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Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment

method for computing a similarity measure. Such dynamic programming-based

techniques like DTW are now the backbone and driver of most bioinformatics methods

and discoveries. In neuroscience it has had far less use, though this has begun to

change. We wanted to explore new ways of applying DTW, not simply as a measure with

which to cluster or compare similarity between features but in a conceptually different

way. We have used DTW to provide a more interpretable spectral description of the

data, compared to standard approaches such as the Fourier and related transforms.

The DTW approach and standard discrete Fourier transform (DFT) are assessed

against benchmark measures of neural dynamics. These include EEG microstates,

EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP)

prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We

explored the relationships between these variables of interest in an EEG-FMRI dataset

acquired during a standard cognitive task, which allowed us to explore how DTW

differentially performs in different task settings. We found that despite strong correlations

between DTW and DFT-spectra, DTWwas a better predictor for almost every measure of

brain dynamics. Using these DTWmeasures, we show that predictability is almost always

higher in task than in rest states, which is consistent to other theoretical and empirical

findings, providing additional evidence for the utility of the DTW approach.
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INTRODUCTION

Dynamic Time Warping (DTW) has been extensively used in data mining, but also in pattern
recognition and classification. It is not an overstatement to say that it is today one of the
central techniques in the data mining community (Keogh and Kasetty, 2002; Ding et al., 2008a;
Rakthanmanon et al., 2012). DTW is a dynamic programming (DP) based technique for finding
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the best alignment between two time series/data sequences.
It can take into account phase shifts and other non-linear
changes in the time series, unlike the much simpler (but
computationally faster) Euclidean distance based alignments
(Rakthanmanon et al., 2012). While typically used in a univariate
setting, it has also been successfully used in multivariate
contexts as well (Bankó and Abonyi, 2012; Górecki and Łuczak,
2015). While very similar methods also based on DP have
revolutionized and are core in other biological and scientific
fields, especially in bioinformatics in the form of BLAST, FASTA,
and other sequence alignment methods (Smith and Waterman,
1981; Gotoh, 1982; Edgar, 2010; Di Tommaso et al., 2011),
neuroscience has not yet explored this powerful technique nearly
as much. In fact, sequence alignment is behind most of genetic,
proteinogenic, phylogenetic and other molecular and genetic
biology work and results. In recent years it has been picked up in
conjunction with other machine learning or statistical methods
for various neuroimaging and neuroscientific investigations,
including improved ballistocardiogram artifact detection and
removal (compared to using a template or average based artifact
removal method) (Niennattrakul and Ratanamahatana, 2007;
Kustra et al., 2008; Annam et al., 2011), decoding of speech from
intracranial electrode recordings (Zhang et al., 2012), modeling
and decoding spectrotemporal feature differences for overt and
covert speech from cortical recordings, (Martin et al., 2014),
better discriminating ERP latency differences (Zoumpoulaki
et al., 2015), to distinguish movement-related to stimulus-related
activity (Perez et al., 2013) and modeling dynamic task-based
functional connectivity in an EEG task (Karamzadeh et al., 2013),
to name some. We hoped to explore new uses of the technique,
applying it to simultaneously recorded EEG-fMRI data set, to find
how it may be useful in capturing oscillatory properties of the
data (for the EEG data), and how it might compare or stand next
to other data analysis approaches on the same data sets, which
relevant to our interests in the relationships between neural
dynamics and oscillations, criticality, EEG microstates and fMRI
networks. In particular, we were interested in how well DTW can
be used to find how much oscillatory activity (e.g., sinusoidal)
there is at specific frequencies, as opposed to the discrete fourier
transform’s (DFT) non-specificity for oscillatory contribution to
the derived spectrum—since DFT has no choice but to give you
activity at a given frequency even if there is no specific oscillation
or activity at that frequency, due to the nature of the sinusoidal
(sine and cosine) basis functions used in FFT-like methods. By
running what we call DTW-spectrum (see Methods Section),
we find a more interpretable alternative to a DFT-spectrum that
correlates strongly with the DFT but seems to capture somewhat
different dynamics (which are in fact more predictive of the SSE
as well as a few of the other measures). We believe this to be
relevant as many papers and researchers make claims of band
power being “oscillatory activity” (Klimesch et al., 1997; Kelly,
2006; Osipova et al., 2006; Klimesch et al., 2007; Meltzer et al.,
2007). While the two may be highly correlated in most cases
and there is causality in one direction (higher amplitude and
more frequently observed oscillations lead to greater band power
in the respective frequency band) the reverse direction is not
causal.

