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Abstract

Pseudomonas fluorescens is considered to be a typical plant-associated saprophytic bacte-

rium with no pathogenic potential. Indeed, some P. fluorescens strains are well-known rhizo-

bacteria that promote plant growth by direct stimulation, by preventing the deleterious

effects of pathogens, or both. Pseudomonas fluorescens C7R12 is a rhizosphere-compe-

tent strain that is effective as a biocontrol agent and promotes plant growth and arbuscular

mycorrhization. This strain has been studied in detail, but no visual evidence has ever been

obtained for extracellular structures potentially involved in its remarkable fitness and biocon-

trol performances. On transmission electron microscopy of negatively stained C7R12 cells,

we observed the following appendages: multiple polar flagella, an inducible putative type

three secretion system typical of phytopathogenic Pseudomonas syringae strains and

densely bundled fimbria-like appendages forming a broad fractal-like dendritic network

around single cells and microcolonies. The deployment of one or other of these elements on

the bacterial surface depends on the composition and affinity for the water of the microenvi-

ronment. The existence, within this single strain, of machineries known to be involved in

motility, chemotaxis, hypersensitive response, cellular adhesion and biofilm formation, may

partly explain the strong interactions of strain C7R12 with plants and associated microflora

in addition to the type three secretion system previously shown to be implied in mycorrhizae

promotion.

Introduction

Fluorescent pseudomonads are so-named because they produce soluble greenish pigments in

conditions of iron limitation that fluoresce when illuminated with UV light [1]. These
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ubiquitous γ-proteobacteria have a considerable potential for adaptation to fluctuating envi-

ronmental conditions, thanks to their highly versatile metabolism and the plasticity of their

large genome [2–6]. This group of bacteria includes the species Pseudomonas fluorescens,
which is generally considered to be a saprophytic rhizobacterium because its densities (106 to

108 CFU/g root) and metabolic activities are increased in the plant rhizosphere [7–10]. In addi-

tion, some strains protect plants from infection by interfering with phytopathogenic agents.

This biocontrol activity generally involves competition with pathogens for space and/or nutri-

ents, antagonism via the synthesis of toxic agents, antibiotics and biosurfactants, and stimula-

tion of plant defenses [11–15]. The location and fitness of P. fluorescens render this

antagonistic species even more powerful for treating diseases of roots and tubers, which are

not generally accessible to germicidal treatments [16,17].

It is now widely accepted that the strong plant colonization and biocontrol capacities of

fluorescent pseudomonads are associated with cell motility and chemotaxis towards the rhizo-

sphere in addition to cell adhesion and biofilm formation on the roots [18–22]. These physical

plant-bacterium interactions are closely associated with the presence of bacterial extracellular

structures, such as flagella, fimbriae, pili and secretion systems [23–27]. Unfortunately, these

nanostructures are only clearly visible on electron microscopy (EM), and they are therefore

generally detected indirectly. Indeed, the presence of flagella, fimbriae and pili, which are

involved in swimming, swarming and twitching motilities, respectively, is deduced from

observations of bacterial growth on appropriate agar plates [24,28]. Likewise, evidence for the

presence of a functional type three secretion system (T3SS) is provided by the observation of a

hypersensitive response (HR) in tobacco leaves 24 to 48 hours after the infiltration of the bacte-

rium concerned [29–31]. The difficulties encountered in observations of extracellular append-

ages result from their extremely small size (in the nanometer range) and brittleness: these

delicate structures are generally destroyed by shaking during culture or during the transfer of

cells onto the support for microscopic observation. Moreover, little is known about the envi-

ronmental conditions triggering the synthesis of these components [32,33].

We performed ultrastructural observations by transmission electron microscopy (TEM).

We observed several different membrane machineries on the rhizosphere-competent biocon-

trol strain P. fluorescens C7R12. This model strain harbors a remarkable set of extracellular

structures, including a polar bundle of flagella, a putative T3SS that seems to be synthesized in

response to fructose or trehalose induction, and bundles of dendritic fibrils forming a huge

network of cells and microcolonies. We discuss the putative role of these structures in the pri-

mary steps of adhesion and biofilm formation.

Materials and methods

Bacterial strains and culture conditions

Pseudomonas fluorescens C7R12 [34] and a T3SS- mutant derived from it, C7SM7, were used

for these experiments. Pseudomonas fluorescens C7SM7 was obtained by site-directed muta-

genesis of hrcC, a gene encoding an outer membrane pore forming protein required for type

III-mediated secretion [35]. This mutant has been chosen since HrcC is required for the secre-

tion of the HrpA protein forming the pilus of T3SSs belonging to the Hrp1 family [36]. Bacte-

rial cells were cultured at 25˚C in King’s B medium [37], a glycerol-rich medium with a low

iron content that induces the synthesis of Pseudomonas siderophores and secondary metabo-

lites [1,12], or in an hrp-inducing minimal medium (HIM) as described by Huynh et al. [38]

and with the following composition: 1.7 mM NaCl, 1.7 mM MgCl2, 7.6 mM (NH4)2SO4, 50

mM KH2PO4, pH 5.7, supplemented with 10 mM glucose, fructose, sucrose or trehalose as the

sole carbon source. For induction of the T3SS hrpA model gene, bacteria were first cultured in
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liquid KB medium to an OD at 600 nm of 0.6–0.8. The bacteria were washed twice in 10 mM

MgCl2 and the OD600 was adjusted to 0.6 in liquid HIM. Induction was performed at 25˚C,

with shaking (180 rpm). KB medium was used to repress T3SS (i.e. as a non-inducing

medium), to establish the basal level of hrpA gene expression (control).

Swimming, swarming and twitching motility assays

Motility assays were performed on KB medium supplemented with 0.3%, 0.6% or 1% agar, for

swimming, swarming and twitching motilities, respectively as previously described [39].

Briefly, swimming motility assay plates were inoculated with a toothpick. Swarming motility

assay plates were inoculated by the deposition of 5 μl of overnight bacterial culture on the sur-

face of the medium. Twitching motility assay plates were inoculated by depositing 5 μl of over-

night bacterial culture underneath the medium, at the bottom of the Petri dish. The plates

were incubated at 25˚C for 48 h. Motility was assessed by measuring mean dendrite length for

swarming, or the total diameter of the circular turbid zone for swimming. Twitching motility

was assessed by determining the diameter of growth at the interface between the agar and the

bottom of the Petri dish. This was achieved by removing the agar, washing the unattached cells

of the plate with water, and staining the cells attached to the plate with crystal violet (1% [wt/

vol] solution).

Total RNA extraction and cDNA synthesis

Total RNA was extracted from 109 bacteria by the hot acid-phenol method [40]. As required, a

volume of culture containing 109 bacteria was sampled and mixed with an equal volume of

100% ethanol 100% to stop transcription. Bacterial cultures were centrifuged at 4 000 × g for

10 min and the bacterial pellet was resuspended in 300 μl of lysis buffer (0.02 M sodium ace-

tate, pH 5.5, 0.5% (w/v) SDS, 1 mM EDTA). Total RNA was then isolated by two rounds of

extraction in 600 μl of hot acid phenol for three minutes each (pH 4.3; 60˚C). The mixture was

centrifuged at 13 000 × g for 15 min, and the aqueous phase was treated with 500 μl chloro-

form/isoamyl alcohol (24:1) and centrifuged as previously described. Total RNA was precipi-

tated by overnight incubation of the supernatant at -20˚C with two volumes of 100% ethanol

containing 100 mM sodium acetate. The precipitated RNA was collected by centrifugation.

