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Abstract: Lung cancer has the highest rate of incidence and mortality among all cancers. Most
chemotherapeutic drugs used to treat lung cancer cause serious side effects and are susceptible to drug
resistance. Therefore, exploring novel therapeutic targets for lung cancer is important. In this study,
we evaluated the potential of TMEM16A as a drug target for lung cancer. Homoharringtonine (HHT)
was identified as a novel natural product inhibitor of TMEM16A. Patch-clamp experiments showed
that HHT inhibited TMEM16A activity in a concentration-dependent manner. HHT significantly
inhibited the proliferation and migration of lung cancer cells with high TMEM16A expression but
did not affect the growth of normal lung cells in the absence of TMEM16A expression. In vivo
experiments showed that HHT inhibited the growth of lung tumors in mice and did not reduce
their body weight. Finally, the molecular mechanism through which HHT inhibits lung cancer
was explored by western blotting. The findings showed that HHT has the potential to regulate
TMEM16A activity both in vitro and in vivo and could be a new lead compound for the development
of anti-lung-cancer drugs.
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1. Introduction

Lung cancer has the highest incidence and mortality rates worldwide among all
cancers [1]. According to estimates, the incidence of lung cancer will linearly increase
over the next 20 years [2,3]. Therefore, prevention and treatment of lung cancer is im-
portant. Currently, surgery, chemotherapy, and radiotherapy are the main treatment
options for lung cancer; however, all of these options have disadvantages: surgery is
risky and restrictive [4,5], chemotherapy is not completely effective and can lead to drug
resistance [6], and radiotherapy is associated with serious side effects [7]. The five-year
survival rates of patients with stage IA, IB, IIA, IIB, IIIA, IIIB, and IV lung cancers are 73%,
58%, 46%, 36%, 24%, 9%, and 2%, respectively [8]. Therefore, identifying novel biomarkers
for early diagnosis and targeted therapy is important for the prevention and treatment of
lung cancer [9].

TMEM16A is a calcium-activated chloride channel (CaCC) with important physio-
logical functions [10,11]. TMEM16A is widely expressed in epithelial and smooth muscle
tissues as well as in various glands of the human body [12]. Studies have shown that
TMEM16A (also known as ANO1, DOG1, TAOS2, or ORAOV2) is associated with several
cancer types [13,14]. The TMEM16A protein is highly expressed in oral, esophageal, lung,
liver, and prostate cancers; its overexpression is closely related to the proliferation and
migration of cancer cells [15,16]. In addition, clinical data indicate that TMEM16A is also
significantly associated with poor prognosis in some cancers [17]. Several recent studies
have shown that inhibiting the overexpression of TMEM16A in lung cancer impedes tumor
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evolution [18]. Therefore, TMEM16A has emerged as a potential drug target for lung cancer
treatment [19].

Homoharringtonine (HHT) is an alkaloid isolated from plants (conifers) of the Cephalotaxaceae
family [20]. It is clinically used to treat chronic myelogenous leukemia (CML), acute
myeloid leukemia (AML), and malignant lymphoma [21,22]. However, the molecular
mechanisms underlying the anti-cancer effects of HHT are not clear. Studies have shown
that HHT inhibits cancer cell proliferation by inhibiting protein and DNA syntheses [23].
The lethality of HHT against G1 and G2 phase cells is strong, but the effect on S phase cells
is weak. In CML, HHT prevents the elongation step of protein synthesis by interacting
with the A-site of the ribosome and disrupting the positioning of aminoacyl-tRNAs [24].
In breast cancer, HHT suppresses cell growth and promotes apoptosis by regulating the
miR-18a-3p-AKT-mTOR signaling pathway [25]. In FLT3-ITD AML, HHT induces cancer
cell apoptosis through inhibiting the FLT3-AKT-c-Myc pathway [26]. Although there have
been several studies on HHT anti-cancer properties, the HHT receptors on lung cancer
cells and the downstream signal transduction mechanisms related to HHT interaction with
cells are still unclear. Therefore, the mechanisms associated with cancer suppression by
HHT should be studied further.