We give here a very brief outline of the general DTWmethod,
which is the backbone of the techniques we explore in this work.
DTW is a highly flexible DP-based method for comparing the
dissimilarity (equivalently, the similarity) between two signals.
The flexibility comes from the fact that any discretized signals
can be used, as well as very long sequences. The use of dynamic
programming here means that the DTW values in the 2D matrix
can be defined and computed recursively and fairly efficiently
[O(n2) in the worst case, though in practice it is much faster]. By
caching of previously computed results in the matrix in this DP-
way, in practice this leads to efficient quasi-linear or amortized
linear (Salvador and Chan, 2007; Ding et al., 2008b) to quadratic
(asymptotically) time algorithms for solving every matrix cell.
Once the matrix cells are filled, the top right corner contains
the overall DTW distance between the two time series, and the
minimum alignment or warp path is found by starting at that
top right corner and greedily going left, down, or left-down
diagonally, until the bottom left corner of the matrix is reached—
i.e., at each step taking the lowest possible cost. The warp path is
not guaranteed to be unique. The warp path contains all details
of the warping process, including phase shifts, stretching and
squeezing of the time series, relative to each other, as inferred by
the DTW algorithm. Figure 1 below (taken from Rakthanmanon
et al., 2012) illustrates how the method works, with two similar
but non-identical time series that are mostly just phase-shifted
versions relative to each other.

We chose to use DTW as a similarity measure on which to
base a more interpretable spectrum calculation as it is among
the best distance/similarity measures in existence. It is fast with
an amortized linear time running cost (Ding et al., 2008b).
Ding et al. (2008b) point out in their thorough investigation
of various similarity measures on different data set sizes and
types that: “there is no evidence of any distance measure that is
systematically better than DTW in general. Furthermore, there is
at best very scant evidence that there is any distance measure that
is systematically better than DTW in on particular problems (say,
just ECG data, or just noisy data).”

In order to test how well the DTW-based methods work for
neuroscientific questions, we assessed them against benchmark
measures of neural dynamics (that we and others have been using
to study a range of neuroscience problems). The DTW-spectrum
that we compute gives us a DFT-like spectrum that may be more
directly related to the oscillatory/sinusoidal nature of the signal
than the DFT spectrum, which can give high values in certain
frequency bins even if there is no oscillatory/sinusoidal activity at
that frequency. Given that neural dynamics change substantially
with cognitive state, we applied the DTW approaches in two
different cognitive states (a active, externally task-focused state
and a more passive, “resting” state)—we found differences in the
predictability of data in the two cognitive states that fits with
previous results and with our hypothesis of higher predictability
and more ordered neural dynamics during a task-focused state.

We compared the DTW measures (and a more typical DFT
approach) to our benchmark measures of neural dynamics
including: the predictability of the EEG signal (SSE from aMLP),
EEG microstates, EEG cascades (or “avalanches”), as well as
simultaneously acquired FMRI BOLD signal. The predictability
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FIGURE 1 | The Figure illustrates how the DTW method works. Panel (A) shows two time series, that are highly similar, but the blue one is lagging behind the

blue one (has a negative phase relative to the blue one). While ED would give a fairly high alignment cost here, DTW will find a fairly low cost, as they are highly similar

when the phase shift is accounted for. Panel (B) shows a DP matrix for two similar but slightly varying signals. The (possibly non-unique) optimal alignment is found by

finding the minimum cost path from the top right corner to the bottom left, after the DP matrix is calculated. Note that while no warping window is displayed here, we

can place a diagonal below and above the main diagonal in the matrix as constraints for the warping (e.g., Sakoe-Chiba band). This not only speeds up the alignment

(often by a factor of 10 or more), but tends to lead to more accurate alignment results as well. We used such a constraint band for these two reasons. Panel (B) is

taken from Wong et al. (2015).

of neural signals is an important aspect of neural dynamics
and varies with cognitive state—therefore, we sought to more
directly quantify this by using a multi-layer perceptron (MLP)
to come up with a measure of prediction error. Our working
hypothesis was that prediction error, as quantified by the sum
squared error (SSE) would be better predicted by the DTW
than DFT and that this would be a stronger effect in task
than at rest (van den Heuvel et al., 2008; Deco and Jirsa,
2012; Hellyer et al., 2014; Fagerholm et al., 2015). In a similar
vein, we also sought to investigate neuronal cascades, which
have been used to characterize dynamical regimes such as self-
organized criticality (Kinouchi and Copelli, 2006; Shew et al.,
2009; Deco and Jirsa, 2012; Fagerholm et al., 2015). We used
EEG microstates as microstates have been shown to be powerful
and simple multivariate approach to looking at EEG data.
Microstate duration or the specific microstate just prior to
a trial during tasks correlates with EEG alpha band power,
fMRI BOLD network properties and activity, ERP characteristics,
behavioral measures (e.g., reaction time and miss/accuracy rate),
as well as neuropathological conditions such as Alzheimer’s or
Schizophrenia (Lehmann, 1989; Lehmann et al., 1994, 2005;
Fingelkurts, 2006; Jann et al., 2009; Britz et al., 2010; Musso et al.,
2010; Van de Ville et al., 2010), depending on the exact microstate
(type) or length. They have been called the “atoms of thought”
[as EEGmicrostates seem to reflect both rest and task-dependent
neural dynamics on longer timescales (tens to hundreds of
milliseconds)] (Michel et al., 2009), reflecting the discrete nature
of cognitive processing and current state-dependent response to
external events. Studying the relationship between the EEG and