The pellet was washed in 75% ethanol and resuspended in 50 μl DEPC water and treated with

Ambion TURBO DNase (Life Technologies) for 2 h at 37˚C. We checked for the absence of

DNA contaminants by PCR with the standard NEB kit, using the 16S-FOR/16S-REV primers

(S1 Table). Total RNA was converted into cDNA by reverse transcription with the High-

capacity cDNA RT Kit (Applied Biosystem).

Quantitative RT-PCR

Specific primers for the target genes hrpA, and the 16S rRNA gene of P. fluorescens C7R12

were designed with Primer Express Software v3.0.1 (S1 Table). Real-time quantitative amplifi-

cation was performed with the 7500 Fast Real Time PCR system (Applied Biosystems). Reac-

tions were performed in a 13 μl mixture containing 6.5 μl SYBR Green PCR Master Mix (2X

SYBR Green 1 Dye, AmpliTaq Gold DNA Polymerase, dNTPs with dUTPs) with each primer

present at a final concentration of 0.2 μM and 7.5 ng cDNA. The thermal cycling program was

as follows: 95˚C for 20 s, followed by 40 cycles of 95˚C for 10 s, 60˚C for 30 s and 72˚C for 6 s,

and then 95˚C for 15 s, 60˚C for 1 min and 95˚C for 15 s. We used 16S rRNA as an internal

control and the standard deviation in each case was below the 0.15 threshold cycle (CT). Rela-

tive quantification was performed as previously described, by the comparative CT (-2ΔΔCT)

method [41].
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Preparation of samples for transmission electron microscopy

Bacteria were visualized on 200-mesh nickel EM grids (mesh diameter of 74 μm) coated with

2% Formvar (Leica Microsystems), a polyvinyl formal resin formed by polyvinyl alcohol and

formaldehyde copolymerization with polyvinyl acetate, and produced by Monsanto Chemical

Company (St. Louis, Missouri).

For the observation of flagella and the T3SS, assay conditions inducing the formation of

these structures and preserving their integrity were established with a modified version of

the protocol described by Roine et al. [42]. Bacteria were grown on solid KB or HMI medium

supplemented with 10 mM fructose or trehalose as the sole carbon source, at 25˚C for 48 h.

The EM grids were then coated with the bacteria by transfer from the agar plate. The for-

mvar-coated side of the grid was placed in contact with the bacterial lawn for 10 min to

obtain a footprint of the cells and the organelles synthesized on the corresponding agar

medium. For the observation of pili and dendritic fibril bundles, assays were performed

according to an original protocol in which bacteria were cultured directly in liquid HIM on

grids. The bacteria were first cultured overnight in KB medium. They were washed twice in 1

mM MgCl2, resuspended in HIM and the OD600 was adjusted to 108 CFU/ml. A 20 μl droplet

of this suspension was deposited in the center of a 9-cm Petri dish lined with wet filter paper.

The EM grid was placed on the drop and the Petri dish was sealed with Parafilm. The plates

containing the grids were incubated in a growth chamber at 25˚C, in a saturated atmosphere,

for 8, 12, 24 and 48 h.

Once the bacteria were loaded onto the grids, they were fixed by transferring the grids for

30 min onto a 20 μl drop containing 2% paraformaldehyde and 0.5% glutaraldehyde in PBS

(pH 7.2, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.76 mM KH2PO4). Grids were

then washed three times, for 5 minutes each, by placing them on a 50 μl drop of PBS and three

times, for 5 minutes each, by placing them on a 50 μl drop of distilled water. The washed speci-

mens were negatively stained by incubation for 10 s in 1% phosphotungstic acid, the pH of

which was adjusted to pH 6.5 with KOH, and the specimens were then allowed to dry in air

before viewing.

Transmission electron microscopy

All observations were performed at PRIMACEN, the Normandy Cell Imaging Platform

(Mont-Saint-Aignan, France), and/or at CMABio, the Center for Microscopy Applied to

Biology (Caen, France) of Normandy University. Observations were performed on Tecnai 12

Bio-Twin (PRIMACEN) or JEO1 1011 (CMABio3) transmission electron microscopes operat-

ing at 80 kV. Images were acquired with an Erlangshen 500W (PRIMACEN) or Gatan Orius

200 (CMABio3) camera, and processed with Gatan Digital Micrograph software (on both

microscopes).

Statistical analyses

Cultures were set up in triplicate from three independent cultures, each of which was set up

from an independent preculture. For quantitative PCR, we tested the null hypothesis that each

expression value was not significantly different from the other expression values (P value cal-

culated). P values below 0.05 were considered significant (�, P< 0.05). The standard deviation

was below 0.15 Ct units. The results presented are the mean values from at least three indepen-

dent experiments. Statistical analysis was performed with DataAssistTM software (v3.01), for

the relative quantification of gene expression according to the comparative CT (2–ΔΔCT)

method [41].
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Results

Motilities and lophotrichous flagellation of Pseudomonas fluorescens
C7R12

Flagella are used in both swimming motility in liquids and swarming motility on wet semi-

solid surfaces [43]. Pseudomonas fluorescens C7R12 strain and the T3SS-defective mutant

derived from it, C7SM7, both displayed swimming (Fig 1A) and swarming (Fig 1B) motilities

in KB agar. For swimming, the mean of the diameter of the turbid zone was similar for the two

strains (27.4 ± 1.3 mm for the C7R12 strain and 28 ± 1.3 mm for the C7SM7 strain). In the

most studies of Pseudomonas aeruginosa, a flagellum with a polar insertion is responsible for

this mode of motility and is generally observed in aqueous environments [44]. Unlike swim-

ming, swarming motility requires a concerted multicellular effort, biosurfactant secretion to

decrease the surface tension of the swarm fluid and, in some cases, an increase in the number

of flagella [45]. Swarming appears to be a mode of motility enabling bacterial populations to

colonize surfaces rapidly, resulting in biofilm formation [43]. The C7R12 and C7SM7 strains

were able to migrate away from the initial location collectively, with a mean growth diameter

of 32.2 ± 2 mm measured for C7R12, and of 31.9 ± 3.1 mm for C7SM7, in our KB agar condi-

tions. The swarming observed took the form of small fringes (Fig 1B) as previously described

for other P. fluorescens strains [46]. However, this swarming did not result in the formation of

the expanding irregular branching pattern typical of swarming motility in P. aeruginosa, as

described by Rashid and Kornberg [47].

Twitching motility is a mode of translocation over semi-solid or solid surfaces in humid

conditions. It is dependent on the presence of retractile type IV pili, but does not require fla-

gella [48]. In twitching motility, translocation across the surface is mediated by the extension

and retraction of pili and corresponds to a collective behavior supporting colony expansion

[48]. In our twitching motility assays, both strains formed a dense crystal violet-stained spot,

the diameter of which corresponded to that of the initial inoculum (5 μl) (Fig 1C). Thus, these

strains were unable to move over the surface of the Petri dish, but they were able to adhere to

it. We can therefore conclude that these P. fluorescens strains have no twitching motility and

probably do not produce type IV pili under our experimental conditions.