In this study, we evaluated the inhibitory effects of HHT on lung cancer cells via
targeting TMEM16A and explored its anti-cancer mechanisms. This study may provide pre-
liminary guidance on developing chemotherapeutic drugs with HHT as the lead compound
for lung cancer treatment.

2. Materials and Methods
2.1. TCGA Data Mining

RNA-seq and clinical data from patients with lung adenocarcinoma were obtained
from the TCGA database. TMEM16A expression data were normalized; the clinical data
for each sample were acquired. A cutoff value of 13.3000 was selected for normalized
TMEM16A expression according to the ROC analysis for overall survival status. A total
of 50 and 30 tissue samples were randomly selected for clinical stage and lymph node
metastasis analyses, respectively.

2.2. Cell Culture

LA795 and NCI-H1299 cells were cultured in RPMI 1640 (Solarbio, Beijing, China).
A549 and 2BS cells were maintained in F12K (2850 Grand Island Blvd, Grand Island,
NY, USA) and DMEM (Solarbio), respectively. The medium was supplemented with
fetal bovine serum (10%) (Sijiqing, Hangzhou, China), 100 UI/mL penicillin (Solarbio),
and 100 µg/mL streptomycin (Solarbio). All the cells were cultured under standard
conditions of 5% CO2 and 95% humidity at 37 ◦C and passaged every 2 days. TMEM16A
or shRNA plasmid were transfected into cells as described previously with X-tremeGENE
HP (Roche, Switzerland) [27]. The following shRNA targeting the TMEM16A gene was
used: CCTGCTAAACAACATCATT (2399–2418 nt).

2.3. Western Blot Analysis

The cells were collected and lysed using pre-cold RIPA buffer. The isolated pro-
teins were separated on 10% sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis and electroblotted onto a nitrocellulose membrane in 25 mM Tris base and 190 mM
glycine at 100 V for 2 h. The blots were incubated for 8 h at 4 ◦C in 1:1000 dilution of
the corresponding primary monoclonal antibodies against TMEM16A (ab53212, Abcam,
Cambridge, UK), MEK1/2 (ab178876, Abcam), p-MEK1/2 (11205, Signalway, TX, USA),
ERK1/2 (K200062M, Solarbio), p-ERK1/2 (12548, Signalway), cyclin D1 (60186-1-Ig, Pro-
teintech, Chicago, IL, USA), cleaved-caspase 3 (AF7022, Affinity Biosciences, Changzhou,
China), cleaved-caspase 9 (AF5240, Affinity Biosciences), β-catenin (ab223075, Abcam),
N-cadherin (A01577-3, Boster, Beijing, China), E-cadherin (BM4166, Boster), and vimentin
(10366-1-AP, Proteintech). This step was followed by incubation with horseradish peroxidase-
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conjugated goat anti-rabbit (IgG) secondary antibody (ab150077, Abcam) for 1 h at 37 ◦C.
Blots were detected using an enhanced chemiluminescence detection kit (BIO-RAD,
Hercules, CA, USA).

2.4. Electrophysiology

During the whole-cell patch-clamp experiments, recordings were obtained using an
EPC10 amplifier controlled by Patchmaster software with a Digi LIH1600 interface (HEKA,
Lambrecht, Germany). Data were low-pass filtered at 2.9 kHz and sampled at 10 kHz. The
stimulation protocol included voltage steps with a duration of 1200 ms from a holding
potential of 0 mV. The membrane voltage (Vm) was clamped in steps of 20 mV from
−80 mV to +80 mV, followed by −80 mV. The pipette resistance was 3–5 MΩ when it
was immersed in a bath solution that was drawn using a P-97 puller (Sutter Instruments,
Novato, CA, USA).

The pipette solution contained 130 mM CsCl, 10 mM EGTA, 1 mM Mg-ATP, 1 mM
MgCl2·6H2O, and 10 mM HEPES; the solution was adjusted to pH 7.4 using CsOH. The
bath solution contained 150 mM NaCl, 1 mM MgCl2·6H2O, 10 mM HEPES, 10 mM glucose,
and 10 mM mannitol; the solution was adjusted to pH 7.4 using NaOH. The osmolality
of the solution was determined using an OM815 osmometer (Löser Messtechnik, Berlin,
Germany), with 290–300 mOsm/L for the pipette solution and 300–310 mOsm/L for the
bath solution.

