red for shorter doubling time (Faster thanWT). The average growth under MTX conditions of the control strains are indicated with a
dashed line. Error bars indicate standard error, n = 3.

doi:10.1371/journal.pgen.1006275.g003
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DFR1/dfr1Δ heterozygote strain (Fig 5B and S6 Fig). Although this mutant DFR1/hDHFRL1
(R25W) has a comparable growth rate to its wild-type counterpart DFR1/hDHFRL1, MTX
resistance was abolished by introducing the R25W allele. Conversely, we tested the growth fit-
ness of a hDHFR construct bearing the same mutation W25R (equivalent to W29R in yeast) in
a DFR1/dfr1Δ heterozygote strain (Methods). This humanW25R variant was reproducibly
MTX resistant (Fig 5B). Of note, the W29R mutant in a yeast construct did not yield MTX
resistance in our validation assay (Fig 3B), likely due to the weak ability of W29R variant to
persist and modulate MTX resistance in the pool over the timecourse (Fig 2 and S3 Fig). Future
work will address the mechanistic differences between the various MTX-resistant dfr1 alleles
and their implications for folate metabolism.

Discussion
Here we report a combined experimental and statistical approach capable of rapidly achieving
high coverage of a targeted region to reliably identify bona fide drug resistant variants of dihy-
drofolate reductase. As a unique result of this strategy, we achieved increased throughput, reso-
lution and sensitivity critical to detect dfr1 point mutation alleles that emerge or persist upon
exposure to lethal MTX conditions over time. Although we cannot demonstrate we have
exhausted all possible resistance conferring dfr1mutations in the original dfr1 variomics
library, our innovative approach proves to advance our understanding of the molecular basis

Fig 4. Mapping of the dfr1mutations onto the yeast DFR1model. (A) Cartoon representation of the structural model
for the yeast DFR1, colored by sequence conservation (red is conserved, blue is divergent), with surface shown in
transparency. The identified resistance point mutations are indicated with a sphere. MTX is highlighted in yellow, and
NADPH in green. Mutations largely cluster around conserved residues near the active site of the enzyme. The dfr1
mutations of residues interacting with MTX (yellow, B) or NADPH (green, C) are mapped onto the yeast DFR1 model. The
represented protein is colored by sequence conservation as in (A).

doi:10.1371/journal.pgen.1006275.g004
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of MTX resistance with the identification of a significant fraction of the resistance dfr1 variant
space previously unknown in S. cerevisiae. By performing parallel competitive screening on
diploid and haploid dfr1 libraries, we also uncovered pre-existing dfr1 hypomorphic alleles in
the diploid state, which are as likely to modulate MTX resistance as haploid dfr1mutations
with dominant phenotypes. These observations further validate the relevance of interrogating
gene variants in the diploid background given that in a human therapeutic target, mutations in
only one allele suffice to provide drug resistance.

Our variant calling algorithm, RVD2, is specifically designed to call rare variants in pooled
sequencing data. It does so by leveraging replicates of a sample to estimate a baseline error rate
at each locus. Then the test sample error rates are compared, in a hypothesis testing framework,
to the locus-specific baseline error rate. In previous work, we compared the performance of
RVD2 to state-of-the-art variant calling methods using in vitromixtures of synthesized DNA
fragments at defined fractions. These experiments showed that RVD2 has higher sensitivity
and specificity for detecting rare variants and equivalent sensitivity and specificity for higher
frequency (more than 10%) variants.

We also identified the emergence of rare variant alleles, at starting frequencies lower than
1% that are capable of conferring resistance to MTX over time. As variant diversity is lost upon
lethal MTX selective pressure, many of these rare alleles do not persist in the pooled conditions
suggesting that the presence of epistatic mutations that can affect the evolution trajectory of
adaptive MTX resistant alleles [47].

