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Conventionally, set-level inference on statistical parametric maps (SPMs) is based on the topological features
of an excursion set above some threshold—for example, the number of clusters or Euler characteristic. The
expected Euler characteristic—under the null hypothesis—can be predicted from an intrinsic measure or vol-
ume of the SPM, such as the resel counts or the Lipschitz–Killing curvatures (LKC). We propose a new ap-
proach that performs a null hypothesis omnibus test on an SPM, by testing whether its intrinsic volume
(described by LKC coefficients) is different from the volume of the underlying residual fields: intuitively,
whether the number of peaks in the statistical field (testing for signal) and the residual fields (noise) are con-
sistent or not. Crucially, this new test requires no arbitrary feature-defining threshold but is nevertheless sen-
sitive to distributed or spatially extended patterns. We show the similarities between our approach and
conventional topological inference—in terms of false positive rate control and sensitivity to treatment ef-
fects—in two and three dimensional simulations. The test consistently improves on classical approaches for
moderate (>20) degrees of freedom. We also demonstrate the application to real data and illustrate the com-
parison of the expected and observed Euler characteristics over the complete threshold range.

© 2012 Elsevier Inc. Open access under CC BY license.
Introduction

Random field theory is used in neuroimaging to account for the
intrinsic smoothness of images, when making inferences on the
basis of statistical parametric maps (Kilner and Friston, 2010; Worsley
et al., 1996, 2004). Statistical parametric maps (SPMs) are realisations
of random fields, whose topological characteristics—under the null
hypothesis—can be predicted using random field theory. This provides
a powerful framework for topological inference on data that are collect-
ed over one or more dimensions, such as images or time–frequency
responses. In particular, randomfield theory allows one tomake predic-
tions about the Euler characteristic (EC) of the excursion set produced
by thresholding a random field (intuitively, the number of blobs
minus the number of holes of the excursion set). This prediction is use-
ful, because—at high threshold—holes disappear and the expected EC
approximates the number of maxima one would expect under the
null hypothesis. This use of random field theory requires a threshold
to create excursion sets that can then be assessed at various levels of in-
ference (Friston et al., 1996); for example, on the basis of the extent or
number ofmaxima above some threshold. In this workwe introduce an
approach that exploits random field theory without the need for a par-
ticular threshold.
for Neuroimaging, Institute of
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license.
The Euler characteristic of an SPM—at any threshold—can be pre-
dicted through the Gaussian Kinematic Formula (Taylor and Worsley,
2007). This formula expresses the expected EC as the sumover products
of an EC density function and ameasure of intrinsic volume. The EC den-
sity function depends only on the type of statistic that constitutes the
SPM, and the intrinsic volume is a measure (curvature or count) of
the multidimensional extent of the random field. In this work we use
the Lipschitz–Killing curvatures (LKC) as ourmeasure of intrinsic volume
(Taylor andWorsley, 2007). However, it should be noted that LKC is in-
terchangeable with the more traditionally used resel count through a
scale factor.

One can gain some intuition about the form of the Gaussian
Kinematic Formula by considering a one dimensional statistical field
or process (Fig. 1). For a given (high) threshold, the number of supra-
threshold segments (the Euler characteristic) depends on the underly-
ing statistic (determined by the density function) and a measure of
the smoothness and length of the process (determined by the LKC).
Smoother or shorter processes will have a smaller LKC and a smaller
EC for a given threshold. Fig. 1 shows two t-statistical processes with
the same intrinsic volume or LKCs: one is five times longer than the
other but is also five times smoother. The intrinsic volume of a random
field is the volume it would occupy when ‘statistically flattened’—
so that it has unit smoothness everywhere. When flattened, the
expected Euler characteristic is simply the EC density—per unit of in-
trinsic volume—times the intrinsic volume. In our one-dimensional ex-
ample, both processes have the same intrinsic volume (the same
underlying LKCs) and both are t-fields. Therefore, they have the same
expected EC. In this case, the expected EC at this threshold (u=0.8) is
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Fig. 1. An example of two one-dimensional fields with identical intrinsic volume or
Lipschitz–Killing curvature. Both curves are one-sample SPM{t}, based on 200 samples
of Gaussian white noise. In one case (red—solid) the noise has smoothness FWHM=4
and extends over 40 samples, in the other (blue—dotted) has FWHM=20 and extends
over 200 samples. The ‘intrinsic volumes’ of these curves, or the FWHM per unit length,
are therefore identical (LKC=[1 16.65] or resels=[1 10]). The dotted green line is
some arbitrary threshold u (=0.8). The observed Euler characteristic for both process-
es at this threshold is 3 (there are 3 blobs above threshold). The Gaussian Kinematic
Formula (Eq. (6)) for a random t-field of this intrinsic volume predicts an Euler charac-
teristic of 2.9.
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2.9 and the number of observed supra-threshold segments is 3, in both
cases.