2.5. Molecular Docking

The calcium-bound mTMEM16A chloride channel (PDB ID: 5oyb) was used to con-
struct the tertiary structure of the mTMEM16A monomer [28]. The missing structure of
5oyb was complemented by SWISS-MODEL [29]. The AutoDock 4.2 program was used
to perform the binding sites of HHT to mTMEM16A through the implemented empirical
free energy function and the Lamarckian Genetic Algorithm (LGA). A two-step dock-
ing strategy was used for molecular docking. Global random docking was performed
100 times without any restrictions. Next, a 35 × 35 × 35 Å domain was selected for local
docking, which was centered on the area where HHT was most distributed in the global
random docking. A root mean square (RMS) tolerance of 2.0 Å was adopted to perform
cluster analysis on the docked results; ChemBioDraw Ultra 12.0 was used to map the initial
coordinates of the ligand. Additionally, VMD1.9 and Pymol 1.1 were used for visualization
and analysis of the complex, respectively.

2.6. Site-Directed Mutagenesis

Site-directed mutagenesis primer was designed using the Agilent primer design web-
site (https://www.agilent.com/store/primerDesignProgram.jsp, accessed on 18 June 2018).
The primer for K769A (5′-catcctcagaggtgttggggcgctggctgtcatcattaat-3′) was synthesized by
Sangon Biotech (Shanghai, China). Site-directed mutagenesis was conducted using a Fast
Mutagenesis System Kit (FM111-02, Transgen, Beijing, China) at a 50 µL reaction volume.
The mutated plasmid was sequenced by Sangon Biotech (Shanghai, China).

2.7. CCK-8 Assay

LA795 and 2BS cells were seeded in 96-well plates at a density of 4000–7000 cells/well
to detect cell proliferation. The cells were cultured for 24 h and then treated with the indi-
cated concentrations of HHT for 24 h, followed by CCK-8 solution (Solarbio, Beijing, China)
for 2 h. Absorbance was measured at 450 nm using a microplate reader (SpectraMAX i3,
Molecular Devices, Sunnyvale, CA, USA).

2.8. Wound Healing Assay

LA795 and 2BS cells were cultured to 90% confluence in a 6-well plate and scraped
with a sterile 10 µL micropipette tip. The normal medium was replaced with fresh medium
containing 1% FBS and different concentrations of HHT. Images were acquired at 0, 24, 48,
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and 72 h using an inverted microscope (100× magnification; Nikon, Tokyo, Japan). The
wound healing area was calculated using ImageJ software (National Institutes of Health,
Bethesda, MD, USA). The percentage of relative scratch area was determined based on the
ratio of the average unoccupied area in the drug-treated cells to that in the control groups.

2.9. Annexin V Assay

Cell apoptosis was detected using the Annexin V-FITC Apoptosis Detection Kit
(CA1020, Solarbio). LA795 cells were seeded into 6-well culture plates for 24 h. Next,
the cells were incubated with HTT (30 µM) for 24 h. The cells were trypsinized and sus-
pended in 500 µL of binding buffer containing 5 µL Annexin V-FITC and 5 µL propidium
iodide (PI). Finally, the cells were analyzed using a CytoFLEX flow cytometer (Beckman
Coulter, Brea, CA, USA).

2.10. Tumor Xenografts in Mice

All animal experiments were conducted in accordance with the approved guidelines of
the Ethical Review Committee of Experimental Animal Welfare, Hebei University (license
No. SCXK (Ji) 2017-002). Accordingly, 5 × 106 LA795 cells were inoculated into the right
forelimb of 6- to 8-week-old BALB/c mice (SPF Biotechnology Co., Ltd., Beijing, China).
The length and width of the tumor were measured using a Vernier caliper every 3 days.
The standard formula (length × width2/2) was used to calculate the tumor volume. The
mice were divided into four groups (n = 6 per group): (1) control group (injected with
normal saline), (2) cisplatin group (10 mg/kg body weight [BW]/3d), (3) HHT group
(15 mg/kg/kg body weight (BW)/3d), and (4) HHT group (25 mg/kg/kg body weight
(BW)/3d). All mice were subcutaneously injected with drugs every 3 days and were
sacrificed after 10 injections.