In addition, several novel functional MTX-resistant dfr1 alleles that disrupt the conserved
active-site residues were identified in vivo, providing additional genetic insights into the deter-
minants of MTX resistance. Importantly, we show that the yeast-based assay used here is capa-
ble of interrogating functional homologs such as the human enzyme. Out of 42 Dfr1 residue
changes identified in our screen, 14 (33%) conserved residues are known to display key interac-
tions with antifolate compounds and/or NADPH cofactor, which can affect the potency and

Fig 5. Expression of hDHFR and hDHFRL1 inDFR1/dfr1 heterozygote yeast. (A) The hDHFR and hDHFRL1 active sites in complex with folate (in red;
PDB ID 4M6K). The conservedW25 residue in hDHFR forms a hydrophobic interaction stabilized by a hydrogen bond with folate (left panel). In contrast, R25
in hDHFRL1 cannot form hydrophobic interactions with folate, but the stabilizing hydrogen bond is still present (right panel). The side chains of W25 and R25
residues are shown in sticks. (B) The fitness of yeast mutants upon exposure to MTX (1 mM sublethal dose) or DMSO solvent (2% v/v) were evaluated over
24 hours in a Tecan shaker-reader at 30°C. Error bars indicate standard error, n = 3.

doi:10.1371/journal.pgen.1006275.g005
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selectivity of antifolates [29,33,35,42,48,49]. The remaining 28 (67%) residues identified are
novel sites capable of modulating MTX resistance. The catalytic function of such DHFR muta-
tions remains to be explored.

With current ever-improving gene synthesis approaches, determining the consequences of
non-coding SNPs will become tenable as will assessing the concomitant effects of causative
dfr1mutations when expressed in combination. As sequencing technology becomes cheaper
and more practical, this platform should in principle be extensible to uncovering linked muta-
tions in small drug targets like DHFR that can confer specific resistance in yeast to address the
growing problem of resistance to otherwise effective compounds and FDA drugs.

Methods

Yeast strains and drugs
The homozygous diploid reference strain BY4743MATa (his3Δ1 leu2Δ0 LYS2 met15Δ0
ura3Δ0)/MATalpha (his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0) was used to determine the MEC100

(minimum effective concentration to cause 100% cell killing) of methotrexate (MTX) to use for
resistance screening and validation growth assays. For MTX resistance screens, a dfr1 vario-
mics library was used [50]. MTX was purchased from Sigma (M9929) and single-use MTX ali-
quots were prepared by dissolving MTX in DMSO solvent to 100 mM and stored at -80°C. To
counterselect cells carrying the plasmid-borne dfr1mutations, 5-Fluoroorotic acid (5’-FOA;
Sigma F6625) was added to the media at a final concentration of 1 g/L. To select DFR1/dfr1
cells with the correct dfr1 integration event, growth sensitivity to G418 sulphate (Geneticin)
was verified by adding G418 (Fisher 142480) to a final concentration of 400 mg/L to YPD agar
plates.