FMRI/BOLD is an increasingly active area of research, therefore,
we also sought to see how well DTW (and the other measures)
would relate to simultaneously acquired BOLD.

METHODS

Figure 2 below shows a high level overview of the methods used
and how they relate to each other.

The whole preprocessing, processing and analysis pipeline is
depicted graphically in Figures 2, 3. Each step is described in
more detail in its respective section below, but we outline the
pipeline here briefly. We took EEG data from a simultaneous
EEG-fMRI study, for which we had corresponding fMRI BOLD
data recorded simultaneously. This is a dataset that has been used
and published in previous work of ours (Fagerholm et al., 2015).
The data involves a Choice Reaction Time (CRT) task with 5
alternating task and rest blocks from 15 subjects. For the task
portion of this modeling and analysis study, we used the first
task block for training the neural network (described in detail
below) and the rest for testing (roughly 80–20 split for training
and testing). For the rest blocks, we used the second block for
training (as it was slightly longer than the other rest blocks and
was therefore different to them), and the rest of them for testing.

To summarize the methods briefly: we computed the DTW-
spectrum between 8 and 13Hz, out of which we took the standard
deviation of it to condense the vector into a scalar—one scalar
value for each trial, so that we can more directly compare this
value with the SSE, DFT-spectrum’s standard deviation, and
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FIGURE 2 | Overview of the steps taken in this modeling/analysis work. The blue colored boxes show measures/results related to the EEG part of the analysis,

while the yellow-orange part is for the fMRI BOLD part. The EEG measures are not all single measures—there is one SSE and one AVA measure, as well as DTW and

DFT, but 2 MS-related measures. These measures are fed as they are into separate GLMs, to try to predict each of the 5 main variables (excluding the mean GFP

variable that is related to the MS), using each of the others. The EEG measures were convolved with a standard double-gamma hrf before being fed into the

BOLD-GLM to try to predict the dual regression stage 1 time courses (Beckmann et al., 2009).

FIGURE 3 | Panel (A; top left) shows the training error curve for the MLP. We used only networks that went below a certain training set SSE. Panel (B) (top

right) shows the SSE on the y-axis plotted against the trial number on the x-axis. Note the erratic sudden spike in SSE in the last block for this run of the modeling on

this subject. To reduce the effect of hard-to-predict variable model-dependent effects that could arise, we averaged our results across 10 runs for task and rest

predictions both. Panels (C,D) (bottom left and bottom right, respectively) show the actual EEG signal (down sampled from raw) in blue and the prediction of it in red

for two different trials of two different subjects. Note that prediction follows the general trend well.

other trial-wise values. We took the standard deviation for both
the DTW and DFT in only the alpha band range (i.e., 8–13 Hz).
Where we refer to DTW, we mean the standard deviation of the

DTW computed for the alpha band of the pre-trial data, and
where we refer to DFT, we really mean the standard deviation
of the DFT as well, unless specifically stated otherwise. We also
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computed 2 EEG microstate measures: the microstate length just
prior to the trial (i.e., the length of the microstate at trial time).
We also computed the mean global field power (GFP) of the
microstate for the trial, as well as EEG avalanche/cascade length
for the trial/just prior to the trial. We computed the mean GFP as
the GFP is ameasure of the spatial standard deviation of electrical
scalp potential and we thought this could be another meaningful
measure alongside the microstate length prior to the trial.

We ran the whole pipeline and modeling 20 times, averaging
the relevant results from each run, mainly to minimize
randomization-related noise due to model training. We note that
we validated the results by running a few 20-repetition averages
according to the entire pipeline here, but, unless otherwise noted,
report only details and results from a single representative 20-rep
average run of the pipeline and modeling.

Preprocessing
EEG Data Preprocessing
The starting EEG data was the same data used in Fagerholm et al.
(2015). MRI induced and amplified artifacts (gradient switching,
RF flip, cardioballistic) were removed using the BrainVision
Analyzer 2 software from Brain Products GmbH as described in
our previous paper. So that we remove some reference-specific
bias we re-referenced the data to an average reference. Next,
because there were some strong artifacts remaining in the data
that highly affected training and predictions with the MLP as
well as the computation of EEGmicrostates, we ran an additional
cleaning step using the Artifact Subspace Reconstruction (ASR)
method (Mullen et al., 2013), which removes and reconstructs
sections of data that are deemed “bad.” The clean_rawdata tool
that implements ASR in EEGLAB also removes channels deemed
too noisy during ASR. Finally, to speed up and improve training
and prediction we down sampled the resulting ASR-cleaned data
to a sample rate of 50 Hz to speed up training and analysis.