2.11. Data Analysis

Statistical data were analyzed using Origin 8.0, and the graphics were created using
GraphPad Prism 8. All data are presented as the mean± SE. Statistical significance between
two groups was determined using ANOVA and an independent t-test. Asterisks indicate
significant differences (* p < 0.05, ** p < 0.01). The capacitive transients of some traces in
the figures were trimmed for clarity.

3. Results
3.1. TMEM16A Is Highly Expressed in Lung Adenocarcinoma Cells

The relationship between TMEM16A expression and the survival rate of 502 samples
from patients with lung adenocarcinoma from the TCGA database was analyzed. The
results showed that the survival time of patients with lung adenocarcinoma with low
TMEM16A expression was significantly longer than that of patients with high TMEM16A
expression (Figure 1A). In addition, correlation analysis of 585 sample data showed that
TMEM16A overexpression is positively correlated with EGFR, KRAS, ROS1, and MET,
and negatively correlated with RET (Figure 1B). The relationship between TMEM16A
expression and the clinicopathological characteristics of patients with lung adenocarci-
noma in the TCGA database was also analyzed. The results showed that the expression
of TMEM16A was significantly related to the clinical stage in patients with lung adeno-
carcinoma, in which the expression of TMEM16A was higher at stages III and IV than
at stages I and II (Figure 1C). In addition, the expression of TMEM16A in patients with
lymph node metastasis at stages N1–N3 was higher than those at stage N0 (Figure 1D).
TMEM16A expression was detected in the lung cancer cell lines LA795, NCI-H1299, and
A549 as well as in the human fetal lung diploid fibroblast cell line 2BS. Western blotting
and immunofluorescence analyses showed that TMEM16A was highly expressed in LA795,
NCI-H1299, and A549 cells, but not in 2BS cells (Figure 1E,F). In summary, TMEM16A was
highly expressed in lung adenocarcinoma cells and was related to patient survival time,
tumor stage, and tumor metastasis.
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3.2. TMEM16A Currents Are Inhibited by HHT in a Concentration-Dependent Manner

The TMEM16A-specific inhibitor, T16Ainh-A01, was used to verify TMEM16A whole-
cell currents in LA795 cells. The currents in these cells activated by 600 nM Ca2+ were
completely inhibited by 10 µM T16Ainh-A01 (Figure 2A). A whole-cell patch-clamp exper-
iment was performed to detect the inhibitory effect of HHT on TMEM16A. The results
of the HHT perfusion experiment with different concentrations showed that 1 µM HHT
hardly inhibited TMEM16A currents; the inhibitory efficiencies of 3 µM, 10 µM, and
30 µM HHT on TMEM16A currents were 4.0%, 24.2%, and 73.9%, respectively. More
than 100 µM HHT almost completely inhibited TMEM16A currents (Figure 2B). The sta-
tistical findings based on the I–V curve indicated that the suppressive effect of HHT on
TMEM16A currents was mainly manifested in the outward currents, but did not affect
the inward currents; the suppressive effect did not change the TMEM16A outward recti-
fication characteristics (Figure 2C). Subsequently, we calculated the inhibitory efficiency
of different HHT concentrations on TMEM16A currents and fitted the IC50 value of HHT
to TMEM16A at 11.37 ± 1.68 µM using the Hill equation (Figure 2D). The statistical re-
sults showed that the maximum inhibition rate of HHT on TMEM16A currents reached
91.65 ± 5.90% (Figure 2E). Through the above whole-cell patch-clamp experiments, we
confirmed that HHT is an effective TMEM16A inhibitor that suppresses TMEM16A currents
in a concentration-dependent manner.
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3.3. Key Binding Site of HHT and TMEM16A

