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Long non-coding RNA (lncRNA) is a subtype of noncoding RNA that has more

than 200 nucleotides. Numerous studies have confirmed that lncRNA is

relevant during multiple biological processes through the regulation of

various genes, thus affecting disease progression. The lncRNA DRAIC, a

newly discovered lncRNA, has been found to be abnormally expressed in a

variety of diseases, particularly cancer. Indeed, the dysregulation of DRAIC

expression is closely related to clinicopathological features. It was also

reported that DRAIC is key to biological functions such as cell proliferation,

autophagy, migration, and invasion. Furthermore, DRAIC is of great clinical

significance in human disease. In this review, we discuss the expression

signature, clinical characteristics, biological functions, relevant mechanisms,

and potential clinical applications of DRAIC in several human diseases.
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Introduction

Long non-coding RNA (lncRNA) is a type of non-protein-coding RNA that is longer

than 200 nucleotides (1–5). With the advancement of genomics technology during the

past few decades, several lncRNAs have become the focus of clinical research and were
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discovered to be closely associated with the progression of

human diseases (5–8). There is growing evidence that lncRNA

can actively participate in the regulation of a variety of biological

functions mainly through the modification of gene expression

levels (9–13). These functions include cell proliferation,

apoptosis, autophagy, metabolism, invasion, and migration.

The lncRNA DRAIC (Downregulated RNA In Cancer) is a

1.7 kb lncRNA located on the human chromosome 15q23 (14).

lncRNA DRAIC was first discovered to act as a tumor

suppressor in prostate cancer, but it appears to exert varied

biological activity in different diseases. Increasing evidence has

indicated that an imbalance in lncRNA DRAIC expression is

involved in many diseases especially cancers, including prostate

cancer (14–18), lung cancer (19–21), glioma (22–24), breast

cancer (25–27), colorectal cancer (28), esophageal cancer (29),

gastric cancer (30), nasopharyngeal carcinoma (31),

retinoblastoma (32), in addition to Hirschsprung’s disease (33,

34) and omphalocele (35). Abnormal expression levels of

DRAIC have also been associated with clinicopathological

features of patients, such as lymph node metastasis, neoplasm
Frontiers in Oncology 02
stage, overall survival and progression-free survival. More

notably, lncRNA DRAIC exhibited a vital influence on the

modulation of abnormal cellular processes and tumorigenesis

progression through cell proliferation, invasion, migration, and

autophagy. Mechanistic investigations have further prompted

major advances in the clinical applications of lncRNA DRAIC,

including its potential for diagnosis, prognosis, and treatment. In

this review, we first focus on the biological functions, relevant

mechanisms, and future clinical applications of lncRNA DRAIC,

and summarize available knowledge on the expression profiles

and c l inical character is t ics of lncRNA DRAIC in

disease processes.
The role of the lncrna draic
in cancers

LncRNA DRAIC was shown to be aberrantly expressed in

several types of human disease, including prostate cancer, lung

cancer, glioma, breast cancer, colorectal cancer, esophageal cancer,
FIGURE 1

The role of lncRNA DRAIC in human cancers. It has been shown that lncRNA DRAIC acts as a tumor suppressor in prostate cancer, glioma,
gastric cancer, and retinoblastoma. DRAIC also functioned as an oncogene in lung cancer, breast cancer, esophageal cancer and
nasopharyngeal carcinoma.
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gastric cancer, nasopharyngeal carcinoma, retinoblastoma,

Hirschsprung’s disease, and omphalocele (Figure 1). Indeed,

lncRNA DRAIC expression was shown to have a significant

association with patient clinicopathological features (Table 1).