We investigated the type of cilia responsible for the swimming and swarming of the C7R12

strain, by culturing this strain on KB agar plates and then transferring it to an EM grid. Cells

Fig 1. Swimming and swarming motilities of P. fluorescens C7R12 and a T3SS-negative mutant strain derived from it (C7SM7 strain). Cells

were used to inoculate swimming (A), swarming (B) or twitching (C) motility assay agar plates containing King’s B medium, which were scanned

after 48 h of incubation at 25˚C. The results shown are representative of three independent experiments, each performed at least in triplicate.

https://doi.org/10.1371/journal.pone.0221025.g001
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were negatively stained and examined by high-resolution TEM. P. fluorescens C7R12 was rod-

shaped, about 2 μm long and usually covered with four to seven flagella all connected to the cell

body at the same polar position (Fig 2A and 2B). In our assay conditions, these flagella were

about 4 to 5 μm long and had a diameter of about 20 nm. In some bacteria, the base of the mul-

tiple flagella is surrounded by a specialized region of the cell membrane known as the polar

organelle [49]. No such polar organelle was observed here (Fig 2C). The multiple flagella are

thought to act in concert to drive bacterial swimming by pushing, pulling or coiling around the

cell body in the vicinity of a semi-solid agar surface [50], consistent with our findings (Fig 1).

The expression of hrpA, encoding the main protein of the T3SS pilus, is

strongly induced by fructose, sucrose and trehalose in minimal medium

The T3SS apparatus is not constitutively produced by bacteria and remains difficult to observe

without specific and favorable assay conditions [33,51]. Various culture media favoring the

production of T3SS in the phytopathogen Pseudomonas syringae have been described. We

chose to use a basal salt medium mimicking the composition and pH of the plant apoplast

[38,52]. These conditions are thought to trigger the production, by bacteria, of a T3SS injecti-

some close to the potential target (i.e. plant cells) [32,38,53]. We added various plant sugars to

this minimal medium, and compared their ability to act as a carbon source and to induce the

production of the T3SS by the P. fluorescens C7R12 strain.

Fig 2. Production of flagella by P. fluorescens C7R12. Cells were grown for 48 h at 25˚C on plates containing

solidified King’s B medium. They were then transferred by footprint to the electron microscopy grids and negatively

stained with phosphotungstic acid. The cells harbored a lophotrichous cilium, generally composed of multiple long

flagella (A). Up to seven flagella were observed emerging from a single bacterium, as shown in (B). An enlargement of

this image reveals polar insertion details and can be used to estimate the diameter of each pilus (C); the sizes of the

scale bars are 1 μm (A,B) and 0.1 μm (C).

https://doi.org/10.1371/journal.pone.0221025.g002
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We assessed the efficacy of this medium for inducing T3SS by first evaluating the relative

expression level of a key T3SS gene, hrpA, which is known to be highly expressed and repre-

sentative of HrpL-regulated T3SS genes in P. syringae [32,33]. This gene encodes the major

structural protein of the T3SS pilus, enabling the pilus to elongate until it reaches its target,

through polymerization [54]. RT-qPCR analysis was performed to compare hrpA expression

between the C7R12 strain cultured in liquid HIM medium and in KB medium. With glucose

as the inducer, hrpA transcription levels in HIM were significantly higher than those observed

in KB cultures, with a maximum 50-fold difference after 2 h of incubation (Fig 3A). Higher

fold-changes were obtained for media containing fructose, sucrose or trehalose in place of glu-

cose. Fructose and sucrose induced a maximum fold-change of about 180 after 6 h of incuba-

tion (Fig 3B and 3C). The similarity of the transcription levels obtained with these two sugars

may be explained by the composition of sucrose, a disaccharide with fructose as one of its com-

ponents. Interestingly, stronger hrpA induction (around 220-fold) occurred when the C7R12

strain was cultured in HIM supplemented with trehalose (Fig 3D). We therefore chose to use

HIM supplemented with fructose or trehalose for subsequent TEM studies.

Occurrence and architecture of type III secretion systems

The induction of HR, a form of localized programmed plant cell death at the site of infection,

suggests that effector proteins are translocated into the plant cell via a T3SS [29–31]. A HR can

Fig 3. Induction of hrpA expression in P. fluorescens C7R12 cultured in HIM supplemented with mono- or disaccharides. We analyzed

hrpA transcription by RT-qPCR on the P. fluorescens C7R12 strain grown at 25˚C in hrp-inducting minimal medium supplemented with 10

mM glucose (A), fructose (B), sucrose (C) or trehalose (D). Levels of hrpA expression are expressed relative to those obtained on King B (non-

inducing) rich medium. The data shown are the mean values obtained in three independent experiments. Statistical analysis was performed

with DataAssistTM software (v3.01), with relative gene expression levels quantified by the comparative CT (2–ΔΔCT) method. The significances

of differences between mean values were determined by calculating p-values in Student’s t tests (�P< 0.05).

https://doi.org/10.1371/journal.pone.0221025.g003
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be generated only if the bacterium harbors an operational T3SS and injects effector proteins

into the plant cell [55–57]. P. fluorescens is considered to be a “safe” saprophytic rhizobacterial

species with no phytopathogenic potential [3,4]. It does not, therefore usually elicit a HR [58].

C7R12 differs from most P. fluorescens strains in its ability to elicit a HR similar to that

recorded with P. syringae pv. tomato DC3000 on tobacco leaves within 24 hours, and the pres-

ence of T3SS gene sequences very similar to those present in this reference strain [35,59]. By

contrast, the T3SS mutant C7SM7 was unable to so induce a HR, indicating that the HrcC

structural protein targeted during the construction of this mutant is an indispensable element

of the architecture of the T3SS [35]. We therefore used the C7SM7 strain as a negative control

with no T3SS appendage.

The T3SS manufactured by P. syringae phytopathogens belong to the Hrp1 family [60].

They form long thin filaments that may extend from 200 nm to several micrometers in length,

with a diameter of 10–12 nm, in laboratory conditions [54]. The TEM micrographs obtained

in our assay conditions revealed putative T3SS appendages of about 700 to 1,750 nm in length,

with a diameter of about 10 nm. Unlike the polar flagella, the T3SS pili were always positioned

on the elongated part of the cell body (Fig 4A). In this context, we also observed the basal por-

tion of the pilus inserted into the outer membrane, which formed a ring (presumed to be the

HrcC hexamer) from which the pilus extended (Fig 4B), as already reported for P. syringae
DC3000 [53]. As expected, we observed no such structures in the C7SM7 hrcC- mutant (Fig

4C). Thus, P. fluorescens C7R12 produces an extracellular apparatus similar to those of

Hrp1-T3SS family, as visualized in P. syringae DC3000 [42,53,61]. This finding is entirely con-

sistent with the previous Hrp1-like classification of the hrc/hrp gene cluster in the C7R12

genome [59,62].

Deployment of a network of dendritic fibril bundles

Most TEM specimens must be supported on a thin electron-transparent film, to hold the sam-

ple in place. Formvar films are thermoplastic resins composed of polyvinyl formals. They are a

frequent choice of film grid for TEM because they allow the use of grids with a lower mesh rat-

ing (see Materials and Methods section). When the C7R12 and C7SM7 strains were cultured

directly in a drop of HIM placed on the surface of an abiotic formvar grid, the cells rapidly

deployed novel extracellular structures. We observed long, thick pili associated to various

extents into fibrils, which eventually formed fibril bundles, depending on growth stage. After 8

hours of culture, fibrils seemed to be synthesized by microcolonies consisting of a few individ-

ual cells to several dozen cells. These fibrils seemed to pack the bacterial wall or the border of

the whole colony, forming a fibrous capsule connecting individuals or microcolonies to each

other (Fig 5A and 5B). In rare cases, the fibrils appeared to be produced by and collected

around a single cell. However, we never clearly observed a pilus or fibril anchored in the cell

membrane or localized to a particular part of the cell, such as the pole, and we were unable to

detect potential sites of insertion into the cell (Fig 5C). One possible reason for this is that P.

fluorescens cells release their pili proteins or components into the extracellular compartment

in order for binding to the fibrils to lengthen them.