Molecular docking was performed to explore the putative binding sites of HHT and
TMEM16A; the molecular structure of HHT is shown on Figure 3A. The results showed
that the interaction between HHT and the K769 residue of TMEM16A is via hydrogen
bonding (Figure 3B). Lysine was then mutated to alanine by site-directed mutagenesis.
Whole-cell patch-clamp experiments were then performed with the mutant. Subsequently,
the results showed that the whole-cell currents of the TMEM16A mutant were not inhibited
by HHT, but the currents could be inhibited by T16Ainh-A01 (the key binding site is R515,
Figure 3B), which proved that the mutant is specifically sensitive to HHT (Figure 3C). The
IC50 value of HHT for the TMEM16A mutant was 70.81 ± 24.25 µM, which was more than
six times the IC50 value for wild-type TMEM16A (Figure 3D,E). Accordingly, we confirmed
that K769 is the key binding site for HHT and TMEM16A.
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IC50 value of HHT to wild-type TMEM16A and mutant currents (n = 5, ** p < 0.01).

3.4. TMEM16A Is a Potential Drug Target of HHT That Inhibits Lung Cancer Cell Proliferation

A western blot experiment was performed to detect the expression of TMEM16A
protein in LA795 cells, which were incubated with different concentrations of HHT. The
results showed that HHT incubation of LA795 cells for 24 h resulted in different degrees of
reduction in the expression of TMEM16A (Figure 4A). CCK-8 experiments were performed
with LA795 cells (endogenous, highly expressed TMEM16A) and 2BS cells (TMEM16A
not expressed) to verify the inhibitory effects of HHT on the proliferation of lung cancer
cells through the inhibition of TMEM16A expression. The results showed that HHT in-
hibited the proliferation of LA795 cells in a concentration-dependent manner but did not
inhibit the proliferation of 2BS cells (Figure 4B,C). TMEM16A in LA795 cells was knocked
out using shRNA (Figure 4D). TMEM16A currents almost disappeared (Figure 4E), and
cell viability was significantly reduced after TMEM16A knockdown (Figure 4F). Corre-
spondingly, TMEM16A expression increased after transfection of TMEM16A into 2BS
cells (Figure 4G). TMEM16A currents were activated by 600 nM Ca2+ (Figure 4H). The
cell viability increased after overexpression of TMEM16A, which was inhibited by HHT
(Figure 4I). Thus, we confirmed that HHT suppresses the proliferation of LA795 cells by
inhibiting TMEM16A expression.
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Figure 4. HHT inhibited lung cancer cell proliferation through inhibited TMEM16A. (A) TMEM16A
protein expression treated with different concentrations of HHT for 24 h. (B,C) Inhibitory effect of
HHT to the proliferation of LA795 and 2BS cells with different concentrations (n = 8). (D) Expression
of TMEM16A protein in LA795 cells before and after shRNA transfection (n = 3, ** p < 0.01). (E) Typical
whole-cell currents of TMEM16A in LA795 cells before and after shRNA transfection (n = 5). (F) Cell
viability of LA795 cells before and after shRNA transfection (n = 8, ** p < 0.01). (G) Expression of
TMEM16A protein in 2BS cells before and after TMEM16A transfection (n = 3). (H) Typical whole-cell
currents of TMEM16A in 2BS cells before and after TMEM16A transfection (n = 5). (I) Cell viability
of 2BS cells before and after TMEM16A transfection (n = 8, ** p < 0.01).