These LKC or resel counts are usually determined from spatial gra-
dients of standardised residual images over observations, such as tri-
als or subjects (Kiebel et al., 1999; Kilner and Friston, 2010). This way
of estimating the LKC implicitly accommodates any anisotropy in the
smoothness of the original data (Worsley et al., 1999). Knowing the
LKC allows one to compare the observed number of maxima above
some threshold with that predicted under the null hypothesis and
thereby compute a classical p-value (by appealing to the Poisson
clumping heuristic; Friston et al., 1996). However, the threshold cho-
sen can bias sensitivity to the detection of true effects in a way that
depends upon the smoothness and amplitude of the true effects
(Friston et al, 1996; Smith and Nichols, 2009). In what follows, we de-
scribe a procedure that eliminates the need to specify a threshold for
omnibus or set-level inferences about SPMs. Although this level of in-
ference does not apply to specific maxima within the SPM, it is gener-
ally the most sensitive inference available (Friston et al., 1996) and
allows one to establish the significance of a treatment effect, which
can then be localised using post-hoc tests.

Recent work (Bartz et al., in press) has exploited the fact that the
Gaussian Kinematic Formula predicts the Euler characteristic, not
just at high threshold levels, but at any threshold. This means that—
rather than estimating the LKC from the smoothness of residual
fields—one can simply solve a linear regression problem using the
observed EC over a range of thresholds applied to a single residual
field, or SPM.

In this work, we make use of the developments in Bartz et al. (in
press) to estimate the LKC for every residual field (which are assumed
to be realisations of Gaussian random fields) and for the final SPM
(which—under the null hypothesis—is assumed to be a realisation of
a central random field of F or t statistics). Under the null hypothesis
these two measures of intrinsic volume should be the same, and so
comparing these two sets of curvatures gives a direct and threshold
free test of whether the final SPM deviates from the null hypothesis.
In other words, instead of using the LKC to assess the significance of
an excursion set (like the number of maxima above a threshold),
we assess the significance of the LKC measure per se, and evaluate
its null distribution using the residual images that have the same in-
trinsic volume but contain no treatment effect. Intuitively, we assess
whether the numbers of peaks in the statistical field (testing for sig-
nal) and the residual fields (noise) are consistent or not. For example,
if the SPM contains more maxima than it should under the null hy-
pothesis it would appear to have a greater intrinsic volume.

The paper is divided into three sections. We first show the equiv-
alence of the regression LKC estimators (Bartz et al., in press) and
standard estimators used in statistical parametric mapping (Kiebel
et al., 1999; Kilner and Friston, 2010). We then show that a simple
multivariate test comparing the LKC of the residual fields and the
SPM provides good control over false positive rates, and show that
the method is comparable with techniques that rely on feature-
defining thresholds. Finally, we demonstrate the approach on real
fMRI data.

Methods

We first review the basic mass-univariate GLM formulation that
gives rise to the voxel-wise residuals. We then describe how these
residuals are used to estimate a null EC distribution.

Basic GLM

At each voxel the observations y∈RN�1 over N subjects (or scans)
can be modelled as a p column design matrix X∈RN�p multiplied by a
vector of regression coefficientsβ∈Rp�1 plus a vector of normal errors
e.

y ¼ Xβþ e: ð1Þ

Ignoring relationships between elements of y over trials for clarity
(see Discussion), the least squares estimator of the regression coeffi-
cients is

β̂ ¼ XTX
� �−1

XTy: ð2Þ

Leaving a vector of residuals ê at each voxel

ê ¼ y−Xβ̂ ð3Þ

where the standardised residuals r∈RN�1 are given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
N−1

p êffiffiffiffiffiffiffiffi
êTê

p : ð4Þ

In the next section we will use the result that adjacent voxels will
have similar standardised residuals.

Random field theory

This section describes random field theory as typically used to
quantify the number of maxima above a threshold one would expect
by chance. This material is reviewed comprehensively in a number of
other texts (Kiebel et al., 1999; Kilner and Friston, 2010; Worsley
et al., 1996, 1999). For a D dimensional space S, let Au be the excursion
set at threshold u.

Au ¼ s∈S : A sð Þ≥ uf g: ð5Þ

For example, S might constitute a triangular mesh spanning the
cortical surface with values for some statistical test at each vertex. Al-
ternatively, it could be a regular lattice approximation to a three di-
mensional search space. Au would then constitute all the vertices
above threshold u.
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The expected value of the Euler characteristic of this excursion set
(intuitively, the number of blobs minus the number of holes) is given
by the Gaussian Kinematic Formula (Taylor and Worsley, 2007)

E φ Auð Þ½ � ¼
XD

d¼0

Ld Sð Þρd uð Þ ð6Þ

where Ld are the Lipschitz–Killing curvatures (LKC) and depend on
the smoothness and shape of S. Here, φ(Au) is the Euler characteristic
of excursion set Au and ρd are EC density functions, determined purely
by the statistic in question (usually a t or F statistic). D is the dimen-
sionality of the image (e.g., 2 for a surface), where D=0 corresponds
to a single point. L0(S) is simply given by the Euler characteristic of
the space under test (e.g. L0(S)=2 for two separate hemispheric vol-
umes; L0(S)=4 for two separate surfaces with spherical topology).
Having estimated the LKC for some space, one can infer (for example)
whether two clusters (EC=2) at threshold u=3 would be expected
by chance. Fig. 2 shows the correspondence between the empirical
and predicted ECs from Eq. (6) using simulated data (see below).