Measures and Analysis
MLP EEG Prediction
We used a multilayer perceptron (MLP) to predict EEG time
courses because theMLPmodel is relatively simple to implement,
train, and test while still being a powerful non-linear model. We
note that other statistical approaches could also be applied (and
may be more successful), e.g., auto-regressive models. However,
we are not interested in optimizing predictive accuracy, per se, but
rather the relative associations to different measures (e.g., DTW
and DFT) and different cognitive states.

The neural net is a single hidden layer multi layered
perceptron (MLP) as implemented by the Rasmus MATLAB
toolbox (Palm, 2012) using tanh-based activations, no
regularization, a single hidden layer of the same size as the
input layer and trained using gradient descent in batch mode
(batch size = 50). In order to improve prediction, we fed a block
of points to the MLP (40 lagged points, for a total of 41 data
points—the time point just before the time point to be predicted,
plus the 40 points prior to that one). The MLP training ends up
placing greater weighting on more recent time points and less
on ones from further in the past as a result of the training, but
the lagged points increase the prediction accuracy. We took the

MLP prediction errors, as quantified by the SSE for each trial,
and tried to predict these trial-wise SSEs using the standard
deviation of the DFT power per trial (from here on referred to
simply as “DFT”), the standard deviation of the DTW-spectrum
(from here on referred to only as “DTW”) and EEG-based
avalanches/cascades as well as EEG microstate-derived measures
of the trial-preceding microstate length and trial-preceding mean
GFP power. We show an example of how we initially confirmed
whether the training was working in the Figure 4. We set a
fairly strict threshold for the training error and re-trained a new
neural net if the training error was above this training set error
threshold. We also visually confirmed (as shown in Figure 3)
that the predicted and the actual EEG signals match well enough.

We used ∼1 min long blocks of task or rest data to train and
test a multi-layered (1 or 2 hidden layers) MLP for predicting
the next time point separately in task and rest blocks (i.e.,
different models were trained for task and for rest). We trained
a new model for each individual for each model run. The MLP
was trained by being provided a block of points (ultimately 50
points) prior to each trial, frommultiple channels simultaneously
(ultimately 1 channel was used for the group-level results
presented, as the prediction becomes noisier with more included
channels), to predict up to n points in the future. However,
though we could predict significantly well a few points ahead
even with multiple channels with 40 lagged points, we used only
1 channel to keep the prediction errors lower and cleaner and
as the focus is not on predicting the EEG time series as far into
the future as possible but to look at periods of predictability
(although we note that it also predicts above change with time
points beyond t+ 1, with worsening error performance). A single
channel’s prediction and dynamics was deemed sufficient for this.

Training
The training data consisted of the following: for each trial within
the task blocks we used data 1 s prior to the trial. Starting from
trial time—1 s to the trial point, the points were used to predict
the next time point right after the points used to predict the
predicted point. For rest blocks, there was still a “trial point”
recorded and used for convenience, though it was a rest trial and
no stimulus was actually shown to the subjects.

Model Repetition
The MLP parameter space (number of hidden layers, number of
nodes per layer, L2 regularization penalty, etc.) was determined
manually in a pilot phase on a subset of the data, prior to
applying to the full data in the automated pipeline. To prevent
local-minima adversely affecting the results, we applied a testing-
set error threshold to the training error during the backprop
training. If the error was greater than the threshold, we retrained
a new model and repeated this until a sub-threshold model was
found. Our focus was not to validate the generalizability of the
MLP; therefore, we did not perform full model cross validation
but did repeat the modeling and GLMs each 10 times, averaging
the resulting beta coefficients where appropriate.

We re-ran the whole pipeline multiple times with a number
of different parameter choices. Presented are representative
results from an averaging of 20 runs, averaging across results
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FIGURE 4 | The Figure demonstrates the computation of the DTW-spectrum. We generate progressively higher frequency sine waves in a loop, and for each

one run DTW of the EEG pre-trial data against that particular sine wave. The resulting distance measure is the distance/dissimilarity between the EEG pre-trial data for

that trial and that frequency. If we plot the distance/dissimilarity measures derived for each sine frequency comparison, we get a plot like the one on the bottom-right,

which shows what we call the DTW-spectrum. It is almost a horizontal reflection of a DFT-spectrum but appears to capture slightly different (more specific) dynamics.