3.5. TMEM16A Is a Potential Drug Target of HHT That Inhibits Lung Cancer Cell Migration

Wound healing experiments were performed to test the inhibitory effects of HHT
on LA795 cell migration. Figure 5A shows that the inhibitory effects of HHT against
LA795 cell migration are more evident as the concentration of HHT increases. In addition,
the inhibitory rates of the same concentration of HHT on LA795 cell migration increased
with time. Therefore, the inhibitory effect of HHT on LA795 cells was observed to be
concentration- and time-dependent (Figure 5B). Next, the migration of LA795 cells was
significantly reduced after the endogenous TMEM16A was knocked down by shRNA
(Figure 5C). In addition, HHT did not inhibit the migration of LA795 cells transfected with
TMEM16A shRNA (Figure 5D). Correspondingly, overexpression of TMEM16A in 2BS
cells obviously improved cell migration, which could be inhibited by HHT (Figure 5E,F).
These findings prove that TMEM16A is a drug target of HHT, which inhibited LA795
cell migration.
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Figure 5. HHT inhibited lung cancer cell migration through inhibited TMEM16A. (A) Inhibitory effect
of different concentrations of HHT on LA795 cell migration at 0, 24, 48 and 72 h (n = 3). (B) Statistical
results of (A) (** p < 0.01). (C) The LA795 cell migration before and after shRNA transfection at 0, 24,
48 and 72 h (n = 3). (D) Statistical results of (C) (** p < 0.01). (E) The 2BS cell migration before and
after TMEM16A transfection at 0, 24, 48 and 72 h (n = 3). (F) Statistical results of (E) (** p < 0.01).

3.6. TMEM16A Is a Drug Target of HHT That Promotes Lung Cancer Cell Apoptosis

Annexin V and western blot assays were performed to detect apoptosis in HHT-
treated cells. Results of the Annexin V analysis showed that the apoptosis rate of LA795
cells increased from 11.41 % to 79.63 % after incubating the cells with 50 µM HHT for
24 h (Figure 6A). At the same time, the levels of cleaved caspases 3 and 9 were increased
(Figure 6D). Annexin V and western blot assays were also performed using LA795 cells
after TMEM16A knockout. The results showed that the rate of apoptosis and the expression
of apoptotic proteins in LA795 cells increased significantly after TMEM16A knockout. On
this basis, it was considered that HHT did not promote apoptosis (Figure 6B,E). Corre-
spondingly, overexpression of TMEM16A in 2BS cells did not promote apoptosis; however,
incubation with HHT increased the rate of apoptosis and the expression of apoptotic
proteins (Figure 6C,F). Therefore, TMEM16A is a drug target for HHT, which promotes
cell apoptosis.
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Figure 6. HHT promoted lung cancer cell apoptosis through TMEM16A. (A) Cell apoptosis results
of LA795 cells incubated by 50 µM HHT for 24 h detected with Annexin-V assay (n = 3). (B) Cell
apoptosis results of LA795 cells with TMEM16A shRNA transfection and added 50 µM HHT (n = 3).
(C) Cell apoptosis results of 2BS cells with TMEM16A transfection and added 50 µM HHT (n = 3).
(D–F) Expression of cleaved-caspase 3 and cleaved-caspase 9 with LA795 cells incubated by 50 µM
HHT (D), or LA795 cells with TMEM16A shRNA transfection and added 50 µM HHT (E), or 2BS
cells with TMEM16A transfection and added 50 µM HHT (F) (n = 3).

3.7. HHT Inhibits Lung Cancer Growth In Vivo

A lung cancer xenograft mouse model was established by subcutaneously inoculating
LA795 cells. Then, HHT was subcutaneously injected to test its inhibitory effects on tumor
growth in vivo. Physiological saline and cisplatin (an anti-cancer chemotherapy drug)
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were used as the blank and positive controls, respectively. Statistical analysis and fitting of
mice tumor volume growth curves showed that HHT significantly inhibited tumor vol-
ume growth in mice (Figure 7B). HHT (25 mg/kg) can achieve the same tumor inhibition
efficiency as the maximum safe concentration of cisplatin [30]. At the same time, HHT
did not reduce the body weight of mice like cisplatin (Figure 7C). After 10 administra-
tions, the mice were sacrificed, and the tumors were dissected for weight measurement
(Figure 7D). Results of the statistical analysis showed that the inhibition rates of 10 mg/kg
cisplatin and 15 mg/kg and 25 mg/kg HHT against tumors were 69.6%, 40.5%, and 74.6%,
respectively (Figure 7E). Therefore, we propose that HHT is a safe and efficient inhibitory
drug for lung cancer.
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Figure 7. HHT inhibited the growth of lung adenocarcinomas in tumor xenograft mice. (A) Schematic diagram of the
experimental protocol. (B) Tumor volume growth curve in different groups (n = 6). (C) Body weight change curve in
different groups (n = 6). (D) Images of the tumor entity after 10 administrations of the drug (n = 6). (E) Statistical results of
the stripped tumor weight in (D) (n = 6, ** p < 0.01).