After 24 hours, microcolonies including a few hundred individuals were able to deploy a

fractal network of fibril bundles over an area of up to about a 1000 μm2 (Fig 6A). The bundled

fibrils seemed to be closely associated with microcolony structures. Each fibril consisted of

large parallel arrays of two to eight thin packed individual pili with diameters of about 10–15

nm. The extremities of each bundle displayed branched dendritic growth and subdivision,

optimizing the exploration and colonization of the contact surface (Fig 6A and 6B). At this

stage, individual pili were rarely observed in the fibrils, except at the growing extremities of the
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bundle (Fig 6B and 6C). After 48 hours, the bundles of fibrils appeared darker on TEM, as

they had become larger and denser (Fig 6D). An analysis of high-magnification images of a

single fibril revealed a regular structure resembling the stacking of several dozens of pilus sub-

units (Fig 6E).

Discussion

Pseudomonas fluorescens C7R12 is a strain isolated from a soil naturally suppressive to Fusar-

ium wilt. It has been shown to be an effective biocontrol agent [62,63], to protect Medicago
truncatula against Pythium [35], to promote plant growth and arbuscular mycorrhization

[35,64,65], and to colonize the rhizosphere and the root tissues of various plant species effi-

ciently [34,64,66]. These abilities have been shown to be associated with (i) the presence of a

functional primary metabolism coupling aerobic and nitrogen oxide respiration [67,68], (ii) an

ability to scavenge efficiently from the environment [34], (iii) a capacity to synthesize a sidero-

phore (pyoverdine) with a very high affinity for iron and an ability to improve plant iron nutri-

tion [69–71], (iv) the presence of a functional T3SS [35], and (v) an ability to assimilate specific

compounds from fungi and plants (e.g. sucrose, trehalose) [9,72]. By contrast, the ability of P.

fluorescens C7R12 to move, adhere to the root surface, or develop physical interactions with

root cells or microbial partners (e.g. mycorrhizae) in the rhizosphere has yet to be evaluated,

and the existence of extracellular appendages potentially involved in these behaviors has not

been investigated.

The bacterial flagellum is an apparatus composed of more than 20 different proteins, with a

basal body that crosses the cell wall and is connected to the flagellar filament by a hook, serving

Fig 4. Production of a type three secretion system (T3SS) by P. fluorescens C7R12. Cells were grown for 48 h at

25˚C on solidified hrp-inducing minimal medium supplemented with fructose (10 mM). They were then transferred

by footprint to the electron microscopy grids. Transmission electron micrographs of negatively stained P. fluorescens
C7R12 cells showing (A) three non-polar long and thin putative Hrp pili. (B) A magnification of the image in A shows

the presumed T3SS basal body (black arrow) embedded in the outer membrane of this Gram-negative bacterium; (C)

Under these assay conditions, the T3SS-negative mutant C7SM7, used as negative control, is deprived of appendages;

the sizes of scale bars are 1 μm (A,C) and 0.1 μm (B).

https://doi.org/10.1371/journal.pone.0221025.g004

Fig 5. Production of pili and fibrils by P. fluorescens C7R12 and its T3SS-negative mutant C7SM7. Cells were

grown at 25˚C on formvar electron microscopy grids on a drop of hrp-inducing minimal medium supplemented with

fructose or trehalose (10 mM). Transmission electron micrographs of negatively stained P. fluorescens C7R12 (A) and

its hrcC- mutant C7SM7 (B) microcolonies or single cells (C). P. fluorescens C7R12 and the T3SS mutant C7SM7

produced similar fibrils from 8 h of incubation onwards. These fibrils encircled both single cells (C) and microcolonies

(A,B) and connected them (B); the size of the scale bars is 1 μm.

https://doi.org/10.1371/journal.pone.0221025.g005

Extracellular appendages in Pseudomonas fluorescens

PLOS ONE | https://doi.org/10.1371/journal.pone.0221025 August 28, 2019 10 / 20

https://doi.org/10.1371/journal.pone.0221025.g004
https://doi.org/10.1371/journal.pone.0221025.g005
https://doi.org/10.1371/journal.pone.0221025


as a flexible joint to change the angle of flagellar rotation [25,73]. It is an effective locomotion

organelle that enables bacteria to achieve speeds exceeding many cell body lengths per second

[74]. Flagella have also been reported to function as adhesins, playing a key role in bacterial

adhesion and virulence [25]. Members of the species P. fluorescens have traditionally been con-

sidered to have a single flagellum at one of the cell poles, the so-called “monotrichous” confor-

mation [22,75,76]. However, cells of P. fluorescens C7R12 have an unusual lophotrichous

ciliature, with a polar tuft of four to seven flagella. Bacterial motility plays a key role in disper-

sion and surface colonization in soil-resident bacteria, such as P. fluorescens [19,77]. This

motility is dependent on the number of flagella and their arrangement on the cell body [78].

Hintsche et al. [50] showed that a Pseudomonas putida strain with a polar tuft of helical flagella

could use different swimming patterns, with the bacteria able to move as “pushers” or “pullers”

or to propel themselves with the bundle of flagella wrapped around the cell body. The strong

rhizosphere-competence of the C7R12 strain may, thus, be at least partly due to the presence

of this atypical multiple flagellation, increasing the speed of movement (hypermotility), and

Fig 6. Fibril bundle network deployed by P. fluorescens C7R12. Cells were grown at 25˚C on formvar electron

microscopy grids on a drop of hrp-inductive minimal medium supplemented with fructose (10 mM). (A) Extended

dendritic network of fibrils produced by a microcolony of about a hundred cells (black arrow) and a single cell (white

arrow) after 24 h. (B) Apex of a fibril with its extension fork. (C) A magnification of the image in B showing the

detailed structure of fibrils composed of one to five contiguous pili. (D) Dense fibril bundles obtained after 48 h. (E) A

magnification of the image in D showing the ramification of a bundle composed of several dozen fibrils; the sizes of the

scale bars are 10 μm (A), 1 μm (B,D), and 0.1 μm (C,E).

https://doi.org/10.1371/journal.pone.0221025.g006
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altering the nature of displacements (Fig 1), thereby increasing fitness and chemotaxis capacity

in the vicinity of plants [75,79]. However, unanswered questions remain about the role of this

unusual flagellation in the adhesion process.

Type three secretion systems have been shown to play a determining role in host interac-

tions mediated by fluorescent pseudomonads, including the opportunistic pathogen of animals

and humans Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae [80,81].

In these pathogenic species of Pseudomonas, the T3SS is involved in cell-to-cell contact with

the eukaryotic host and in bacterial virulence. Genes encoding the basic structural elements of

the T3SS are conserved among Gram-negative bacteria [60,82]. Eight families of T3SSs have

been described on the basis of sequence analyses [83,84]. The T3SS of P. aeruginosa involved

in bacterial virulence belongs to the Ysc-T3SS family. It forms a short needle-like structure

that acts as an injectisome, delivering toxins to the target cell cytosol [85,86]. The T3SS of P.

syringae, which has been implicated in plant pathogenicity, belongs to the Hrp1-T3SS family.

It forms a long, thin, flexible pilus, capable of penetrating the thick walls of plant cells. This

pilus is essential for the injection of multiple effector proteins into plant cells to suppress plant

innate immune defenses, manipulate hormone signaling and trigger cell death [30,57,80,87].