LncRNA DRAIC also exerts key roles in multiple cellular

processes via diverse mechanisms (Table 2).
The tumor-suppressor role of
DRAIC in cancers

Prostate cancer

Prostate cancer (PCa) is the most frequent malignant tumor

and accounts for the second leading cause of cancer-related

deaths in men (36–40). The androgen receptor (AR) plays a

crucial role in the pathogenesis of PCa and is considered a

clinically validated target for the treatment of PCa (41–44).
Frontiers in Oncology 03
Unfortunately, long-term androgen deprivation can ultimately

lead to castration-resistant PCa (CRPC), which favors metastasis

and poor prognosis (45–47). Although much effort has been

made to improve PCa treatment, it is still needed to identify

more sensitive biomarkers to guide early diagnosis and

treatment (37, 48, 49). Several studies have shown that

lncRNA DRAIC is dysregulated in PCa LNCaP and C4-2B

cells as well as in 7 PCa tumor biopsies by androgens in a

dose and time-dependent manner (14–18). Moreover, lncRNA

DRAIC was considered to be a tumor suppressor by preventing

the transformation of cuboidal epithelial cells to fibroblast-like

morphology as well as cell migration and invasion. In vivo,

lncRNA prevents the growth of xenograft tumors.
Glioma

Glioma is one of the most prevalent primary malignant

tumors in the central nervous system, accounting for about 81%
TABLE 1 lncRNA DRAIC expression and clinical characteristics in human diseases.

Disease type Expression Clinical characteristics Refs

prostate cancer downregulated overall survival, and disease-free survival 33430890,31900260,
28241429,27562825,25700553

lung cancer upregulated TNM stage, lymph node metastasis, and poor prognosis 34764698,34306024,33771173

glioma downregulated overall survival, and progression-free survival 34746949,33767991,33336743

breast cancer upregulated overall survival, and disease specific survival 34645975,30872794,30544991

esophageal cancer upregulated / 32659236

gastric cancer downregulated lymph node metastasis 32351584

nasopharyngeal carcinoma upregulated advanced clinical stage 31497998

retinoblastoma downregulated / 31058073

Hirschsprung’s disease upregulated / 34471485,31647312

Omphalocele downregulated / 30538881
TABLE 2 Functions and mechanisms of lncRNA DRAIC in cancers.

Disease type Cell lines Functions Related mechanisms Refs

prostate cancer LNCaP, and C4-2B cells cell migration, and invasion FOXA1, NKX3-1, IKK, and NF-kB 33430890,31900260,
28241429,27562825,

25700553

lung cancer Calu-3, HCC827, NCI-H441, and NCI-H1975
cells

cell proliferation, migration, and
invasion

miR-3940-3p 34764698,34306024,
33771173

glioma U251, A172, U87, and U373 cells cell proliferation, migration,
invasion, and autophagy

AMPK, NF-kB, mTOR, S6K1,
H3K4me3, SET7/9, and miR-18a-3p

34746949,33767991,
33336743

breast cancer HeLa, T47D, MCF-7, SKBR3, MDA-MB-361,
and MDA-MB-231 cells

cell proliferation, migration,
invasion, autophagy, and apoptosis

FOXP3, miR-432-5p, and SLBP 34645975,30872794,
30544991

esophageal cancer Eca-109, TE-1, EC9706, and OE19 cells cell proliferation, invasion,
apoptosis, and autophagy

miR-149-5p, and NFIB 32659236

gastric cancer HGC-27, SGC-7901, BGC-823, AGS, and
MKN45 cells

cell proliferation, migration, and
invasion

UCHL5, and NFRKB 32351584

nasopharyngeal
carcinoma

CNE-1, and C666-1 cells cell proliferation, migration, and
invasion

miR-122, and SATB1 31497998

retinoblastoma Y79 cells cell proliferation / 31058073
frontiersin.org

https://doi.org/10.3389/fonc.2022.867670
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yao et al. 10.3389/fonc.2022.867670
of malignant brain tumors (50–52). lncRNA DRAIC has been