If the space is not homogeneously smooth, it can be readily
transformed by expressing distances (between vertices) in terms of
the correlations between residuals (at each vertex) over observations
(Worsley et al., 1999). This new space becomes uniformly smooth
(statistically flat), where vertices with similar residuals are closer to-
gether. For a given dimension d∈{0,..,D}, each component (say triangle
on a two dimensional mesh) will have d+1 vertices. Now, indexing
by component (j) let the jth component (say a triangle) have d+1
vertices, each with a vector of standardised residuals rj0 ; rj1 ;…; rjd

� �
(Eq. (4)). As we are only interested in the intrinsic volume occupied
by this component (triangle),we can take one vertex (rj0) as a reference
to define a d dimensional solid. Each component (triangle) is then de-
fined by

ΔRj ¼ rj1−rj0 ;…; rjd−rj0
h i

ð7Þ

where ΔRj∈RN�d. The volume (or area for a surface) of this d dimen-
sional component is then simply given by

Volumej ¼
1
d!

ΔRj
TΔRj

���
���1=2: ð8Þ

For a triangle, this is half base multiplied by height. In the three di-
mensional case 8 adjacent voxel corners can be broken down into 5
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Fig. 2. A. The average Euler characteristic as a function of threshold, for the standardised resi
green circles show the estimate of the Euler characteristic of the underlying random field—a
ness (resel) estimator (Eq. (9)). The blue dotted line shows the estimate of the Euler chara
estimates over realisations (Eq. (17)). B. The achieved false positive rate against the antic
The threshold is set either by the standard (resel) estimator (green circles) or the regressio
at high threshold. The dashed lines are binomial 95% confidence intervals around the antic
tetrahedral components (Worsley et al., 1999). The Lipschitz–Killing
curvature (Taylor and Worsley, 2007) of the whole space Ld(S) is
then simply the sum of the volumes occupied by the J individual com-
ponents (triangles or tetrahedra).

Ld Sð Þ ¼ 1
d!

XJ

j¼1

ΔRj
TΔRj

���
���1=2: ð9Þ

The equivalent resel counts are simply (4log(2))−d/2Ld(S). Finally,
at high thresholds, when there are no holes in the image, the LKC
given in Eq. (9) can be used in Eq. (6) to estimate the probability
(or the expected value of the Euler characteristic) of a global maxi-
mum M of value greater than or equal to u

P M≥uð Þ≈E φ Auð Þ½ �: ð10Þ

Extending the above to calculate the probability that the number
of clusters (cmax) should be greater than or equal to C clusters ob-
served we can use the Poisson clumping heuristic (Friston et al.,
1996)

P cmax≥Cð Þ ¼ 1−
XC−1

c¼0

e−λλc

c!
ð11Þ

where the term on the right is the cumulative Poisson distribution
with mean λ=E[φ(Au)], the number of clusters expected at threshold
u.

When estimating the probability of a single cluster above thresh-
old (C=1), the approximation is consistent with Eq. (10) and
P(cmax≥1)≃E[φ(Au)].

There are two key points that arise in this use of the LKC. We have
to specify a threshold to make use of the Gaussian Kinematic predic-
tion (Eq. (6)). Second, in order to estimate the LKC, we need to know
the local covariance structure of differences in residuals over observa-
tions and, implicitly, the topology or connectivity that defines these
differences (Eq. (8)) (see Discussion).
Estimating LKC through regression

In this section, we address the problem of estimating the intrinsic
volume of a single realisation of a random field. This will allow us to
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decide whether the LKC of the SPM are consistent with those of the
residual fields (in a group study there will be one per subject) that
we knowconform to thenull hypothesis. By definition, the standardised
residual at each vertex has a mean of zero and a variance of unity
(Eq. (4)).

Each residual field corresponds to a Z-field, which has a predict-
able Euler characteristic over a range of H thresholds, uh (we used
H=81 thresholds from −4 to +4 with steps of 0.1). Following
Bartz et al. (in press), we can then estimate the LKC using the follow-
ing single general linear model:

φn;h ¼
XD

d¼0

ln;d Sð Þρz
d uhð Þ þ εn;h ð12Þ

where φn,h is the measured EC at threshold uh of the n-th residual
field (in a group study, n would index subjects). The unknown LKC
of this residual field for dimension d is ln,d and the superscript z in
ρdz(uh) signifies that this is the EC density for a Gaussian (rather
than t or F) field at threshold uh.

At dimension zero, the LKC is simply the Euler Characteristic of
the space under test and so this coefficient need not be estimated,
giving

φn;h−ln;0 Sð Þρz
0 uhð Þ ¼

XD

d¼1

ln;d Sð Þρz
d uhð Þ þ εn;h ð13Þ

or

�φn;h ¼
XD

d¼1

ln;d Sð Þρz
d uhð Þ þ εn;h ð14Þ

where

�φn;h ¼ φn;h−ln;0 Sð Þρz
0 uhð Þ: ð15Þ

In order to simplify this notation, we can define the (data inde-
pendent) D dimensional EC density (for a Gaussian) in Eq. (14) for
all H threshold values as the matrix ΓZ∈RH�D and ln∈RD�1 as a vector
of the (unknown) D Lipschitz–Killing curvatures (Eq. (9)) for residual
field n.