P. fluorescens is considered to be non-phytopathogenic, but the presence of T3SS genes related

to those of the Hrp1-T3SS family has been reported in some rhizosphere isolates [83,88–94].

However, only a minority of these strains can trigger a HR, suggesting that the hrc/hrp gene

cluster present is generally incomplete and insufficient for the production of an operational

T3SS machinery [58]. Thus, little is known about the architecture of the T3SS carried by P.

fluorescens strains other than P. fluorescens 2P24 [90]. This strain has a filament of more than

1 μm in length, with a diameter of about 13 nm, at the end of there is a basal body composed of

two rings, each about 20 nm across. Unfortunately, in one study in which the T3SS machinery

was extracted from P. fluorescens 2P24 cells by CsCl gradient centrifugation, it was not possible

to determine the site of insertion of the T3SS into the cell body [90]. The existence of a func-

tional T3SS in strain C7R12 has been demonstrated, but this machinery was not observed

directly [35]. In our assay conditions, TEM provided direct visual evidence of the existence in

this strain of a complete T3SS machinery similar to that of Hrp1-T3SS from P. syringae and P.

fluorescens 2P24 [42,53,61,90]. This assertion is based on the typical architecture, size and locali-

zation of the putative T3SS detected and because this appendage is observed in the C7R12 strain

but not in the C7SM7 mutant, under the same assay conditions (Fig 4). It would be interesting

in a further study to work on the labeling of proteins characteristic of the extracellular part of

T3SS such as HrcC, HrpA or HrpZ to reinforce the characterization of this appendage and bet-

ter study its role in the interactions between the bacterium and its environment.

The putative T3SS of P. fluorescens C7R12 was observed only during culture in an hrp-

inducting minimal medium in the presence of fructose, which has been reported to be neces-

sary for the observation of the T3SS in P. syringae strains [42,53,61], or in the presence of tre-

halose. We first checked the expression of the hrpA gene, as a master controller of T3SS gene

expression, in HIM supplemented with mono- (glucose, fructose) or disaccharides (sucrose,

trehalose). Interestingly, trehalose was the strongest and earliest inducer of hrpA gene expres-

sion (Fig 3), a finding never before reported, to our knowledge. This compound is a nonreduc-

ing sugar found in many organisms, including fungi and plants. In plants, the activated form

of the molecule (trehalose-6-phosphate) is a key signal molecule that regulates carbon assimila-

tion and sugar status [95–97]. For fungi, including plant-associated mycorrhizae, trehalose is

both a high-energy compound and can be used for glucose storage and osmotic regulation,

these tradeoffs favoring its preferential use. It can account for as much as 20% of fungal bio-

mass [98–100]. The presence of trehalose in the environment may alert strain C7R12 cells to

the presence of target host-plant or fungal cell, triggering the production of T3SS. This is
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consistent with (i) the involvement of the T3SS in promoting arbuscular mycorrhization by

C7R12 [35], and (ii) more generally, the assimilation of trehalose as a substrate by fluorescent

pseudomonad populations associated with the rhizosphere and mycorrhizosphere, but not by

pseudomonad populations isolated from bare soil [9,101,102]. It has been previously shown

that populations of fluorescent pseudomonads harboring T3SS genes were more abundant in

mycorrhizospheres than in other environments [27, 59, 62]. Moreover, it has been demon-

strated that the T3SS of the strain C7R12 was responsible for the promotion of mycorrhization

of Medicago truncatula because root colonization by arbuscular mycorrhizal fungi was not

promoted by a T3SS-negative mutant [35]. These findings are in agreement with our results.

When P. fluorescens C7R12 or C7SM7 was cultured on EM grids containing HIM, the bac-

teria adhering to the formvar surface formed microcolonies characterized by long, filamentous

fibrils composed of bundles of individual pilus strands. These fibrils appeared to be synthe-

sized in a disordered manner close to the bacterium or microcolony (Fig 5), subsequently

becoming organized and joining together to form long branched bundles up to 50 times the

size of the bacteria in our test conditions (Fig 6). These structures strikingly resembled the

bundles of fimbrial low-molecular-weight protein (Flp) pili first observed by Kachlany et al.

[103,104] in Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans, the causal

agent of aggressive periodontitis. The other available data suggest that these proteinaceous

appendages are related to structures referred to by different authors as the “tight adherence

pilus” (Tad) or “rough colony protein” (Rcp) in addition to Flp [105]. The tad genes encode

the machinery required for the assembly of adhesive Flp pili, including their major structural

glycoprotein component, which is encoded by the flp-1 gene [106]. They are essential for bio-

film formation, colonization and pathogenesis in the genera Aggregatibacter, Haemophilus,
Pasteurella, Yersinia, Caulobacter and among the fluorescent pseudomonads of the species

Pseudomonas aeruginosa (for review see Tomich et al. [107]). Interestingly, tad genes have also

be implicated in the plant pathogenicity of two potato pathogens, Pectobacterium and Ralsto-
nia [108,109]. However, among published TEM studies of Flp structures [109–111], images

only of Flp fibrils from A. actinomycetemcomitans [104,106], and, to a lesser extent, Ralstonia
solanacearum [112], revealing the structure and size of these fibrils to be similar to those

recorded for P. fluorescens C7R12 and C7SM7 (Fig 6). Bhattacharjee et al. [113], concluded

that Flp fibrils were not involved in mobility because they are devoid of the PilT ATPase essen-

tial for pilus retraction phenomena, as observed in twitching motility [114]. This is probably

also the case for the C7R12 and C7SM7 strains, which displayed no motility in twitching con-

ditions, including culture in HIM, but, conversely, displayed an adhesion of colonies to the

surface of Petri dishes (Fig 1). By contrast, Flp fibrils contribute to the non-specific adhesion

of bacteria to abiotic surfaces (glass, stainless steel) or eukaryotic (mammalian) cells, and they

promote bacterial aggregation for the formation of microcolonies and virulence [104–106]. P.

fluorescens pili clearly act not only in parallel arrays to form thick fibrils, but also in adhesion

to environmental surfaces (Fig 6). Precisely, the synthesis and assembly of both flagella and

Flp pili have recently been shown to be key determinants of plant root colonization [23].

In conclusion, our study provides direct evidence for the existence, in P. fluorescens C7R12,

of an extracellular apparatus unusual in non-pathogenic fluorescent pseudomonads. This

apparatus includes a bundle of polar flagella, thin flexible pili resembling Hrp1-T3SS injecti-

somes and densely bundled fimbria-like appendages protruding from the entire surface of the

microcolony to form a wide fractal network, strongly suspected to support preliminary steps

in Pseudomonas biofilm deployment. The nature and anchoring of these structures depend on

the composition (e.g. sugars), hydrophobicity and density of the cellular microenvironment.

Further studies are required to determine the precise role of these various appendages and to

check for their existence in other rhizosphere-competent and biocontrol strains.

Extracellular appendages in Pseudomonas fluorescens

PLOS ONE | https://doi.org/10.1371/journal.pone.0221025 August 28, 2019 13 / 20

https://doi.org/10.1371/journal.pone.0221025


Supporting information

S1 Table. Primers used for RT-qPCR assays. Underlined sequence of primers used both for

16SrRNA and hrpA RT-qPCR assays.

(PDF)

Acknowledgments

We thank members of the Plateforme de PRotéomique et d’IMAgerie CEllulaire de Normandie
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28. Köhler T, Curty LK, Barja F, Van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is

dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol. 2000; 182: 5990–5996.

https://doi.org/10.1128/jb.182.21.5990-5996.2000 PMID: 11029417

29. Crabill E, Joe A, Block A, van Rooyen JM, Alfano JR. Plant immunity directly or indirectly restricts the

injection of type III effectors by the Pseudomonas syringae type III secretion system. Plant Physiol.