shown to be downregulated in glioma tissues and cell lines

(U251, A172, U87, and U373 cells) (22–24). Survival analysis has

indicated that a high lncRNA DRAIC expression was associated

with a remarkably favorable overall survival and progression-

free survival of lower-grade glioma patients who had been

submitted to radiotherapy (23). lncRNA DRAIC repressed cell

proliferation, migration, invasion, and in vivo xenograft tumor

growth, as well as induced cell autophagy in U251, A172, and

U87 cells (22, 24).
Gastric cancer

Gastric cancer is one of the most frequent digestive tract

cancers, which accounts for a large proportion of cancer-related

morbidity and mortality worldwide (53–57). Although advances

have been made in the treatment of patients with gastric cancer

over the past few years, their 5-year survival rate is still lower

than 25% (58–61). Of note, novel biomarkers should be

identified to improve the early diagnosis and survival rates of

gastric cancer patients (61–63). The expression of lncRNA

DRAIC was downregulated according to tumor progression in

67 primary gastric cancer patients who were submitted to

surgical resection as well as in HGC-27, SGC-7901, BGC-823,

AGS and MKN45 cell lines (30). A high lncRNA DRAIC level

was significantly associated with lymph node metastasis, while

the downregulation of DRAIC inhibited cell proliferation and

metastasis in HGC-27, MKN45, and SGC-7901 cells.
Pediatric retinoblastoma

Retinoblastoma is the most common intraocular tumor in

children and is initiated by the biallelic inactivation of the

retinoblastoma 1 (RB1) gene (64–68). A recent a study revealed

that lncRNADRAIC was dysregulated in retinoblastoma Y79 cells

and 7 retinoblastoma tissues. This lncRNA was involved in the

modulation of Y79 cell growth and proliferation (32).
The tumor-promoting role of
DRAIC in cancers

Lung cancer

Lung cancer is the most commonly diagnosed malignancy

worldwide and lung adenocarcinoma (LUAD) represents the

most common histological type of lung cancer (69–73). A late

diagnosis of LUAD contributes to high metastasis and mortality

rates, emphasizing the urgency for better identification of

sensitive biomarkers during lung cancer progression (69, 74–
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76). High expression of lncRNA DRAIC was recently observed

in LUAD tissues and cell lines (Calu-3, HCC827, NCI-H441,

and NCI-H1975 cells) and was positively correlated with TNM

stage, lymph node metastasis, and a poor prognosis (19–21).

lncRNA DRAIC has been proved to exhibit tumorigenic effects

through the regulation of cell proliferation, migration, and

invasion of Calu-3 and HCC827 cells.
Breast cancer

Breast cancer is a common malignancy with high incidence

and morbidity rates in females (77–81). Therefore, establishing

an effective biomarker is essential to decrease mortality and

improve the survival rate for breast cancer patients (81–84).

lncRNA DRAIC expression was distinctly upregulated in 828

breast cancer specimens and cell lines (HeLa, T47D, MCF-7,

SKBR3, MDA-MB-361, and MDA-MB-231 cells). Kaplan–

Meier plots and log-rank tests have shown that a high

expression of lncRNA DRAIC was correlated with a poorer

overall survival and disease specific survival, especially in ER-

positive breast cancer patients (27). In addition, lncRNA DRAIC

stimulated tumor progression through the promotion of cell

proliferation, migration, and invasion, as well as the inhibition of

cell autophagy and apoptosis in SKBR3, MCF-7 and MDA-MB-

231 cells (25, 26).
Esophageal cancer

Esophageal cancer is a common upper gastrointestinal

malignancy that ranks eighth in the world among cancer

incidence, especially in China (85–89). High levels of DRAIC

were found in esophageal cancer cells Eca-109, TE-1, EC9706,

and OE19 (29). Moreover, DRAIC played an oncogene role since

it facilitated cell proliferation and invasion, and repressed cell

apoptosis and autophagy in Eca-109 and EC9706 cells.
Nasopharyngeal carcinoma

Nasopharyngeal carcinoma is an epithelial carcinoma

generated within the nasopharyngeal mucosal lining (90–94).

lncRNA DRAIC was highly expressed in nasopharyngeal

carcinoma cell lines CNE-1 and C666-1 as well as in 32 biopsy

tissues (31). Moreover, a high expression level of lncRNA

DRAIC showed a close relationship with higher clinical stages.

In addition, lncRNADRAIC acted as an oncogene and enhanced

cell proliferation, migration and invasion in CNE-1 and C666-

1 cells.

Accumulating evidence has reported that the differential

expression of DRAIC in prostate cancer, lung cancer, glioma,

breast cancer, colorectal cancer, esophageal cancer, gastric
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cancer, nasopharyngeal carcinoma, and retinoblastoma. And its

abnormal expression was significantly related to many

clinicopathological features, notably the patient’s prognosis.