We can re-write Eq. (14) in matrix form:

�φn ¼ ΓZ ln þ εn ð16Þ

where �φn∈RH�1 is the matrix form of Eq. (15) measured over the H
threshold values for residual field (subject) n and εn∈RH�1 is a vector
of errors.

Eq. (16) has a familiar form but there are some concerns about the
assumptions required to solve this GLM. For example, the error terms
are heteroscedastic (less variance at high thresholds) and the LKCs
themselves are correlated (Bartz et al., in press). These authors exam-
ined a number of different covariance estimators (smoothed diagonal
to account for heteroscedasticity, smoothed covariance to account for
correlation, etc.) and found the simpler covariance models (ordinary
least squares, smoothed diagonal) to be more robust (in terms of
bias and variance).

Defaulting to the simplest regression model, here we estimate the
LKC using ordinary least squares

l̂n ¼ ΓZ
h iþ

�φn ð17Þ

where ΓZ
h iþ∈RD�H is the pseudo-inverse of the Gaussian (Z) EC den-

sity and the estimate of the D unknown LKC coefficients of the nth
(n=1 to N) residual field is the vector l̂n∈RD�1.
We can make a similar estimate of the LKCs underlying the test
statistic image (which in the null case should be identical to those
from the residual images)

l̂test ¼ Γt
h iþ

�φtest ð18Þ

where �φtest∈RH�1 has the same form as �φn but is instead based on the
measured EC of the SPM{t} over the threshold range. The LKC esti-
mate for the test SPM is l̂test . Note again that the superscript in Γt iden-
tifies this as the matrix of EC densities for the Student t-statistic.

We now can test whether the LKC estimated over the N residual
fields are significantly different from those estimated from the SPM.
Note that the use of the appropriate density function in Eq. (12) fac-
tors out any dependence on the statistic in question (t or F). We
test for these differences using a standard multivariate general linear
model:

l̂
T
test

l̂
T
1

⋮
l̂
T
N

2
66664

3
77775
¼

1 0
0 1
⋮ ⋮
0 1

2
664

3
775βM þ E: ð19Þ

This provides regression parameters, βM∈R2�D in which the first
row is the LKC estimates for the test SPM, and the second row is the
mean of the LKC estimates for the residual fields averaged over all
samples or observations of the residuals. We then test the multivari-
ate hypothesis that the two rows ofβM∈R2�D are the same to provide
a classical p-value. The test hinges on Wilks' lambda statistic, which is
effectively a (marginal) likelihood ratio test comparing the full model
to the reduced (null) model without the different estimates for resid-
uals and test LKCs under Gaussian assumptions about the errors. For
large N the log-likelihood ratio has a scaled Chi-squared distribution
(Chatfield and Collins, 1980). In this case, we use Rao's F approxima-
tion to Wilks' lambda statistic (Anderson, 2003), to test whether the
(intrinsic volume of the) SPMwas sampled from the null distribution.
The main assumption behind this test is that of multivariate normal-
ity. We used Mardia's test for multivariate normality based on the 3rd
and 4th order moments of the distribution to test for this in the real
data example (see Discussion); we also verified that the false positive
rate (FPR) for this test was well controlled (Fig. 3D).

This concludes the description of our procedure that furnishes a
simple test of the null hypothesis that the intrinsic volume of an
SPM is the same as the intrinsic volume of its constituent residual
fields—fields that contain no treatment effects. In the next section,
we turn to numerical simulations to establish the accuracy and sensi-
tivity of this scheme. All of this software is available from the authors
on request and will be made part of SPM12.

Simulations

We ran simulations using Gaussian white noise data for both
two and three dimensional cases over volumes (or observations) of
100×100 pixels and (predominantly) 30×30×30 voxels respective-
ly. For the two dimensional data, we used tests based on N=100 ob-
servations, and for the three dimensional case we looked at N=100,
50, 20 and 10 observations per test. We ran tests in batches of 400
random realisations to evaluate false positive rates (e.g., 400 tests
with N=100 random observations per test). To estimate receiver
operating characteristic (ROC) curves, synthetic signals or treatment
effects were created by adding a number (between 1 and 25) of
impulse responses at random vertices (the same vertices across all
slices/volumes). These signals were smoothed with a Gaussian kernel
of varying width (FWHM varying from 2 to 32 voxels in steps of 2).
The smoothness level (16 in total) and the number of signal peaks
(25 in total) were varied systematically over realisations, giving 400
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Fig. 3. Panel A shows a one-sample SPM{t} (N=100) on a 2D slice containing an un-
derlying signal of 15 Gaussian blobs of FWHM 16 samples. Panel B shows the observed
EC of the t-field (red solid) alongside the predicted EC of the t-field based on each of
the LKC estimates for each of the 100 observations (blue dotted). Note that the EC ob-
served does not conform to that expected; not just at high thresholds, but over the
whole threshold range. The distribution of the per trial estimates of the 1st and 2nd di-
mension LKC estimates in B based on the residual fields (Eq. (17)) are shown in panel C
as blue dots. The corresponding LKC estimates for the test image (Eq. (18)) are shown
as a red star. It is clear that the test and the trial LKC estimates are unlikely to derive
from the same distribution. Panel D shows the false positive rate of the multivariate
test on the LKC coefficients for null data; dotted lines show ideal performance and
the 95% confidence intervals.
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separate tests. To ensure that the fields were sufficiently smooth
for random field theory, they were then smoothed with a Gaussian
kernel of FWHM=4. SPMs for each of the realisations were comput-
ed using one sample t-tests for a non-zero mean for each null and sig-
nal realisation. To compare our method to conventional procedures,
we then used set-level tests with thresholds (but no cluster extent
criteria) corresponding to uncorrected p values of 0.01 and 0.001
and a third test for any excursion above the RFT estimated pb0.05
volume corrected threshold.
Results