Growth assays
For assessing growth fitness in the presence of MTX, yeast strains and pools were cultured to
mid-log phase (OD600 ~0.5) in synthetic complete (SC) liquid media before adjusting the cul-
tures to an initial OD600 of 0.0625. Cells were then transferred to a 96-well microtiter plate con-
taining liquid SC media with either MTX or DMSO solvent (2% v/v) as control. To determine
the MEC100 dose of MTX, a range of doses (0.025, 0.05, 0.1, 0.3 and 2 mM) were tested against
the wild-type BY4743 strain. Cell growth upon MTX treatment relative to DMSO solvent was
assayed in three biological replicates using a spectrophotometer Tecan shaker-reader that mea-
sured OD595 values over 24 hours at 30°C. Cell growth was inhibited at ~100% at 2 mM, which
was the determined lethal dose for the MTX resistance assay (S1 Fig). To confirm MTX resis-
tance, the reconstructed yeast strains were cultured in rich YPD media at a sublethal dose (1
mM) of MTX. Cell growth upon MTX treatment relative to DMSO solvent was assayed in
three biological replicates using a Tecan shaker-reader over 24 hours at 30°C. For each mutant,
the percent of growth rate in MTX relative to DMSO was calculated and the average and stan-
dard error of three biological replicates reported in S4 and S5 Tables. Mutant strains that
showed a reproducible growth in the presence of the drug were confirmed to be true MTX-
resistant strains (Fig 3). Cell growth in obligate respiratory media was used as a proxy to assess
mitochondrial folate metabolism. Dfr1mutant cells with non-synonymous mutations were cul-
tured in obligate respiratory growth media using YPG media prepared with a non-fermentable
carbon source (glycerol at 3% v/v). Growth or lack of growth in YPG media was assayed in
three independent assays. Cultures that displayed two doublings or fewer after 24 hours in
YPG were scored as respiratory-defective. The respiratory-proficient strains DFR1/dfr1Δ and
wild-type BY4742 were included, in parallel, as controls.
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Manipulation of the dfr1 functional variomics library
The starting dfr1 variomics library consists of at least 2 x 105 independent dfr1 variant alleles,
with single and multiple point mutations per allele. The variomics library is cloned into a
CEN-based plasmid under control of native upstream and downstream regulatory regions, and
transformed into a DFR1/dfr1Δ heterozygote convertible diploid strain [50]. The diploid vario-
mics pool is cultured in synthetic dropout medium lacking uracil (SD-URA) at 30°C to gener-
ate a working stock of OD600 1, equivalent to an average of 50-fold coverage (independent
cells) for each of the 2 x 105 independent variants. The latter calculation assumes that each
DFR1/dfr1Δ cell harbors one variant dfr1 allele and that all doubling times are similar. To gen-
erate a dfr1 pool in haploidMATa cells lacking the chromosomal wild-type DFR1 gene, the
dfr1 diploid pool was sporulated and subsequently haploid converted using the previously
described optimized procedures [16], with the following modifications. Diploid cells were cul-
tured in 200 ml sporulation medium at room temperature with vigorous shaking (200 rpm) for
5 days in the dark to increase sporulation. ~ 2 x 105 sporulated cells, with an average 10-fold
variant coverage were cultured in 400 ml haploid selection medium to enrich forMATa dfr1
G418R URA+ haploid cells at 30°C for 2 days [51]. Sporulation and haploid conversion recov-
ered a dfr1 haploid pool with ~11% of the initial dfr1 alleles, which represents a total of 2.2 x
104 viable dfr1 alleles. The selection for haploid cells and genetic “bottle necks” introduced in
the methodology (Fig 1 and S2 Fig) are likely to exert additional selective pressure on the hap-
loid pool. Hence, we predict a smaller proportion of MTX-resistant variants that sustain cell
viability is present in the haploid pool.

Methotrexate resistance screening assay
The DFR1/dfr1Δ diploid and dfr1Δ haploid pools were cultured to an initial OD600 of 0.01,
with an average 10-fold variant coverage observed in the dfr1 variomics library. Each pool was
screened in triplicate wells (n1, n2, n3 technical replicates) in 6-well microtiter plates over a
6-day time course in 10 ml of SD-URA media supplemented with MTX at 2 mM (MEC100)
(Fig 1 and S2 Fig). Media supplemented with DMSO (2% v/v) was prepared in parallel as a neg-
ative control. The screening assay consists of 3 time points, where the MTX and DMSO treated
pools were propagated at 30°C with vigorous shaking (200 rpm). Sampling was done every 2
days, which typically resulted in 8-generation propagation for the DMSO-treated pools (S2
Fig). The first replicate (n1) set of cultures for MTX and DMSO was used for propagating the
subsequent time point: at each time point, MTX-treated cells from the n1 replicate well were
diluted to OD600 0.01 with fresh SD-URA medium supplemented with either MTX or DMSO,
and transferred to the equivalent 3 replicate wells in a new microtiter plate (S2 Fig). At each
time point, MTX-treated cultures from all replicate wells were harvested for DFR1-targeted
sequencing and analysis (see below). The initial dfr1 variomics libraries of both diploid and
haploid pools (time point 0) were also split in three technical replicates to assess sample-to-
sample variation. The sample size per condition (n = 3) and expected sequencing median read
depth (20,000x) was selected based our published power analysis from a previous version of
our statistical model [52] and experience with this version of the model [14] to detect a mini-
mum variant allele frequency of 0.1%.