Furthermore, DRAIC was implicated as a regulator of a wide

variety of cellular processes and then participated in the

pathogenesis and progression of numerous human disorders.

Therefore, elucidating the underlying molecular mechanisms of

DRAIC in cancer progression has been proven to hold promise

to support its clinical application significance.
Regulatory mechanisms of
lncrana draic

Several studies have reported that lncRNA DRAIC actively

participates in crucial biological processes of many diseases, such

as cell proliferation, apoptosis, autophagy, invasion and

migration. Here, we discuss the main biological functions and

molecular mechanisms of lncRNA DRAIC during

disease progression.
Cell proliferation

It is well known that cells proliferate excessively which

ultimately results in tumor progression (95–98). In glioma,

lncRNA DRAIC has been demonstrated to suppress the

proliferation of U251 cells by targeting miR-18a-3p (24). And

lncRNA DRAIC was activated by FOXP3 in breast cancer and

promoted cell proliferation in SKBR3 and MDA-MB-231 cells

via sponging miR-432-5p to increase SLBP levels (25). lncRNA

DRAIC was also found to improve MCF-7 cell proliferation in

an autophagy-independent manner by regulating the activity of

ULK1 and enhancing LC3B expression (26). Similarly, lncRNA

DRAIC led to cell proliferation in esophageal cancer Eca-109

and EC9706 cells through the miR-149-5p/NFIB axis (29). In

gastric cancer, lncRNA DRAIC has also been indicated to inhibit

the proliferation of SGC-7901, HGC-27, and MKN45 cells by

binding to UCHL5 and accelerating the ubiquitination of

NFRKB (30). Additionally, lncRNA DRAIC increased the

proliferation of nasopharyngeal carcinoma CNE-1 and C666-1

cells via an interaction with miR-122 and up-regulation of

SATB1 (31).
Cell migration and invasion

Metastasis, also termed invasion-migration cascade, is a

multistep process that involves the dissemination of tumor cells
Frontiers in Oncology 05
from the primary tumor site to distant organs and subsequent

formation of secondary tumors (99–103). As the major reason

behind most cancer-related deaths, metastasis is a current

challenge to improve the survival of cancer patients (99, 104–107).

DRAIC was shown to positively regulate FOXA1 and NKX3-1

and to block the transformation of LNCaP prostate cancer cuboidal

epithelial cells to a fibroblast-like morphology. This subsequently

hindered cell migration and invasion through an interaction with

IKK that inactivated NF-kB (Figure 2) (14, 16). In glioma cells,

lncRNA DRAIC also exerted pro-migratory and invasive roles via

the repression of NF-kB, coupled with increases in AMPK

phosphorylation and thus inhibition of mTOR activity and

phosphorylation of key substrates like S6K1 (22). Moreover, the

interaction between the H3K4me3 protein and the lncRNADRAIC

promoter was mediated by SET7/9 and increased the association of

DRAIC with miR-18a-3p. These mechanisms were shown to

improve the metastasis of U251 cells (24). And in breast cancer

cell lines, lncRNA DRAIC was up-regulated by FOXP3 and

promoted cell migration and invasion via the miR-432-5p/SLBP

axis (25).Moreover, lncRNA DRAIC improved esophageal cancer

Eca-109 and EC9706 cell invasion through binding to miR-149-5p,

which regulated NFIB levels (29). lncRNA DRAIC also hindered

cell metastasis through its interaction with UCHL5 and repression

of NFRKB deubiquitination in gastric cancer (30). In

nasopharyngeal carcinoma cells, lncRNA DRAIC boosted cell

migration and invasion through its interaction with miR-122 and

the consequent increase of SATB1 levels (31). Furthermore,

lncRNA DRAIC facilitated the migration of HSCR 293T and SH-

SY5Y cells by sponging miR-34a-5p, which positively modulated

ITGA6 expression (33).
Cell autophagy

Autophagy is a process of intracellular component

degradation that maintains cellular homeostasis (26, 108–111).