Fig. 2A shows the mean and standard deviation of the observed
Euler characteristics (black) of the standardised residual fields over
thresholds. Also shown are the Euler characteristics predicted from
the Gaussian Kinematic Formula using the standard LKC estimates
based on smoothness (Eq. (9)) and the LKC estimates based on re-
gression (Eq. (17)). Usually, one uses the high threshold region of
these curves to evaluate the probability of a maximum occurring by
chance. Fig. 2B shows the false positive rate when testing for one or
more clusters above threshold using the standard (local smoothness
based) measure (Eq. (9)), alongside the false positive rate based on
LKC estimates using regression (Eq. (17)). This confirms that the
high threshold portions of the two curves in Fig. 2A are sufficiently
similar to provide consistent false positive rate control.

By definition, adding signal to the data leaves the distribution of
residuals unchanged (assuming the signal is modelled properly, see
Discussion). However the resulting SPM will no longer be well de-
scribed by the Gaussian Kinematic Formula—because it no longer con-
forms to a central statistical field under the null hypothesis. Fig. 3
shows an example of this. Panel A shows a one sample t-test on a real-
isation of 100 two dimensional fields containing an underlying signal.
Panel B shows the observed EC for this test as a function of threshold
(red solid). The expected behaviour of a random field SPM{t} based on
LKC estimates from each of the 100 residual fields is overlaid (blue
dotted). Note that the test EC is higher than would be expected atmod-
erately high thresholds (t=2 to 4), which is the basis of conventional
set-level inference (based on the number of clusters above a threshold).
However also note that the EC of this SPM is distinct from predictions
based on the Gaussian Kinematic Formula across a wide threshold
range. The distribution of these two estimated (D=1, D=2) LKC—
based on the residual fields—is shown in panels 3C (blue dots) along-
side the LKC estimates (red star) of this non-central SPM. This deviation
of the trial and test LKCs is the basis of themultivariate test (Eq. (19)). In
panel D we show that, over the 400 null realisations, the multivariate
test has good control over the false positive rate.

To evaluate the sensitivity and specificity of multivariate tests
on the LKC we compared its performance with standard (based on
local smoothness, Eq. (9)) set-level tests on the number of peaks
above feature inducing thresholds corresponding to uncorrected
p-values of 0.01 and 0.001 and a third test for one or more clusters
above pb0.05 FWE (Eq. (10)). We were also interested to find out
how sensitive the approach would be for different subject numbers.
Fig. 4 shows an ROC curve quantifying the performance of the multi-
variate test in comparison to the standard approaches. Panels A, B, C
show the performance with N=10, 20 and 100 observations respec-
tively for volumes of side 30 voxels. The performance of the classical
and multivariate approaches are similar for moderate N (=20) with
deterioration of the multivariate performance at low N (=10). At
N=100 the multivariate test outperformed all chosen feature induc-
ing thresholds for this volume. Note that although it is sometimes
possible to find a feature-inducing threshold that outperforms the
multivariate test (e.g. N=20, feature threshold pb0.001); in practice,
searching for the best feature-defining threshold would incur a mul-
tiple comparison penalty (by inducing another dimension of the
search space).

Panel D shows the area under the ROC curve (for false positive
rates≤0.1) as a function of both the number of observations (different
lines) and image volume (x axis) for the (local smoothness based) clas-
sical test for one or more clusters above pb0.05 FWE (dotted) and the
multivariate method (solid). For small volumes or small numbers of
trials the local smoothness based methods are more powerful; as the
volume (or number of observations) increases, the EC estimates (over
realisations) become less variable and themultivariate tests outperform
the local smoothness based tests.