For the statistical GLM modeling, we took the standard deviation of the DTW-spectrum and DFT-spectrum to condense each spectrum to a single value for each trial.

to minimize noise due to randomization steps inherent in the
MLP training as well as the k-means clustering used for the
microstates.

DTW Measures
Next we describe exactly the DTW-based measure that were
computed and used.

The DTW-spectrum is computed as illustrated and described
in Figure 5. In short, it is a direct computation of how similar
the signal is to sines at different frequencies. Unsurprisingly,
this resulted in a spectrum that highly (inversely) correlated
with a DFT spectrum computed as usual. In other words, the
stronger the value at a given frequency bin of the DFT/FFT,
the smaller the value of the DTW-sine value at that frequency
bin (since the DTW-sine is measuring dissimilarity). Though the
DFT/FFT measures similarity and the DTW-sine dissimilarity,
they are expected to provide highly inversely correlated results
(just mutually inverted spectra). However, the two methods do
not produce identical results. The DFT/FFT is not and cannot
guarantee that high values at a given frequency can be interpreted
as suggesting high amounts of activity at that frequency. In
contrast, the DTW-sine spectrum is more directly interpretable

due to the different nature of the method, where there is a direct
similarity comparison between a sine wave at a given frequency
and a small stretch of the (EEG) signal.

To compute a truer spectrum (compared to DFT’s output)
of the data, we run DTW against sine waves in a range of
frequencies, of the same length as the data that is fed in,
with linear step size for the frequency change. This gives us a
distancemeasure of the pre-trial data against each sine frequency.
Figure 4 above below illustrates this approach. The result from
this algorithm is a vector of DTW distances for each sine
frequency, with the resulting values and plot being the DTW-
spectrum. It is strongly inverse correlated to DFT, but not
identical (see Figure 5 and results). We also tried sawtooth
waves at matching frequencies but the results were not nearly
as predictive or clear as with sines and all further results are
discussed only in reference to DTW-sine-spectrum. We tried a
range of warping window sizes but ultimately used a warping
window of size 20 for DTW-spectrum calculation. In order to
reduce the DFT-spectrum to a single value for each trial (to
be compared to and useable alongside the other measures),
we computed the standard deviation of the spectrum for use
in the statistical modeling (GLMs) in the next part. This of
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FIGURE 5 | A heatmap showing FDR-corrected group-level p-values from the t-tests on the GLM-derived beta coefficients of the task blocks. The

hotter the color (i.e., the closer to white) the closer the value is to 0. The diagonals are all set to 0, for clarity.

course removes a lot of potentially interesting details but makes
modeling easier and still retains some of the relevant dynamics.
Ideally, we would have done more sophisticated modeling taking
the exact spectra and entire distributions into account.

Microstates
Microstates were computed in a standard way (Michel et al., 2009;
Van de Ville et al., 2010) by first computing the Global Field
Potential (GFP) across all channels (post extra cleaning steps that
we applied to the EEG), followed by GFP max peak detection,
followed by clustering of these max peak positions (for which we
used K-means with n = 12). We fed into the K-means the EEG
data at the peaks of the GFP, as this is where the maximal signal-
to-noise ratio tends to be (Van de Ville et al., 2010). We then had
a labeled GFP-peak time course for each individual. We took the
scalp maps (EEG values at all electrodes) at each of these GFP-
max positions, concatenated across all subjects to form a group-
level map set, and did K-means clustering on this to determine
the most consistent maps on a group-level (n = 12 maps). Once
these 12 maps were found, we then went back to each subject
and compared each time point of the GFP/EEG time course with
these 12 maps, assigning at each EEG time point the map that
was closest to the EEG topography at that point. From this we
extracted the microstate immediately preceding a trial (whether
in rest or task blocks). We then counted how many times points
(or the length) of this microstate immediately prior to the trial.
We also looked at the mean GFP power of this microstate prior
to the trial, as a measure of the mean spatial standard deviation

during/just prior to the trial. Both of these measures are used in
every GLM.

Model Averaging
For both task and rest blocks, we collected all measures across the
20 repetitions of the model creation and prediction, averaging
the results of those. We then used these 20-rep-averaged model
values in the GLMs.