3.8. Molecular Mechanism Underlying HHT-Mediated Inhibition of Tumor Growth In Vivo

Western blot analyses were performed with tumor tissues to explore the molecular
mechanism through which HHT inhibits the growth of lung cancer. The results showed that
50 µM HHT significantly reduced the expression of TMEM16A in LA795 cells (Figure 8A).
HHT did not affect the expression of MEK1/2 and ERK1/2 in LA795; however, it reduced
the phosphorylation of these proteins, which ultimately led to a decrease in cyclin D1
expression and arrested cells in the G0–G1 phase (Figure 8B). In addition, we detected key
proteins related to cell invasion and apoptosis by western blotting. The results showed that
the expression of β-catenin, n-cadherin, and vimentin was decreased and that of E-cadherin
was increased in HHT-incubated LA795 cells (Figure 8C,D). Levels of the apoptotic proteins,
cleaved caspases 3 and 9, were increased in HHT-incubated LA795 cells (Figure 8E,F). These
findings indicate that HHT inhibited tumor cell growth by downregulating the protein
expression of TMEM16A, which resulted in reduced cell proliferation and invasion and
increased apoptosis.
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MEK1/2, ERK1/2, phospho-ERK1/2, and cyclin D1 in 50 µM HHT incubated LA795 cells (n = 3). (B) Statistical results of
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cells (n = 3). (D) Statistical results of (C) (n = 3). (D) Expression of cleaved-caspase 3 and cleaved-caspase 9 in 50 µM HHT
incubated LA795 cells (n = 3, ** p < 0.01). (F) Statistical results of (E) (n = 3, ** p < 0.01).

4. Discussion

In this study, we confirmed that TMEM16A is a drug target for lung cancer and found
that HHT is a lead therapeutic compound targeting TMEM16A in patients with lung
cancer. Patch-clamp experiments showed that HHT inhibited TMEM16A expression in a
concentration-dependent manner. The binding sites of HHT and TMEM16A were deter-
mined by molecular docking and site-directed mutagenesis experiments. Subsequently,
the interaction between TMEM16A and cancer cell growth was studied using TMEM16A
shRNA or overexpression. Finally, the inhibitory effect of HHT on lung cancer cells was
explored in vivo and in vitro; the molecular mechanism underlying the inhibitory effects
of HHT against lung cancer was explored by western blotting.

Several studies have shown that the TMEM16A gene is located in the 11q13 region
of the human chromosome. TMEM16A expression is often amplified in cancers [18,31].
Thus, TMEM16A is highly expressed in some cancers [32,33]. In this study, we found
that TMEM16A was highly expressed in lung cancer cells, whereas it was not expressed
in normal lung cells. Furthermore, we confirmed that inhibiting the overexpression of
TMEM16A in LA795 cells can suppress the proliferation and migration of cancer cells,
whereas overexpressing TMEM16A in 2BS cells that typically have low TMEM16A expres-
sion promotes cell proliferation and migration. In addition, another inhibitor of TMEM16A,
T16Ainh-A01, also showed an inhibitory effect on the growth of LA795 cells (Supplemen-
tary Materials Figure S2). We propose that TMEM16A is specifically overexpressed in lung
cancer and plays a critical regulatory role in the proliferation and migration of cancer cells.
In summary, TMEM16A is an ideal lung cancer biomarker and drug target.