Plasmid extraction and PCR reactions
Plasmids were extracted from harvested MTX-treated cell pools at each time point using the
DNA extraction protocol described previously [50]. PCR reactions were performed using Phu-
sion High Fidelity polymerase, according to the manufacturer’s instructions (Thermo Fisher
Scientific) with the following modifications. To amplify the dfr1 amplicons from the plasmid-
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containing extracts, PCR reactions were performed in 50 μl containing 100 ng of plasmid
extract and universal plasmid-specific oligonucleotides at 0.5 μM [16]. The cycling protocol
was as follows: 1× (98°C for 30 sec), 30× (98°C for 10 sec, 52°C for 30 sec, 72°C for 45 sec),1×
(72°C for 5 min). For colony PCRs, a fraction of each yeast colony was picked using a plastic
micropipet tip and placed at the bottom of the reaction tube containing 10 μl of 20 mM NaOH.
Samples were boiled for 5 min and 1 μl of each sample was used for the PCR reactions in a total
of 25 μl containing oligonucleotides (2.5 μM). For a complete list of oligonucleotides used, see
S1 Table. The cycling protocol for colony PCR amplification was as follows: 1× (98°C for 30
sec), 30× (98°C for 10 sec, 48°C for 30 sec, 72°C for 10 sec),1× (72°C for 5 min). All reaction
products were analyzed on a 1% (w/v) agarose gel.

Deep sequencing of MTX-treated dfr1 pools by seqWell
Dfr1 amplicons prepared by PCR were first purified using the Thermo Fisher Scientific PCR
purification kit, according to the manufacturer’s instructions, quantified using Qubit fluo-
rometry (Life Technologies) and diluted for sequencing library preparation. Libraries were
constructed using plexWell library kit technology (seqWell, Beverly MA). In this approach,
each 1+ kb pool of diverse amplicons is tagged with a pool-specific barcode via a transpo-
sase-mediated adapter addition at random locations. After this tagging, the pools of ampli-
cons are then pooled into a single meta-pool, and subjected to a second transposase-
mediated adapter addition. Fragments of this pool containing sequence from each of the two
iterative adapter additions are then amplified to yield a final sequence library representing
identifiable fragments from each original amplicon pool. Sequencing data is available upon
request. We have deposited the raw fastq files at the NCBI SRA under the accession number
SRP072709.

Variant allele frequency estimation
DFR1-targeted sequencing data was collected and processed separately for the diploid and hap-
loid experiments. To align the raw (fastq) sequencing data to the S. cerevisiae genome, we first
trimmed the Illumina adaptor sequences using cutadapt (v 1.7.1) (--anywhere AGATCGGAA-
GAGC). Then the paired-end reads were aligned to the April 2011 UCSC S. cerevisae reference
genome (sacCer3) using bwa (v 0.7.12) mem with the -M flag set. Finally, the resulting bam
files were indexed and sorted for subsequent processing and visualization.

First, we used samtools (v 1.2) mpileup to generate pileup files for the DFR1 gene region
chrXV:780367–782084. We also set the -A and -BQ0 flag to get high quality read depth esti-
mates without discarding anomalous reads, and we set the maximum depth to 10,000,000 to
ensure no truncation of read depth occurs. We used a custom program, described previously
[14], to provide the count of each base pair at each position in the region of interest. Then, we
ran RVD2 gibbs on the wild-type, T0, T1, T2, and T3 data sets separately with the default
warm-up, thinning and sample size parameters to estimate the model parameters and latent
variables in the RVD2 statistical model. Finally, we called variants between all pairs of data sets
using RVD2 somatic test with an interval of [0.001, 100] and a significance level (α) of 0.05.
The somatic test calls a provisional variant at a position if the Bayesian posterior probability
(estimated from a sample size of 1000 from the model posterior distribution) that the differ-
ence between the VAF in two data sets (e.g. T0 and T1) is in the interval is greater than 1-α
(two-sided). The provisional variant is called a variant if the distribution over the non-refer-
ence bases is non-uniform by a chi-squared test with a significance level of 0.05. Calls based on
these posterior credible intervals were not adjusted for multiple comparisons and we did not
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detect any gross deviations from the assumptions of the statistical model for this data. Further
details on the estimation procedures and hypothesis test are provided in the RVD2 study [14].

Code availability
Our statistical model and variant calling method as described previously [14] is publicly and
freely available at https://bitbucket.org/flahertylab/rvd.

Diversity estimation
Given a set of called variants, V, we compute the diversity as follows. To compute the diversity,
we first compute the KL divergence from m̂ j to p where p = 1/|V| where m̂ j is the estimated non-

reference read rate at called position j. The KL divergence is zero if and only if m̂ j is equal to p.