Avalanche/Cascade
Avalanches, or cascades, were computed as described in detail in
Meisel et al. (2013) and Fagerholm et al. (2015). In brief, the z-
transformed channel data is thresholded at a standard deviation
of 3.2, 3.5, or 3.7, depending on the number of avalanches
detected using the point process based detection and a bin width
of 2. We selected these SD thresholds in order to have the
number of avalanches be roughly equal to the number of trials, to
avoid losing a great deal of information when subsequently down
sampling to fully match to the number of trials (n= 112).

fMRI Data Preprocessing
The same fMRI preprocessed data was used as in Fagerholm
et al. (2015). We ran this preprocessed data through stage 1 of
FSL’s dual regression (Beckmann et al., 2009) using the Smith
IC20 ICA maps (Smith et al., 2009). These ICA maps are spatial
maps representing statistically related signals across brain regions
(as imaged and recorded using fMRI) during rest, which are
known to be relevant (appear to active or deactivate—or generally
correlate) for both task and resting cognitive conditions. These
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are commonly used fMRI maps. The FSL toolkit’s dual regression
stage 1 then extracts subject-specific time courses for each of
these fMRI ICA spatial maps. This allows us to look at subject-
specific correlations between activity (in time/trials) in these
spatial maps and other variables of interest (in time/trials).

RESULTS

We compared the DTW measures (and more typical DFT
approaches) to our benchmark measures of neural dynamics
including: the predictability of the EEG signal (SSE from aMLP);
EEG microstates, EEG cascades (or “avalanches”), as well as
simultaneously acquired FMRI BOLD signal. Below, we examine
each of these relationships in turn comparing both DTW and
DFT with the benchmark measures in the two cognitive states
(as well as compare the benchmark measures with each other).

We used a data set where we had alternating blocks of task
periods and rest periods in order to be able to make a cognitively
meaningful comparison and application of the methods here.
As discussed previously, we wanted to see whether we could
confirm and add additional evidence to the prevailing view that
resting states are more variable and less predictable than task
states. We present the results for task followed by rest group
level results for each variable of interest. For each, we performed
FDR-correction on p-values from a standard one-sample t-test
on the GLM beta coefficients, as well as permutation testing on
those post-GLM (and pre-FDR) p-values. We show both results
in separate heat maps, for both task and rest. In Figures 5, 6 we
show FDR-corrected and permutation-testing-derived p-values,
respectively, for prediction on the task blocks. Figures 7, 8 show
the FDR-corrected and permutation-testing-derived p-values,

respectively, for prediction on the rest blocks during the task.
The Figures are presented in the form of heat maps that show
brighter/hotter colors for lower p-values. More detailed listing
of p-values and results follows the heat map Figures, where in
each case we first mention specifics of task, followed by specific
results for the rest blocks. In each sub-section of specific results,
we follow the ordering of the heat map variables—reporting
results for DTW, DFT, SSE, MS, GFP, and AVA, in that order. All
group-level results are FDR-corrected with alpha= 0.05. We also
note that all p-values reported, unless otherwise stated, are either
FDR-corrected or permutation-tested p-values on a group-level.

DTW-Spectrum vs. DFT-Spectrum
Overview
We start by comparing in some more detail the DTW and DFT
spectra, as these are (a) conceptually the most similar to each
other and (b) DFT is the best understood andmost-widely known
from the methods we apply here. We remind here that the DTW
spectrum here is a measure of how similar the EEG signal is to
various sinusoids (as that is how the spectrum is computed). In
Figure 6, we show a DFT spectrum and the corresponding DTW
spectrum, for a range of frequencies between 8 and 13 Hz for
one subject in three different trials (subject level data within a
single model run).We observed this correlation between the DFT
and DTW spectra in all subjects during both pre task and pre
rest blocks, though resting blocks showed a (very slightly) weaker
correlation.

Figure 9 shows a specific subject’s comparison between DFT-
spectrum and DTW-spectrum. It shows that one is roughly the
inverted version of the other, but the two are not identical.

FIGURE 6 | A heatmap showing permutation tested group-level p-values from the t-tests on the GLM-derived beta coefficients of the task blocks. The

hotter the color (i.e., the closer to white) the closer the value is to 0. The diagonals are all set to 0, for clarity.
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FIGURE 7 | A heatmap showing FDR-corrected group-level p-values from the t-tests on the GLM-derived beta coefficients of the rest blocks. The

hotter the color (i.e., the closer to white) the closer the value is to 0. The diagonals are all set to 0, for clarity.

FIGURE 8 | A heatmap showing permutation tested group-level p-values from the t-tests on the GLM-derived beta coefficients of the task blocks. The

hotter the color (i.e., the closer to white) the closer the value is to 0. The diagonals are all set to 0, for clarity

DTW GLM Results
As expected, on a group-level, for the task condition, we find
that the DTW is best predicted by the DFT (FDR-corrected p <

10−10 and permutation p = 0.0002), though the SSE contributes
additional explanatory power (FDR p < 0.0003 and permutation
p = 0.0006). We note that the permutation testing suggests that
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FIGURE 9 | In (A,B) here, we show the inverted nature of the DTW spectrum compared to the DFT spectrum for two different trials within a single

subject. We see the same pattern/behavior of the DTW vs. DFT in all trials in all subjects that we have looked at. Panels (A,B) show on the x-axis the frequency and

on the y-axis the DTW distance or DFT power at that frequency bin. If we take the DTW-spectrum frequency bin with the lowest distance (best matching one) and the

highest power DFT frequency bin (best matching one) and plot those for all trials, in one subject, we get (C). Note that while the best matching frequencies nicely align

along the diagonal (as they should if we get the same or nearly the same results with the DTW-spectrum and the DFT-spectrum), there are quite a few differences as

well. We suggest that these differences are likely meaningful and useable in prediction, as we have done in this work.

the variance in DTW explained by the DFT and SSE may actually
be of similar importance.