Existing parametric RFT relies on normality assumptions, and the
new method is no different. In order to investigate dependence on
Gaussian assumptions about error terms in more detail, we added
an unmodelled (and un-physiological) step function to the simulated
data of the same magnitude as the noise. The resulting non-Gaussian
(bimodal) residual distribution was relatively benign for the smooth-
ness based methods, resulting in a more conservative false positive
rate; but for our method the effect was to give rise to capricious be-
haviour (see Supplemental Fig. S1A). Due to the step function, two
dominant LKC clusters (each characterising half of the observations)
emerged and their combination rather poorly described the EC of the
final t-statistic field. We were able to address this effect, thanks to one
of our reviewers, by calculating LKC estimates based on a rotated set
of residuals (by multiplying the residuals from each of the N observa-
tions by the singular vectors of a random N×N matrix). This meant
that the rotated (orthonormally mixed) residuals were not only more
Gaussian (due to the central limit theorem) but also the variance due
to this single step event was spread over the sequence of residuals,
affording a better estimate of the true variance of the LKC coefficients
(see Supplemental Figs. S2, S3). In the case of stationary data, rotation
had no effect and could be applied to data where parametric
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Fig. 4. Panels A–C show receiver operator characteristic (ROC) for three typical set level tests: one or more clusters above pb0.05 FWE corrected (cyan circles), number of clusters
above a threshold corresponding to pb0.01 uncorrected (green dots), number of clusters above pb0.001 uncorrected (red dashed) and our multivariate test (blue diamonds).
Panels A–C show the performance of these tests, in a volume of cube side 30, on SPM{t}s based on 10, 20 and 100 observations respectively. As the number of observations increases
the multivariate test comes to outperform all the feature defined tests. Note that for 10 subjects, although the multivariate test is less sensitive than threshold-dependent tests, it
has the fundamental advantage that it requires no search over thresholds (and corresponding statistical correction). Panel D shows the area under the ROC curve (false positive rate
0 to 0.1) against the side length of the cubic volume under test (x axis) for different numbers of observations (N=10, 20, 50,100 in different colours) for the multivariate test (solid)
and for (the classical) one or more clusters above pb0.05 FWE corrected test (dotted). The performance in panels A, B and C correspond to the blue, green and cyan curves for a
volume of side 30 voxels (FWHM=4). The larger the number of observations the greater the potential improvement of the multivariate over the classical test, but for small volumes
(VolSizeb20) the classical test (based on local smoothness) outperforms the multivariate test (based on the global EC count).
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assumptions about the error terms cannot be guaranteed (and the re-
siduals can be exchanged among observations under i.i.d. assumptions).

Finally, we applied our method to an fMRI study with 18 partici-
pants (Henson et al., 2011; Wakeman and Henson, 2010). The exper-
imental design involved the presentation of famous, non-famous and
scrambled faces in random order. Here we simply look at the contrast
between faces and scrambled faces. Fig. 5 shows the EC of the ob-
served t-statistic over thresholds (red solid). Alongside is shown the
predicted EC of a random t-statistic field based on the LKC estimates
from the residuals using both smoothness based (green circles) and
regression based (blue dotted) methods. Using the multivariate
set-level test to compare the LKCs (as in Eq. (19)) we find that
there is a significant effect (F=8, df=[3 15], pb0.0019). For these
same data, the classical set level test (based on a feature defining
threshold pb0.01, t=2.57) predicts an EC of 20 (black cross); as we
happen to have unwarily selected a threshold at which the observed
EC is also close to 20, the classical test is not significant (pb0.4). If we
now decide to test other feature defining thresholds using the classi-
cal approach we will have to account for multiple comparisons. Crit-
ically the multivariate test on the whole threshold range removes
this problem. Panel B of Fig. 5 shows the exceedances at t=6
(arrow in panel A) consistent with face processing areas.

Discussion

In this work we have used the Gaussian Kinematic Formula to
estimate the LKC of a single realisation of a random field. This allows
us to estimate the LKC of an SPM assuming the null hypothesis and
compare this estimate of its intrinsic volume to equivalent estimates
of residual fields. In contrast to standard approaches this way of
assessing the departure of the SPM from the null hypothesis, does
not depend upon any threshold—rather it gives a complete char-
acterisation of whether the Euler characteristic of the SPM, as a
function of threshold, is consistent with the LKC estimated from com-
ponent residual images. We note that other threshold free approaches
exist—most notably permutation testing with threshold free cluster-
enhancement (Smith and Nichols, 2009), which is however a non-
parametric method. However, to our knowledge, this is the first
parametric solution to this problem, and considers a complete charac-
terisation of the field across all thresholds. One could consider this
test to be the most general topological (set-level) inference; after
which more specific post-hoc questions could be posed. The method
has the same form irrespective of whether one wishes to make infer-
ences on peak voxel intensity or some more diffuse global change in
signal (Worsley et al., 1995). Notice that the procedures described in
this paper can be applied to any SPM, including those based on serially
correlated data (provided temporal correlations are modelled appro-
priately). This is because (standard) implementations of SPM use
maximum likelihood estimators of effect sizes and therefore whiten the
data (and residual fields) to render them approximately independent.