2010; 154: 233–244. https://doi.org/10.1104/pp.110.159723 PMID: 20624999

30. Jin Q, He SY. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science.

2001; 294: 2556–2558. https://doi.org/10.1126/science.1066397 PMID: 11752577

31. Oh HS, Park DH, Collmer A. Components of the Pseudomonas syringae type III secretion system can

suppress and may elicit plant innate immunity. Mol Plant-Microbe Interact. 2010; 6: 727–739.

32. Haapalainen M, Van Gestel, Pirhonen M., Taira S. Soluble plant cell signals induce the expression of

the type III secretion system of Pseudomonas syringae and upregulate the production of pilus protein

HrpA. Mol Plant-Microbe Interact. 2009; 22: 282–290. https://doi.org/10.1094/MPMI-22-3-0282

PMID: 19245322

33. Ortiz-Martin I, Thwaites R, Macho AP, Mansfield JW, Beuzon CR. Positive regulation of the Hrp type

III secretion system in Pseudomonas syringae pv. phaseolicola. Mol Plant-Microbe Interact. 2010; 23:

665–681 https://doi.org/10.1094/MPMI-23-5-0665 PMID: 20367474

34. Mirleau P, Delorme S, Philippot L, Meyer JM, Mazurier S, Lemanceau P. Fitness in soil and rhizo-

sphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine

synthesis and uptake. FEMS Microbiol Ecol. 2000; 34: 35–44. https://doi.org/10.1111/j.1574-6941.

2000.tb00752.x PMID: 11053734

35. Viollet A, Pivato B, Mougel C, Cleyet-Marel JC, Gubry-Rangin C, Lemanceau P, Mazurier S. Pseudo-

monas fluorescens C7R12 type III secretion system impacts mycorrhization of Medicago truncatula

and associated microbial communities. Mycorrhiza. 2017; 27: 23–33. https://doi.org/10.1007/s00572-

016-0730-3 PMID: 27549437

36. Fu ZQ, Guo M, Alfano JR. Pseudomonas syringae HrpJ is a type III secreted protein that is required

for plant pathogenesis, injection of effectors, and secretion of the HrpZ1 harpin. J Bacteriol. 2006;

188: 6060–6069. https://doi.org/10.1128/JB.00718-06 PMID: 16923873

37. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin.

J Lab Clin Med. 1954; 44: 301–307. PMID: 13184240

38. Huynh T.V., Dahlbeck D., Staskawicz B.J. Bacterial blight of soybean: regulation of a pathogen gene

determining host cultivar specificity. Science. 1989; 245: 1374–1377. https://doi.org/10.1126/science.

2781284 PMID: 2781284

39. Rossignol G, Merieau A, Guerillon J, Veron W, Lesouhaitier O, Feuilloley MJG, Orange N. Involve-

ment of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens.

BMC Microbiol 2008; 8: 189. https://doi.org/10.1186/1471-2180-8-189 PMID: 18973676

40. Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, et al. The absence

of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in

c-di-GMP level. Front Microbiol. 2015; 6: 630. https://doi.org/10.3389/fmicb.2015.00630 PMID:

26157434

41. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR

and the 2(-DeltaDelta C(T)) method. Methods San Diego Calif. 2001; 25: 402–408.

42. Roine E, Wei W, Yuan J, Nurmiaho-Lassila EL, Kalkkinen N, Romantschuk M, He SY. Hrp pilus: an

hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato

DC3000. Proc Natl Acad Sci USA. 1997; 94: 3459–3464. https://doi.org/10.1073/pnas.94.7.3459

PMID: 9096416

43. Yang A, Tang WS, Si T, Tang JX. Influence of physical effects on the swarming motility of Pseudomo-

nas aeruginosa. Biophysical J. 2017; 112: 1462–1471.

44. Deziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP cor-

relates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swim-

ming, swarming, and twitching motilities. J Bacteriol. 2001; 183: 1195–1204. https://doi.org/10.1128/

JB.183.4.1195-1204.2001 PMID: 11157931

45. Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010; 8: 634–644. https://

doi.org/10.1038/nrmicro2405 PMID: 20694026

46. Rossignol G, Sperandio D, Guerillon J, Duclairoir-Poc C, Soum-Soutera E, Orange N, et al. Pheno-

typic variation in the Pseudomonas fluorescens clinical strain MFN1032. Res Microbiol. 2009; 160:

337–344. https://doi.org/10.1016/j.resmic.2009.04.004 PMID: 19409488

Extracellular appendages in Pseudomonas fluorescens

PLOS ONE | https://doi.org/10.1371/journal.pone.0221025 August 28, 2019 16 / 20

https://doi.org/10.1111/j.1574-6941.2010.01021.x
http://www.ncbi.nlm.nih.gov/pubmed/21204867
https://doi.org/10.1128/jb.182.21.5990-5996.2000
http://www.ncbi.nlm.nih.gov/pubmed/11029417
https://doi.org/10.1104/pp.110.159723
http://www.ncbi.nlm.nih.gov/pubmed/20624999
https://doi.org/10.1126/science.1066397
http://www.ncbi.nlm.nih.gov/pubmed/11752577
https://doi.org/10.1094/MPMI-22-3-0282
http://www.ncbi.nlm.nih.gov/pubmed/19245322
https://doi.org/10.1094/MPMI-23-5-0665
http://www.ncbi.nlm.nih.gov/pubmed/20367474
https://doi.org/10.1111/j.1574-6941.2000.tb00752.x
https://doi.org/10.1111/j.1574-6941.2000.tb00752.x
http://www.ncbi.nlm.nih.gov/pubmed/11053734
https://doi.org/10.1007/s00572-016-0730-3
https://doi.org/10.1007/s00572-016-0730-3
http://www.ncbi.nlm.nih.gov/pubmed/27549437
https://doi.org/10.1128/JB.00718-06
http://www.ncbi.nlm.nih.gov/pubmed/16923873
http://www.ncbi.nlm.nih.gov/pubmed/13184240
https://doi.org/10.1126/science.2781284
https://doi.org/10.1126/science.2781284
http://www.ncbi.nlm.nih.gov/pubmed/2781284
https://doi.org/10.1186/1471-2180-8-189
http://www.ncbi.nlm.nih.gov/pubmed/18973676
https://doi.org/10.3389/fmicb.2015.00630
http://www.ncbi.nlm.nih.gov/pubmed/26157434
https://doi.org/10.1073/pnas.94.7.3459
http://www.ncbi.nlm.nih.gov/pubmed/9096416
https://doi.org/10.1128/JB.183.4.1195-1204.2001
https://doi.org/10.1128/JB.183.4.1195-1204.2001
http://www.ncbi.nlm.nih.gov/pubmed/11157931
https://doi.org/10.1038/nrmicro2405
https://doi.org/10.1038/nrmicro2405
http://www.ncbi.nlm.nih.gov/pubmed/20694026
https://doi.org/10.1016/j.resmic.2009.04.004
http://www.ncbi.nlm.nih.gov/pubmed/19409488
https://doi.org/10.1371/journal.pone.0221025


47. Rashid MH, Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching

motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2000; 97: 4885–4890. https://doi.