Our data showed that HHT can both inhibit the ion channel activity of TMEM16A
(Figure 2B) and down-regulate the expression of TMEM16A (Figure 4A). Molecular docking
and site-directed mutagenesis experiments showed that HHT binds to K697 residues
through the hydrogen bond to block the TMEM16A channel, which inhibited the ion
channel activity of TMEM16A (Figure 3). One of the ways that HHT down-regulates
the expression of the TMEM16A protein is through inhibiting the transcription process.
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The relative TMEM16A mRNA levels of LA795 cells decreased significantly after being
incubated with 50 µM HHT for 24 h (Supplementary Materials Figure S1). In addition,
HHT may reduce protein expression by inhibiting the translation extension, according to
the literature [34].

Chemotherapy is one of the most commonly used methods for the treatment of lung
cancer. However, many lung cancer patients develop drug resistance within a year of
chemotherapy [35]; the most effective method to reverse drug resistance is multi-target
combined treatment administration [36]. Therefore, it is particularly important to identify
new lung cancer targets and targeted drugs. A combination of HHT and VCR has been
proven to be effective; imatinib has a good therapeutic effect on leukemia [37,38]. As the
target of HHT was different from that of other lung cancer drugs, it can be expected that
the combination of HHT and other lung cancer drugs will produce enhanced therapeutic
effects. This hypothesis needs to be verified in future studies.

In this study, we explored the molecular mechanism by which HHT inhibits lung
cancer. The clinical effects of HHT on chronic myeloid leukemia are satisfactory. It also
affects cell proliferation by preventing the synthesis of proteins and chromosomes [39,40].
However, few studies have investigated the effects of HHT against lung cancer, and its
molecular mechanisms of action remain unclear. The results of this study confirmed that
TMEM16A is an important receptor of HHT in lung cancer cell membranes. HHT blocks
the cell cycle by inhibiting the phosphorylation of MEK1/2 and ERK1/2 in the MAPK
signal transduction pathway by suppressing TMEM16A expression. At the same time,
HHT suppresses cancer cell invasion and promotes apoptosis by inhibiting TMEM16A
expression. These findings explain the anti-cancer mechanism of HHT and provide a
research foundation for the development of HHT-related anti-cancer drugs.

HHT is a potential drug for lung cancer, with high safety and efficacy and low cost.
HHT was approved for the treatment of adult chronic myeloid leukemia by the FDA in
2012 [41] as a subcutaneous injection twice a day for 28 days. HHT has been proven
to have a good curative effect against leukemia as well as high biological safety over
nearly 10 years of clinical application [42]. Our cell experiments showed that HHT had
almost no side effects on the proliferation of 2BS cells (Figure 4B). Animal experiments also
showed that HHT did not reduce the body weight of mice (Figure 7C), thereby verifying
the biological safety of HHT. In addition, HHT is inexpensive and easy to produce. HHT
is extracted from Cephalotaxaceae conifers, which are widely distributed in subtropical,
evergreen, and broad-leaved forests [43]. The HHT extraction process is simple. High-
purity HHT can be obtained through drying and grinding, chromatography, extraction, and
recrystallization [44,45]. Therefore, the development and subsequent clinical application of
HHT is convenient.

In view of the multiple advantages of HHT, the clinical implication of HHT used
for the treatment of lung adenocarcinoma is important. First, TMEM16A is specifically
expressed in lung cancer tissue [46]. HHT works through inhibiting TMEM16A and does
not damage normal tissues that do not express TMEM16A, which means that the clinical
side effects of HHT will be small. Second, the main targets of clinical lung cancer targeted
drugs are EGFR, ALK, etc. [47,48]. The target of HHT is different from these; thus, HHT can
solve the problem of clinical targeted drug resistance. Third, HHT has many years of clinical
use experience as a treatment drug for CML and AML [24,48]. The pharmacokinetics and
safety data of HHT are detailed. New uses for proven drugs can shorten the development
cycle and maximize resource utilization.

In summary, TMEM16A overexpression is closely related to the growth of lung cancer
cells. Thus, it may be an important drug target for the treatment of lung cancer. HHT
suppressed the proliferation and migration of lung cancer cells by inhibiting TMEM16A
channel activity. Therefore, targeting TMEM16A by the administration of HHT to inhibit
lung cancer growth and development may represent an innovative strategy for treating the
disease in the future.
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