For the rest predictions, we find a similar pattern, with the
DFT contributing possibly marginally more toward explaining
the variability in the DTW (FDR p < 10−13 and permutation p
= 0.0002) and (p < 10−6, respectively), than the SSE (FDR p <

10−6 and permutation p= 0.0002).
We note here that the DTW seems predictable in no small

part also by the SSE, as opposed to our original expectation
that the DFT would be sufficient (as they are highly inversely
correlated). Since the GLM is taking into account all variables at
the same time, this implies that both variables are adding useful
model-explained variance—and indeed, similar amounts, toward
modeling the DTW variance.

DFT GLM Results
For the task block predictions here, we find the same pattern
as above, with the DTW and DFT. In other words, measure

most predictive of the DFT is the DTW (FDR p < 10−10 and
permutation p ∼ 0), though the SSE seems to explain some
additional variance not accounted for by the DTW variable (FDR
p < 0.009 and permutation p= 0.0092).

For the rest block predictions, we find that the only variable
predictive of the DFT is the DTW (p < 10−11 for FDR and p∼ 0
for the permutation test results).

We point out the main result here is not so much that the
DTW is predictive of the DFT (which it is), but that the DTW
is more predictive of the DFT (lower p-values from GLM) than
the DFT is of the DTW. We also note that the task predictors
are stronger than the rest predictors. We find both effects to be
mostly consistent across repeated 20-model-averagings that we
performed to validate these results.

SSE GLM Results
For task block predictions, we find that both the DTW and the
DFT are the sole predictors of SSE (p = 0.0011 and p = 0.0013
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for the FDR and p = 0.0004 and p = 0.0006 for the permutation
test results). Note that the DTW is slightly more predictive than
the DFT.

For the rest block predictions, we find that the only variable
predictive of SSE is DTW (p < 10−8 for FDR and p ∼ 0 for the
permutation test results).

We find that the DTW outperforms the DFT in predicting
SSE, in both task and rest conditions. Also, we find a higher
predictability (across all variables) in the task blocks than in the
rest blocks of the task.

Microstate Length GLM Results
For task predictions, we find that the only weak predictor of
the microstate length of the trial is the mean GFP power (FDR-
corrected p < 0.05 and permutation p= 0.0646).

In the rest predictions, we find a marginally stronger
prediction of the GFP to the microstate length (FDR p = 0.033
and permutation p= 0.0468).

It is almost certain that this difference in predictability
between rest and task here is due to noise and randomness, rather
than a real effect between task and block states, as we found
variation by running multiple 20-run averages and we found at
times the task predictability to be higher (i.e., lower p-values for
the task case).

Mean Global Field Power GLM Results
Interestingly, we find a much stronger effect in the other
direction, with the microstate length being a significantly
powerful predictor of the mean GFP power (FDR p = 0.00028
and permutation p= 0.0002), in the task condition.

In the rest condition, we find a similarly more powerful effect
in this direction between themeanGFP and themicrostate length
(FDR p= 0.0052 and permutation p= 0.007).

In this instance, we found a regular higher predictability
(lower p-values) in the task condition than in the rest condition,
also in other 20-run averages that we looked at.

Avalanche Length GLM Results
We report no significant and consistent predictors of the
avalanche length immediately prior to the trial from any of the
measures we used here, but some runs, and on some subjects,
we found significant effects of microstate length on avalanche
length, and vice versa. This effect couldmake biological sense and
is potentially interesting, but we do not discuss it further here as it
was not consistently observed and in any case not on the 20-run
average results that we report here.

Bold GLM Results
There were very few to no consistently strong effects that remain
on a group-level after averaging results from the 20 runs, as
presented here. There were stronger individual effects or group
effects with fewer averaging, however these were not always
consistent across validation repetitions of the 20-run averaging
that we discuss here. Any consistent (but weak) results may or
may not have potential significance.

Nevertheless, for completeness, we summarize all potentially
useful and interesting results that we found. The most consistent

effects tended to be the microstate length or mean GFP. For
example, in the 20-run average results we are reporting and
discussing here, for the RSN14 GLM (which Smith et al., 2009)
claim is biologically plausible as a fairly deep thalamus/caudate
region (butmay also be artifactual due to blood vessels), themean
GFP power has an FDR p= 0.06322 and permutation p= 0.0698
in the task condition.