org/10.1073/pnas.060030097 PMID: 10758151

48. Turnbull L., Whitchurch B. Motility assay: twitching motility. Methods Mol Biol. 2014; 1149: 73–86.

https://doi.org/10.1007/978-1-4939-0473-0_9 PMID: 24818899

49. Tauschel HD. ATPase activity of the polar organelle demonstrated by cytochemical reaction in whole

unstained cells of Rhodopseudomonas palustris. Arch Microbiol. 1987; 148: 159–161.
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and virulence markers highlight similarities and differences between human- and plant-associated

pseudomonads related to Pseudomonas fluorescens and P. putida. Appl Environ Microbiol. 2015; 81:

2579–2590. https://doi.org/10.1128/AEM.04160-14 PMID: 25636837

59. Nazir R, Mazurier S, Yang P, Lemanceau P, van Elsas JD. The ecological role of type three secretion

systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-

dependent. Front Microbiol. 2017; 8: 38. https://doi.org/10.3389/fmicb.2017.00038 PMID: 28197129

60. Cornelis GR. The type III secretion injectisome. Nature Rev. 2006; 4: 811–825.

61. Li CM, Brown I, Mansfield J, Stevens C, Boureau T, Romantschuk M, Taira S. The Hrp pilus of Pseu-

domonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein

HrpZ. EMBO J. 2002; 21: 1909–1915. https://doi.org/10.1093/emboj/21.8.1909 PMID: 11953310

62. Mazurier S, Lemunier M, Siblot S, Mougel C, Lemanceau P. Distribution and diversity of type III secre-

tion system-like genes in saprophytic and phytopathogenic fluorescent pseudomonads. FEMS Micro-

biol Ecol. 2004; 49: 455–467. https://doi.org/10.1016/j.femsec.2004.04.019 PMID: 19712294

63. Lemanceau P, Alabouvette C. Biological control of Fusarium diseases by fluorescent Pseudomonas

and non-pathogenic Fusarium. Crop Protect. 1991; 10: 279–286.

64. Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G. Bacterial effects on

arbuscular mycorrhizal fungi and mycorrhization as influenced by the bacteria, fungi and host-plant.

Mycorrhiza. 2009; 19: 81–90. https://doi.org/10.1007/s00572-008-0205-2 PMID: 18941805

65. Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianninazzi S, Gianninazzi-Pearson V. Pseudomo-

nas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal

transduction pathway in roots of Medicago truncatula. Plant Physiol. 2005; 139: 1065–1077. https://

doi.org/10.1104/pp.105.067603 PMID: 16183836

66. Eparvier A, Lemanceau P, Alabouvette C. Population dynamics of non-pathogenic Fusarium and fluo-

rescent Pseudomonas strains in rockwool, a substratum for soilless culture. FEMS Microbiol Ecol.

1991; 86: 177–184.

67. Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, et al. Identification of

traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microb Ecol. 2012; 64:

725–37. https://doi.org/10.1007/s00248-012-0065-3 PMID: 22576821

Extracellular appendages in Pseudomonas fluorescens

PLOS ONE | https://doi.org/10.1371/journal.pone.0221025 August 28, 2019 17 / 20

https://doi.org/10.1073/pnas.060030097
https://doi.org/10.1073/pnas.060030097
http://www.ncbi.nlm.nih.gov/pubmed/10758151
https://doi.org/10.1007/978-1-4939-0473-0_9
http://www.ncbi.nlm.nih.gov/pubmed/24818899
https://doi.org/10.1038/s41598-017-16428-9
http://www.ncbi.nlm.nih.gov/pubmed/29196650
https://doi.org/10.1128/IAI.00090-06
http://www.ncbi.nlm.nih.gov/pubmed/16714561
https://doi.org/10.1016/j.molp.2017.09.018
http://www.ncbi.nlm.nih.gov/pubmed/28987886
https://doi.org/10.1094/MPMI.2001.14.3.394
http://www.ncbi.nlm.nih.gov/pubmed/11277437
http://www.ncbi.nlm.nih.gov/pubmed/12377556
http://www.ncbi.nlm.nih.gov/pubmed/12615215
https://doi.org/10.1094/MPMI-22-9-1069
http://www.ncbi.nlm.nih.gov/pubmed/19656042
https://doi.org/10.1128/AEM.04160-14
http://www.ncbi.nlm.nih.gov/pubmed/25636837
https://doi.org/10.3389/fmicb.2017.00038
http://www.ncbi.nlm.nih.gov/pubmed/28197129
https://doi.org/10.1093/emboj/21.8.1909
http://www.ncbi.nlm.nih.gov/pubmed/11953310
https://doi.org/10.1016/j.femsec.2004.04.019
http://www.ncbi.nlm.nih.gov/pubmed/19712294
https://doi.org/10.1007/s00572-008-0205-2
http://www.ncbi.nlm.nih.gov/pubmed/18941805
https://doi.org/10.1104/pp.105.067603
https://doi.org/10.1104/pp.105.067603
http://www.ncbi.nlm.nih.gov/pubmed/16183836
https://doi.org/10.1007/s00248-012-0065-3
http://www.ncbi.nlm.nih.gov/pubmed/22576821
https://doi.org/10.1371/journal.pone.0221025


68. Mirleau P, Philippot L, Corberand T, Lemanceau P. Involvement of nitrate reductase and pyoverdine

in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Appl Environ Microbiol. 2001;

67: 2627–2635. https://doi.org/10.1128/AEM.67.6.2627-2635.2001 PMID: 11375173

69. Shirley M, Avoscan L, Bernaud E, Vansuyt G, Lemanceau P. Comparison of iron acquisition from Fe–

pyoverdine by strategy I and strategy II plants. Botany 2011; 89: 731–735.

70. Trapet P, Avoscan L, Klinguer A, Pateyron S, Citerne S, Chervin C, et al. The Pseudomonas fluores-

cens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient

conditions. Plant Physiol. 2016; 171: 675–93. https://doi.org/10.1104/pp.15.01537 PMID: 26956666

71. Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P. Iron acquisition from Fe-pyoverdine by Arabi-

dopsis thaliana. Mol Plant-Microbe Interact. 2007; 20: 441–4472007 https://doi.org/10.1094/MPMI-

20-4-0441 PMID: 17427814

72. Latour X, Lemanceau P. Carbon and energy metabolism of oxidase-positive saprophytic fluorescent

Pseudomonas spp. Agron Sustain Dev (formerly Agronomie). 1997; 17: 427–443.

73. Belas R. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol. 2014; 22:

517–527. https://doi.org/10.1016/j.tim.2014.05.002 PMID: 24894628

74. Berg HC. The rotary motor of bacteria flagella. Annu Rev Biochem. 2003; 72: 19–54. https://doi.org/

10.1146/annurev.biochem.72.121801.161737 PMID: 12500982

75. Barahona E, Navazo A, Garrido-Sanz D, Muriel C, Martı́nez-Granero F, Redondo-Nieto M, et al. Pseu-

domonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root

colonization. Front Microbiol. 2016; 7: 1471. https://doi.org/10.3389/fmicb.2016.01471 PMID:

27713729

76. Ping L, Birkenbeil J, Monajembashi S. Swimming behavior of the monotrichous bacterium Pseudomo-

nas fluorescens SBW25. FEMS Microbiol Ecol. 2013; 86: 36–44. https://doi.org/10.1111/1574-6941.

12076 PMID: 23346905

77. De Weger LA, van der Vlugt CI, Wijfjes AH, Bakker PA, Schippers B, Lugtenberg B. Flagella of a

plant-growth-stimulating Pseudomonas fluorescens strain are required for root colonization of potato

roots. J Bacteriol. 1987; 169: 2769–2773 https://doi.org/10.1128/jb.169.6.2769-2773.1987 PMID:

3294806

78. Raatz M, Hintsche M, Bahrs M, Theves M, Beta C. Swimming patterns of a polarly flagellated bacte-

rium in environments of increasing complexity. Eur Phys J Special Topics 2015; 224: 1185–1198.