Its dysfunction contributes to a series of pathophysiological

processes of various diseases, including cancer. Studies have

identified that numerous lncRNAs regulate autophagy through

various mechanisms (112–115). lncRNA DRAIC has been

reported modeulate autophagy in glioblastoma A172 and U87

cells by downregulating the NF-kB target gene GLUT1,

increasing AMPK levels, and thus inhibiting mTOR (22, 116).

lncRNA DRAIC also suppressed cell autophagy in breast cancer

MCF-7 cells through the activation of ULK1 (26). Similarly,

lncRNA DRAIC was found to inhibit cell autophagy in

esophageal cancer Eca-109 and EC9706 cells acting as ceRNAs

to modulate the expression of NFIB by quenching miR-149-5p

(Figure 3) (29). Take together, DRAIC was involved in the

multiple biological process of cancers through interaction with

diverse molecules (Figure 4).
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Prospects for the clinical
applications of draic in
disease management

In recent years, numerous studies have shown the

significance of lncRNAs in clinical applications for human

disease, especially in cancer (117–121). lncRNA DRAIC is a

newly identified lncRNA involved in multiple human diseases.

Previous evidence suggests that DRAIC is extensively involved

in the modulation of numerous biological functions and

intimately associated with pathological characteristics, which

may be valuable for clinical diagnosis, prognosis, and

treatment. In this section, we address the promising

significance of lncRNA DRAIC in human disease.
DRAIC as a diagnostic and
prognostic biomarker

The expression levels of lncRNA DRAIC in a diverse array of

tissues and cell lines were observed to be differentially regulated

depending on the disease state, which reveals that lncRNADRAIC
Frontiers in Oncology 06
expression can be used to distinguish between normal and

diseased tissues. Therefore, assessing lncRNA DRAIC

concentration may effectively act as a method for the early

diagnosis of diseases. Besides, increasing data supports that

lncRNA DRAIC expression is significantly associated with a

variety of clinicopathological features, demonstrating the

promising potential for prognosis prediction. For example,

lower levels of DRAIC were observed as PCa progressed from

AD to CR. This was associated with a lower disease-free-survival

rate of patients verified by the Kaplan-Meier plot (14). lncRNA

DRAIC was overexpressed at a higher level in high malignancy

breast cancers when compared to low malignancy cases,

suggesting its diagnostic and prognostic value (27). In low-grade

glioma, DRAIC was shown to reflect the prognosis of

radiotherapy treatment (27). Additionally, lncRNA DRAIC was

perceived as a novel prognosis biomarker for risk evaluation of

HSCR (34). In LUAD, lncRNA DRAIC was regarded as an

immune-related RNA and incorporated into the 5-lncRNA-

based model and 5-lncRNA risk signature, which has been

shown to accurately predict the prognosis of patients (20, 21).

However, lncRNA DRAIC was mainly measured in cell lines and

tissues, which must be optimized to a more accessible and

convenient approach. Tissue biopsy has several drawbacks, such
FIGURE 2

In prostate cancer, lncRNA DRAIC played a tumor suppressive role through inhibiting cell migration and invasion. DRAIC was activated by FOXA1
and NKX3-1 and interacts with IKK to further decrease NF-kB expression in LNCaP cells.
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as invasiveness, complicated manipulation, high cost, bleeding

complications, poor reproducibility, and sampling variability.

Minimally invasive (e.g., saliva, urine, and blood) detection of

lncRNA DRAIC expression and sensitivity is an increasing

research interest for its diagnostic and prognostic applications.
LncRNA DRAIC as a treatment target

The abnormal expression of lncRNA DRAIC in disease also

provided novel insights for disease treatment. Alterations of

lncRNA DRAIC expression may be developed as a therapeutic

target for the inhibition of disease progression. Furthermore, the

molecular mechanisms through which DRAIC regulates the

pathogenesis of diseases also resulted in an effective therapy

target. Knockdown or activation of lncRNA DRAIC and

relevant molecules, as well as the regulation of intramolecular

interactions, may also serve as potential targeting candidates for

novel pharmaceutical development and molecular-targeted

therapies (122). Indeed, lncRNA DRAIC knockout was

confirmed to suppress the tumorigenesis of PCa PC3M cells by

inhibiting the NF-kB pathway in nude mice. Moreover, lncRNA
Frontiers in Oncology 07
DRAIC expression was shown to reflect the sensitivity of tumor