We note that the non-parametric TFCE (Smith and Nichols, 2009)
procedure was developedwith the samemotivation inmind (to reduce
the number of user specified parameters). Initial tests, show that the
non-parametric TFCE also outperforms the individual feature defined
tests with very similar performance to our parametric method (see
Supplemental Fig. S4). The main strength of TFCE is that it is relatively
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defining threshold pb0.01 (t=2.57): at this point the predicted and observed EC are very similar hence the classical test (at this particular feature defining threshold) is not sig-
nificant (pb0.4). This highlights the disadvantage of the standard approach—in that only a single point of the observed (and high) EC is sampled. To sample other feature defining
thresholds (e.g. pb0.001) would incur a multiple comparison penalty. B. Given that we know the EC of the t-statistic is not due to random variation, we can now examine any por-
tion of this curve (in a typical set level test we would only be able to examine the EC at the feature defining threshold). In this case, the supra-threshold clusters at t=6 correspond
to face specific areas.
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immune to violations of Gaussian assumptions (see below); whereas
themain advantage of ourmultivariatemethod (besides computational
efficiency) is that there are no user defined parameters at all (nomatter
what the statistical test, as long as the associated random field has
known EC densities). Ourmultivariate approachwill sufferwhen the in-
trinsic volumes under test are small (see Fig. 4D) or the residuals are
non-Gaussian and therefore there is some work needed to characterise
the trade off between the non-parametric methods (such as TFCE) and
our parametricmultivariatemethod. Non-Gaussian residuals are gener-
ally not a problem in fMRI data due to the nature of image reconstruc-
tion and haemodynamic convolution, which render the data Gaussian
by the central limit theorem. However, there could be circumstances
(see Fig. S1) or other applications where departures from Gaussian be-
haviour may be more evident. Indeed multivariate methods may be
particularly sensitive to violations of Gaussian assumptions and entail
the additional assumption of multivariate normality. In the real data
example, Mardia's test was not significant (p=0.1863, 0.3016; corre-
sponding to tests for multivariate skewness and kurtosis respectively).
We also re-ran the real-data analysis using permutation testing (ran-
domly labelling the tests and observations) and found a similar sig-
nificant effect (pb0.0205). This is clearly an area for future validation,
with different data sets (VBM, MEG etc.), which can be easily verified
through non-parametric methods.

One parameter—that could improve computational efficiency—is
the step size and spacing of threshold levels over which to evaluate
the empirical EC function. In this work, we used a fixed step size of
0.1 (Z or t), increasing linearly over the threshold range. The more
threshold levels the better but this comes at some computational
cost. This parameter was examined comprehensively by Bartz et al.
(in press) who looked at the theoretical variance of the regression es-
timated LKCs as a function of step-size. They varied the number of
threshold levels from 5 to 200 and found that the estimated variance
plateaued at around 50. These authors also looked at different distri-
butions of these levels (equal spacing, quantile spacing etc.). Ulti-
mately these authors used 50 threshold levels over a linear range
from−3 to 3, which gives a comparable step size of 0.12. The authors
used the same procedure to select a robust covariance estimator and
ultimately selected a smoothed diagonal estimator, although they
found that the ordinary least squares approach gave comparable per-
formance. In this work we opted for the least complex model (the
OLS) but the use of a smoothed diagonal estimator would be an inter-
esting avenue for further work.

In this work, we make use of theoretical properties of a Gaussian
random field to make a compact prediction of the LKC coefficients
under the null hypothesis. An alternative, in the absence of expres-
sions for the EC density of the test in question, might be to make an
inference on the same residual and statistical fields (e.g. Z-fields) by
comparing curve descriptions, using a method such as functional
data analysis (Ramsay and Silverman, 1997) or summary measures
of observation-wise estimates of extent and height similar to TFCE
(Smith and Nichols, 2009). Indeed, initial tests using a simple univar-
iate difference measure (between EC in test and EC in residuals over
threshold) proved quite effective. The advantage of the parametric
approach presented here is that the EC density allows us to pre-
dict the EC of any field (e.g. F or t fields) using standard topological
theory.

As noted above this eschews an arbitrary feature defining thresh-
old and therefore no search over thresholds (and implicit adjustment
for multiple comparisons) are required for set level inference. Given
that the set level test is significant one might then consider post-hoc
tests with more localising power; for example, using standard tests
on peaks or thresholded clusters. In this context, a significant effect
at the set level provides protection for localised tests. In other words,
having established a significant effect using threshold-free inference,
one can then report local tests without further correction for multiple
post-hoc tests. This is because the false positive rate of post-hoc (local-
ised) tests can never exceed the nominal false positive rate, provided
one does not proceed to post-hoc testing in the absence of a significant
test at the set level. Clearly, false positive rates for local tests are only
controlled in a (technically) weak sense. On this note, some localising
power is possible with the algorithm if a specific anatomical region is
specified a priori. From Fig. 4D it is clear that the main advantages of
using the multivariate framework become apparent at intrinsic vol-
umes of around 125 resels (20 voxel cube side at 4 mm smoothing).
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The ability to estimate the LKC coefficients of a single statistical field
allows one to test for signal-induced changes in the apparent intrinsic
volume (as estimated through regression). For example, individuals
with more extensive horizontal connections in V1 (Schwarzkopf et al.,
2012)might give rise to a quantitatively distinct noise field. The LKC co-
efficientsmay be a principled and compact parameterisation of the spa-
tial correlations in neuronal fluctuations that could be used to test for
such effects.