79. Hazelbauer GL, Falke JJ, Parkinson JS. Bacterial chemoreceptors: high-performance signaling in net-

worked arrays. Trends Biochem Sci. 2008; 33: 9–19. https://doi.org/10.1016/j.tibs.2007.09.014 PMID:

18165013

80. Collmer A, Badel JL, Charkowski AO, Deng W-L, Fouts DE, Ramos AR, et al. Pseudomonas syringae

Hrp type III secretion system and effector proteins. Proc Natl Acad Sci USA. 2000; 97: 8770–8777.

https://doi.org/10.1073/pnas.97.16.8770 PMID: 10922033

81. Ramos JL. Pseudomonas: virulence and gene regulation. 2004; Vol 2. Kluwer Academic Plenum

Publishers, New York, NY.

82. Cornelis GR. The type III secretion injectisome, a complex nano-machine for intracellular “toxin” deliv-

ery. Biol Chem. 2010; 391: 745–751. https://doi.org/10.1515/BC.2010.079 PMID: 20482311

83. Loper JE, Hassan KA, Mavrodi DV, Davis II EW, Kent Lim C, Shaffer BT et al. Comparative genomics

of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in mul-

titrophic interactions. PLoS Genetics 2012; 8: e1002784. https://doi.org/10.1371/journal.pgen.

1002784 PMID: 22792073

84. Troisfontaines P, Cornelis GR. Type III secretion: more systems than you think. Physiology. 2005; 20:

326–339.

85. Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin

Microbiol. 2009; 12: 61–66. https://doi.org/10.1016/j.mib.2008.12.007 PMID: 19168385

86. Quinaud M, Chabert J, Faudry E, Neumann E, Lemaire D., Pastor, et al. The PscE-PscF-PscG com-

plex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J Biol Chem. 2005;

280: 36293–36300. https://doi.org/10.1074/jbc.M508089200 PMID: 16115870

87. Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection.

FEMS Microbiol Rev. 2011; 35: 1100–1125. https://doi.org/10.1111/j.1574-6976.2011.00271.x PMID:

21517912

88. Barret M, Egan F, Moynihan J, Morrissey JP, Lesouhaitier O, O’Gara F. Characterization of the SPI-1

and Rsp type three secretion systems in Pseudomonas fluorescens F113. Environ Microbiol Rep.

2013; 5: 377–386. https://doi.org/10.1111/1758-2229.12039 PMID: 23754718

Extracellular appendages in Pseudomonas fluorescens

PLOS ONE | https://doi.org/10.1371/journal.pone.0221025 August 28, 2019 18 / 20

https://doi.org/10.1128/AEM.67.6.2627-2635.2001
http://www.ncbi.nlm.nih.gov/pubmed/11375173
https://doi.org/10.1104/pp.15.01537
http://www.ncbi.nlm.nih.gov/pubmed/26956666
https://doi.org/10.1094/MPMI-20-4-0441
https://doi.org/10.1094/MPMI-20-4-0441
http://www.ncbi.nlm.nih.gov/pubmed/17427814
https://doi.org/10.1016/j.tim.2014.05.002
http://www.ncbi.nlm.nih.gov/pubmed/24894628
https://doi.org/10.1146/annurev.biochem.72.121801.161737
https://doi.org/10.1146/annurev.biochem.72.121801.161737
http://www.ncbi.nlm.nih.gov/pubmed/12500982
https://doi.org/10.3389/fmicb.2016.01471
http://www.ncbi.nlm.nih.gov/pubmed/27713729
https://doi.org/10.1111/1574-6941.12076
https://doi.org/10.1111/1574-6941.12076
http://www.ncbi.nlm.nih.gov/pubmed/23346905
https://doi.org/10.1128/jb.169.6.2769-2773.1987
http://www.ncbi.nlm.nih.gov/pubmed/3294806
https://doi.org/10.1016/j.tibs.2007.09.014
http://www.ncbi.nlm.nih.gov/pubmed/18165013
https://doi.org/10.1073/pnas.97.16.8770
http://www.ncbi.nlm.nih.gov/pubmed/10922033
https://doi.org/10.1515/BC.2010.079
http://www.ncbi.nlm.nih.gov/pubmed/20482311
https://doi.org/10.1371/journal.pgen.1002784
https://doi.org/10.1371/journal.pgen.1002784
http://www.ncbi.nlm.nih.gov/pubmed/22792073
https://doi.org/10.1016/j.mib.2008.12.007
http://www.ncbi.nlm.nih.gov/pubmed/19168385
https://doi.org/10.1074/jbc.M508089200
http://www.ncbi.nlm.nih.gov/pubmed/16115870
https://doi.org/10.1111/j.1574-6976.2011.00271.x
http://www.ncbi.nlm.nih.gov/pubmed/21517912
https://doi.org/10.1111/1758-2229.12039
http://www.ncbi.nlm.nih.gov/pubmed/23754718
https://doi.org/10.1371/journal.pone.0221025


89. Cusano AM, Burlinson P, Deveau A, Vion P, Uroz S, Preston GM, Frey-Klett P. Pseudomonas fluores-

cens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ Micro-

biol Rep. 2011; 3: 203–210. https://doi.org/10.1111/j.1758-2229.2010.00209.x PMID: 23761252

90. Liu P, Zhang W, Zhang LQ, Liu X, Wei HL. Supramolecular structure and functional analysis of the

type III secretion system in Pseudomonas fluorescens 2P24. Front Plant Sci. 2016; 6: 1190. https://

doi.org/10.3389/fpls.2015.01190 PMID: 26779224

91. Marchi M, Boutin M, Gazengel K, Rispe C, Gauthier JP, Guillerm-Erckelboudt AY, et al., Genomic

analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS

gene expression on plant roots. Environ Microbiol Rep. 2013; 5: 393–403. https://doi.org/10.1111/

1758-2229.12048 PMID: 23754720

92. Mavrodi DV, Joe A, Mavrodi OV, Hassan KA, Weller DM, Paulsen IT, et al. Structural and functional

analysis of the type III secretion system from Pseudomonas fluorescens Q8r1-96. J Bacteriol. 2011;

193: 177–189. https://doi.org/10.1128/JB.00895-10 PMID: 20971913

93. Preston GM, Bertrand N, Rainey PB. Type III secretion in plant growth-promoting Pseudomonas fluor-

escens SBW25. Mol Microbiol. 2001; 41: 999–1014. https://doi.org/10.1046/j.1365-2958.2001.02560.

x PMID: 11555282

94. Rezzonico F, Binder C, Defago G, Moenne-Loccoz Y. The type III secretion system of biocontrol Pseu-

domonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes

cucumber protection. Mol Plant-Microbe Interact. 2005; 18: 991–1001. https://doi.org/10.1094/MPMI-

18-0991 PMID: 16167769

95. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y. Trehalose metabolism and signaling. Annu Rev Plant

Biol. 2008; 59: 417–441. https://doi.org/10.1146/annurev.arplant.59.032607.092945 PMID:

18257709

96. Ponnu J, Wahl V, Schmid M. Trehalose-6-phosphate: connecting plant metabolism and development.

Front Plant Sci. 2011; 2: 70. https://doi.org/10.3389/fpls.2011.00070 PMID: 22639606
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