Though we generally find higher predictability (especially in
the EEG data) in task than in rest blocks, we find the opposite
here. This is probably due to the nature of the resting state
networks extracted from the BOLD data. Because these were
taken during and apply especially to RSNs, they are more likely
to be expressed during the resting blocks, as we find. We find few
consistently very strong effects, but there are multiple weak but
consistent effects that we’ve found. For the RSN12 GLMwe found
DTW to be slightly explanatory of the variance of the RSN (FDR
p = 0.0996, permutation p = 0.141), RSN17 has the avalanche
length as the strongest and only noticeable regressor (FDR p =

0.02055, permutation p = 0.032). RSN12 is not identifiable to a
specific functional network but may be a combination of multiple
biologically plausible functional networks (Smith et al., 2009) but
RSN17 is of clearly blood vessel-related artifactual origin.

DISCUSSION

DTW is a powerful, flexible domain-general method for
comparing sequences that has considerable potential for better
characterizing neural signals. The purpose of this study was
to see whether we could use DTW in novel ways to study
brain dynamics, measured with EEG and FMRI. We reanalyzed
an existing simultaneous and combined EEG-fMRI dataset
(Fagerholm et al., 2015) to explore how useful DTW is at
predicting a range of measures describing neural dynamics and
how they are affected by cognitive state: including standard DFT
approaches, the predictability of the EEG signal based on neural
networks, EEG microstates, point-process neuronal avalanches,
simultaneously acquired BOLD signal. We showed that DTW is
generally the best predictor of other measures than any other
(with the exception of avalanche length and microstates which
weakly predicted each other in some cases). The DTW was also
useful at comparing rest with active cognitive task states, where
(as we predicted based on Fagerholm et al., 2015) DTW was a
better predictor during task than rest, though other predictors
displayed the same pattern of higher task predictability than rest
predictability.

The DTW-spectrum resulted in a spectrum highly correlated
to a standard DFT-computed spectrum but it also demonstrated
additional variability in the data not accounted for by the DFT.
This suggests that DTW may be a more useful and a more
interpretable spectrum in the sense of how DFT is typically
used—i.e., showing how much of a given frequency there is in a
signal. The DTW-spectrum is more interpretable directly in this
sense, compared to the DFT signal. The DTW measure seemed
to more consistently and more strongly predict other variables.

We also add evidence to and confirm our initial general
hypothesis that task states are more predictable and predictive
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contrasted to resting states using DTW measures. Though some
variables of interest (like the DTW-spectrum andDFT-spectrum)
are mutually predictive of each other strongly in both rest and
task conditions, there are stronger effects in the task condition.

We also noted an interesting effect that we did not specifically
expect or look for, correlating the trial/pre-trial microstate length
and the trial/pre-trial mean GFP. In particular, we noted that
the microstate length consistently and strongly predicted the
mean GFP. Because this was not the focus of the study, we
only suggest in passing that this could be because the longer the
microstate is, the more likely it is to shift to another microstate,
as microstates do not tend to persist for more than about 100 ms
on average. Perhaps the longer the brain is in a certain global state
(characterized by a givenmicrostate), themore it attempts to shift
to another microstate or global state, characterized by increased
GFP and changing topography.

It is well recognized that noise has a substantial effect on
MLP model training and may have contributed to some of the
spurious associations. On the other hand, most of the strong
associations are so far beyond chance (e.g., p < 10−10) that this is
certainly not causing all associations observed. Therefore, having
a cleaner dataset (not acquired simultaneously with FMRI) would
help in decreasing the likelihood of noise driving any association.
We would like to repeat and re-run this modeling and analysis
pipeline on cleaner EEG-fMRI data sets as well as explore the
use of the DTW-spectrum and other DTW-based techniques
on other types of data sets and problems as well, as the DTW-
spectrum approach is likely to prove useful beyond the uses
explored here.

We conclude by remarking that DTW is an underexplored
method for neuroscientific investigations which can be flexibly
used not only to assess sequence similarity (and e.g., subsequent
clustering of those sequences), as originally developed but
also to aid characterizing the frequency spectrum of neural
signals. We speculate that this marginally but significantly higher
predictive power of the DTW-spectrum measure may be due
to its ability to capture more oscillatory/sinusoidal dynamics
compared to a DFT-type typical spectrum. Whether the
differences between the DTW-spectrum and the corresponding
DFT spectrum are indeed differences of oscillation vs. non-
oscillation dynamics differentially captured by the two methods
remains an open question, but one worth investigating further,
as an affirmative answer here would suggest that the method
may be highly applicable to the study of all sorts of oscillatory
systems.
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