As pointed out by Bartz and colleagues, the regression method pro-
vides a computationally and conceptually simple LKC estimator. It
avoids the rather complicated calculation of neighbourhoods (Worsley
et al., 1996) and, importantly, is easily generalised to any number of
dimensions. As no geometric knowledge of the field is necessary (but
simply its topology), exactly the same methodology can be applied
directly to tests on two dimensional cortical surfaces or high dimension-
al connectivity images (by simply changingD in Eq. (6)). For example, in
MEG, source orientation as well as Euclidean distance determines the
covariance between voxels (Barnes et al., 2011) and the true topology
is not necessarily that of nearest neighbours. The use of persistent
homology (Adams and Carlsson, 2009) allows one to estimate the
topology—and Euler characteristic—of sets of arbitrary data points.
This means that one can exploit the simplicity of the regression
approach to estimate the LKC of fields with unknown dimension or to-
pology.Wewill explore this important application in futurework on to-
pological inference inMEGdata that can showa complicated correlation
structure and statistical topology.
Acknowledgments

Wewould like to thank Rik Henson and DanWakeman for provid-
ing us with the example dataset; Christian Gaser and Tom Nichols for
help with TFCE; and our anonymous referees for their helpful sugges-
tions. This work was supported by the Wellcome Trust [grant number
091593/Z/10/Z]; and the Medical Research Council [grant number
MR/J014257/1]. The WTCN is supported by core funding from the
Wellcome Trust (grant number 091593/Z/10/Z).
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.11.046.

References

Adams, H., Carlsson, G., 2009. On the nonlinear statistics of range image patches. SIAM
J. Imaging Sci. 2, 110–117.

Anderson, T.W., 2003. An Introduction to Multivariate Statistical Analysis. Wiley.
Barnes, G.R., Litvak, V., Brookes, M.J., Friston, K.J., 2011. Controlling false positive rates in

mass-multivariate tests for electromagnetic responses. Neuroimage 56, 1072–1081.
Bartz, K., Kou, S.C., Adler, R.J., in press. Estimating thresholding levels for random fields via

Euler characteristics (http://webee.technion.ac.il/people/adler/LKCregression6.pdf).
Chatfield, C., Collins, A.J., 1980. Introduction to Multivariate Analysis. Chapman and Hall.
Friston, K.J., Holmes, A., Poline, J.B., Price, C.J., Frith, C.D., 1996. Detecting activations in

PET and fMRI: levels of inference and power. Neuroimage 4, 223–235.
Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J., 2011. A parametric empirical

Bayesian framework for the EEG/MEG inverse problem: generative models for
multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 76.

Kiebel, S.J., Poline, J.B., Friston, K.J., Holmes, A.P., Worsley, K.J., 1999. Robust smoothness
estimation in statistical parametric maps using standardized residuals from the
general linear model. Neuroimage 10, 756–766.

Kilner, J.M., Friston, K.J., 2010. Topographical inference for EEG and MEG. Ann. Appl.
Stat. 4 (3), 1272–1290.

Ramsay, J.O., Silverman, B.W., 1997. Functional Data Analysis. Springer.
Schwarzkopf, D.S., Robertson, D.J., Song, C., Barnes, G.R., Rees, G., 2012. The frequency

of visually induced gamma-band oscillations depends on the size of early human
visual cortex. J. Neurosci. 32, 1507–1512.

Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement: addressing prob-
lems of smoothing, threshold dependence and localisation in cluster inference.
Neuroimage 44, 83–98.

Taylor, J.E., Worsley, K.J., 2007. Detecting sparse signals in random fields, with an appli-
cation to brain mapping. J. Am. Stat. Assoc. 102, 913–928.

Wakeman, D.G., Henson, R., 2010. Effective connectivity in face processing, as inferred
from MEG, EEG and fMRI data. Biomag 2010—17th International Conference on
Biomagnetism.

Worsley, K.J., Poline, J.B., Vandal, A.C., Friston, K.J., 1995. Tests for distributed, nonfocal
brain activations. Neuroimage 2, 183–194.

Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C., 1996. A unified sta-
tistical approach for determining significant signals in images of cerebral activation.
Hum. Brain Mapp. 4, 58–73.

Worsley, K.J., Andermann, M., Koulis, T., MacDonald, D., Evans, A.C., 1999. Detecting
changes in nonisotropic images. Hum. Brain Mapp. 8, 98–101.

Worsley, K.J., Taylor, J.E., Tomaiuolo, F., Lerch, J., 2004. Unified univariate and multivariate
random field theory. Neuroimage 23 (Suppl. 1), S189–S195.

http://dx.doi.org/10.1016/j.neuroimage.2012.11.046
http://dx.doi.org/10.1016/j.neuroimage.2012.11.046
http://webee.technion.ac.il/people/adler/LKCregression6.pdf

	Set-level threshold-free tests on the intrinsic volumes of SPMs
	Introduction
	Methods
	Basic GLM
	Random field theory
	Estimating LKC through regression

	Simulations
	Results
	Discussion
	Acknowledgments
	Appendix A. Supplementary data
	References