In that case, each variant is equally represented in the pool and the entire pool was made up of
variant clones. Otherwise, the KL divergence is greater than zero. We compute the diversity as

D ¼
X

j2V
1þ tanhDKLðpkm̂ jÞ:

The tanh function is -1 when DKLðpkm̂ jÞ ¼ 1 and 0 when DKLðpkm̂ jÞ ¼ 0. So, 1þ tanhDKL

ðpkm̂ jÞ is 0 when DKLðpkm̂ jÞ ¼ 1 and 1 when DKLðpkm̂ jÞ ¼ 0. Summing over all of the called

variants means that the maximum value of the diversity grows with the number of variants.
Therefore, this diversity measure captures both the uniformity of the distribution of the vari-
ants as well as the total number of variants.

IDT gene fragments for the construction of dfr1mutants
Gene fragments containing coding sequence point mutations flanked by DFR1 specific homol-
ogy sequences were synthesized by IDT (S6 Table). Gene fragments containing wild-type yeast
DFR1 and human DHFR and DHFRL1 sequences were included as controls. Each gene frag-
ment was resuspended in water (molecular grade, Thermo Fisher Scientific) to make a 10 ng/μl
stock and stored at -20°C. Prior to yeast transformation, the gene fragments were PCR ampli-
fied using Phusion High Fidelity, according to the manufacturer’s instructions (Thermo Fisher
Scientific). For each PCR reaction, 10 ng of the IDT gene fragment was used as template in a
50 μl reaction and amplified with the oligonucleotides listed in S1 Table.

Construction of dfr1mutants by yeast transformation
To confirm MTX resistance, each dfr1 point mutant fragment was integrated into the dfr1::
kanMX locus of the haploid and diploid progenitor strains, which harbours the dfr1 variomics
library. The diploid DFR1/dfr1Δ progenitor strain was first outgrown in YPD containing 5’-
FOA for 2 days at 30°C to counterselect for the Ura+ dfr1 plasmids prior to the transformation.
The haploid dfr1 strain was propagated in SD-URA medium to maintain the plasmid-borne
dfr1 pool in order to maintain its viability. A high efficiency transformation protocol was used
to create the mutants by mitotic recombination [53]. The progenitor strains were first cultured
to mid-log phase in liquid SD-URA media and subsequently transformed with the dfr1 frag-
ments according to the standard heat shock protocol [53]. Human DHFR and DHFRL1 point
mutations were also integrated into the dfr1::kanMX locus to generate dfr1 yeast hybrid strains.
To confirm that the yeast transformants have the correct integration, both diploid and haploid
clones were 1) confirmed for the appearance of PCR products of the expected size using oligo-
nucleotides that span the upstream and downstream junctions of the dfr1:: kanMX locus (S1
Table); 2) confirmed for loss of G418 resistance; and 3) confirmed for MTX resistance using a
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sublethal dose of MTX in liquid growth assays (Fig 3). Additionally, the haploid clones were
counter-selected in 5’-FOA containing YPD agar plates to kill any cells carrying the plasmid-
borne dfr1mutations and confirmed for the absence of plasmid-borne dfr1 PCR products by
colony PCR using plasmid specific oligonucleotides (S1 Table). To make the yeast/human
mutant constructs in the heterozygous diploid DFR1/dfr1 background, the haploid dfr1
mutants and wild-type BY4741 control were mated with the wild-type haploid BY4742
(MATalpha his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0) using standardized yeast manipulation pro-
cedures [54]. The diploid constructs were confirmed by selectively growing in agar plates con-
taining synthetic dropout medium that lacks lysine and methionine amino acids
(SD-LYS-MET) for 2 days at 30°C.

Structure modelling and mapping of coding mutations
The multiple sequence alignment for the dihydrofolate reductase protein was obtained with
ClustalW [55] and the S4 Fig generated with ESPript [56]. The consensus sequence for all
DHFR homologues (S5 Fig) was built using WebLogo [57]. The Saccharomyces cerevisiae
DFR1 structural model was generated with Modeller [58] using the closest homologue of
known structure (Candida glabrata DHFR, 54% identity, PDB ID: 3CSE) [41] as a template.
The coordinates of NADPH were obtained by superimposing the structure of the C. glabrata
DHFR structure in complex with NADPH (PDB ID: 3CSE), and the coordinates of methotrex-
ate were obtained by superimposing the structure of the E. coli DHFR in complex with metho-
trexate (PDB ID: 4P66) [59]. The colour gradient for the sequence conservation was generated
with ConSurf [60], using the aforementioned multiple sequence alignment. All structure fig-
ures were obtained with PyMol (Schrodinger, LLC).