cells to chemotherapy or radiotherapy. For example, lncRNA

DRAIC expression was demonstrated to predict patient response

to radiosensitivity in lower-grade glioma (23). In breast cancer, the

expression level of lncRNA DRAIC can reflect the efficacy of

chemotherapy drugs, such as paclitaxel, FEC, and lapatinib, which

may contribute to guiding more sensitized and individualized

treatment options for patients (27). In addition, existing research

on DRAIC has mainly been concentrated on the cellular level with

a deficiency of in vivo studies. lncRNA DRAIC was currently

explored in only a small portion of human diseases, and there is

little known about the multifaceted role and functional

mechanisms of DRAIC in other types of disease. Further in vivo

experiments are required to determine whether the molecular

mechanisms of lncRNADRAIC on disease progression discovered

by in vitro studies are consistent. Besides, more mechanistic

insights of lncRNA DRAIC in other diseases probably also

contribute to the development of better-targeted therapeutics.

In general, lncRNA DRAIC was proved to be a potential

diagnostic and prognosis biomarker, together with a treatment

target for human cancers. Further investigation is needed to

determine the expression profile, sensitivity and stability of
FIGURE 3

Regulatory mechanisms of DRAIC on cell autophagy in cancers. In glioblastoma A172 and U87 cells, lncRNA DRAIC induced autophagy by
downregulating the NF-kB target gene GLUT1, which activated AMPK, and blocked the expression of mTOR. In breast cancer MCF-7 cells,
DRAIC enhanced ULK1 expression and inhibited cell autophagy. In esophageal cancer, lncRNA DRAIC suppressed cell autophagy through its
interaction with miR-149-5p and up-regulation of NFIB.
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lncRNA DRAIC in non-invasive samples. This could improve

disease diagnosis and prognosis as well as the efficiency and

safety of lncRNA DRAIC-targeted treatment.
Conclusion

Numerous reports have shown that lncRNA DRAIC is

abnormally expressed in PCa, lung cancer, glioma, breast

cancer, colorectal cancer, esophageal cancer, gastric cancer,

nasopharyngeal carcinoma, retinoblastoma, HSRC, and

omphalocele. Moreover, lncRNA DRAIC exhibited a

significant association with patient clinicopathological

characteristics, especially immune cell infiltration, tumor stage,

lymph node metastasis, overall survival and progression-free

survival. lncRNA DRAIC was demonstrated to exert

momentous roles in multiple cellular process, such as cell

proliferation, invasion, migration, and autophagy. Functional

assays have revealed a series of molecular mechanisms of

lncRNA DRAIC in the development of diseases. These features
Frontiers in Oncology 08
can be exploited for various medicinal applications, including

diagnosis, prognosis and treatment of human diseases.

Extensive research has been undertaken to explore the

clinical application of lncRNAs in the past few years (123).

The majority of non-invasive biopsy biomarkers are currently

being investigated for diagnostic and prognostic purposes (124).

The detection of lncRNA DRAIC expression can be used as a

promising clinical biomarker for early diagnosis and prognosis.

Additional studies are necessary to validate whether lncRNA

DRAIC can be detected in non-invasive samples and further

verify the stability and specificity of its expression in non-

invasive samples. Moreover, lncRNA DRAIC and the relevant

molecular pathways may also be applied as new candidates for

targeted treatment of several diseases. However, the available

studies mainly focus on the expression of lncRNA DRAIC on

clinical tissue samples and in-vitro cell lines, lacking enough in

vivo animal studies. The follow-up animal experiments and

prospective studies are needed to confirm the efficacy and

safety of lncRNA DRAIC-targeted therapy. And the roles and

mechanisms of lncRNA DRAIC have merely been explored in a
FIGURE 4

The main mechanisms of DRAIC in cancers. DRAIC participated in the regulation of biological processes of cancers through interaction with
diverse molecules.
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comparably small number of diseases. It is necessary to further

probe the role of lncRNA DRAIC in other disease types.
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