Supporting Information
S1 Fig. Methotrexate pre-screen against the wild-type strain. The growth fitness of MTX sen-
sitive BY4743 strain was evaluated upon exposure to synthetic complete (SC) media supple-
mented with a dose range of MTX (0.025–2 mM) and DMSO solvent control (2% v/v) in a
Tecan shaker-reader at 30°C. Three independent growth assays were performed. Error bars
indicate standard error, n = 3.
(TIF)

S2 Fig. Methotrexate resistance screen. To identify MTX-resistant dfr1mutants, the starting
diploid and haploid pools were cultured at an initial OD600 of 0.01 in triplicate wells (n1, n2,
n3) of a 6-well microtiter assay plate containing 10 ml of synthetic dropout media lacking ura-
cil (SD-URA) and supplemented with either MTX or DMSO, and grown at 30°C with vigorous
shaking. At each timepoint (every 2 d), cultures from all technical replicates were harvested for
plasmid extraction as described in Fig 1. After each harvest the n1 replicate was used to propa-
gate the subsequent time point, by diluting cells to OD600 0.01 in fresh SD-URA medium con-
taining either MTX or DMSO, and transferring these to 3 replicate wells in a new microtiter
plate.
(TIF)

S3 Fig. Dfr1 minor allele frequencies called in the diploid and haploid dfr1 variomics
pools. Variant allele frequency estimates from the RVD2 model are provided as individual.pdf
figures for each DFR1 locus. The pool and position (sacCer3 reference) make up the.pdf file
title. Each figure shows four time points (T0-T3) along the x-axis and error rate along the y-
axis. The filled circles and error bars show that point estimate and posterior 95% Bayesian
credible intervals for μj, the locus-specific error rate or variant allele frequency (VAF) in the
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text, from the model where j indexes the position. The plotted numbers (1, 2, 3) show the
locus-specific error rate for the sequencing replicate, θnj in the RVD2 model where n = 1, 2, or
3. These figures illustrate the uncertainty in the measurements due to both finite sequencing
depth and reproducibility between replicates captured in the model.
(TIF)

S4 Fig. Protein sequence alignment.Multiple alignment of the DHFR protein sequence in
species: Saccharomyces cerevisiae, Candida glabrata, Homo sapiens (Homo_DHFR), hDHFR-
like 1 (Homo_DHFRL1),Mycobacterium tuberculosis, Escherichia coli. Conserved residues are
in red boxes and similar residues highlighted in red. Secondary structure elements for the C.
glabrata and hDHFR1 (Homo_DHFR) are shown, in green and blue respectively, with the cor-
responding numbering indicated. The R25 residue that confers MXT resistance in hDHFRL1 is
highlighted in purple.
(TIF)

S5 Fig. The consensus sequence for DHFR homologues. The conserved residue W25 in
hDHFR (W29 in yeast) is indicated with an arrow. The consensus sequence for all DHFR
homologues was built using WebLogo.
(TIF)

S6 Fig. Growth fitness of DFR1/DHFRL1 and DFR1/DHFRL1(R25W) strains upon expo-
sure to lethal methotrexate conditions. The fitness of DFR1/DHFRL1, DFR1/DHFRL1
(R25W) and DFR1/dfr1Δ strains upon exposure to MTX (2 mM) and DMSO solvent (1% v/v)
were evaluated over 30 hours in a Tecan shaker-reader at 30°C. Growth fitness was evaluated
in three independent assays and representative profiles are shown.
(TIF)

S1 Table. List of oligonucleotides used in this study.
(PDF)

S2 Table. Variant calls in the diploid DFR1/dfr1Δ pool.
(PDF)

S3 Table. Variant calls in the haploid dfr1Δ pool.
(PDF)

S4 Table. The fitness profiles of dfr1, hDHFR and hDHFRL1 alleles in the diploid DFR1/
dfr1Δ background.
(PDF)

S5 Table. The fitness profiles of dfr1 alleles identified in the haploid dfr1Δ background.
(PDF)

S6 Table. Synthetic gene fragments used to reconstruct dfr1mutants.
(PDF)
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