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Abstract
The traditional Watson-Crick base pairs in DNA may occasionally adopt a Hoogsteen con-

formation, with a different organization of hydrogen bonds. Previous crystal structures have

shown that the Hoogsteen conformation is favored in alternating AT sequences of DNA.

Here we present new data for a different sequence, d(ATTAAT)2, which is also found in the

Hoogsteen conformation. Thus we demonstrate that other all-AT sequences of DNA with a

different sequence may be found in the Hoogsteen conformation. We conclude that any all-

AT sequence might acquire this conformation under appropriate conditions. We also com-

pare the detailed features of DNA in either the Hoogsteen or Watson-Crick conformations.

Introduction
The DNA double helix is usually stabilized by Watson-Crick (W-C) hydrogen bonds between
the bases. Occasionally a different type of structure is found: the adenine bases may rotate 180°
and form a different set of hydrogen bonds, first demonstrated by Hoogsteen using X-ray crys-
tallography[1]. Hoogsteen hydrogen bonds may also occur in C�G base pairs, but they are less
frequently found, since they require protonation of cytosine. In general Hoogsteen hydrogen
bonds are only observed at a low frequency as transient structures in canonical duplex DNA
[2]. They have been also described in the Y family of polymerases [3], in particular in the inter-
action of polymerase ι with DNA [4–6], a polymerase which is able to replicate DNA through
a lesion.

When a double helix is built with A�T Hoogsteen hydrogen bonds, an antiparallel double
helix is formed, which has an appearance very similar to the standard B form of DNA [7]. The
main intrinsic change is the rotation of the glycosidic bond by 180°, so that the nucleoside con-
formation of adenine changes from anti to syn. As a result a new set of hydrogen bonds is
formed: the N3 atom of adenine is moved from the minor to the major groove. The minor
groove is narrower and looses hydrogen bonding capacity. A clear signature of the Hoogsteen
form is the 2 Å shortening of the sugar C1’-C1’ distances across each base pair, which is clearly
apparent in the structures determined by X-ray crystallography.

In this paper we present a continuous Hoogsteen duplex with a non-alternating sequence,
d(ATTAAT), which contains AA/TT base steps. In previous crystallographic studies we only
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found the Hoogsteen conformation in alternating AT DNA sequences [7–9], whereas most
mixed sequence all-AT DNAs only gave W-C structures [10]. Our results indicate that it
should be possible to find long stretches of all-AT DNA in the Hoogsteen conformation under
appropriate conditions.

The availability of these new data, together with those previously available, allows us to
study in more detail the structural features of Hoogsteen DNA, which may help to determine
its eventual biological role. It is known that AT base pairs predominate in the non-coding re-
gions of the genome [11]. Thus Hoogsteen DNAmay play a structural role in the genome, a
question which we will analyze in this paper. We will also compare in detail the main features
of all-AT DNA in either the Hoogsteen or W-C conformations.

Materials and Methods
The oligonucleotide d(ATTAAT) was synthesized at the Pasteur Institute as the ammonium
salt on an automatic synthesizer by the phosphoramidite method. It was purified by gel filtra-
tion and reverse–phase HPLC.

Hexagonal prism shaped crystals of the oligonucleotide were grown by vapor diffusion at
286 K, using the hanging-drop method. The concentrations in the drop were as follow: 0.8mM
oligonucleotide, 20mM sodium cacodylate buffer (pH = 6.5), 3mM spermine, 100mM
N-ethylaniline hydrochloride and 5% methyl-pentanediol (MPD), equilibrated against a reser-
voir with 30%MPD. Crystals appeared after 2 months.

Crystals were flash-cooled in liquid nitrogen (100K) and stored until data collection. The
MPD in the crystallization medium works as a cryoprotectant.

X ray diffraction data were collected in the BM16 line at ESRF, with a resolution up to a 3 Å,
at 100K, λ = 0.9761 Å and φ = 1.5°. Data processing, indexing and scaling was done with the
programs XDS and Xscale [12]. The structure was solved by molecular replacement with the
Phaser program [13] with two and a half DNA duplexes in the asymmetric unit. Restrained
maximum likelihood refinement was done with the program Refmac [14]. Final crystallo-
graphic data is reported in Table 1. Details of Structure resolution and Refinement are given in
the Supporting Information. Coordinates were deposited in the PDB data file, code 2QS6.

Results

Structural features of d(ATTAAT)
The presence of N-ethyl-aniline hydrochloride in the crystallization conditions was suggested
by the observation that the Hoogsteen duplexes previously studied [7–9] had thymine bases in
the minor groove: the hydrophobic ethyl-aniline might play a similar role. However we did not
detect any trace of ethyl-aniline in the minor groove. Also crystallization trials with this solvent
and other all-AT DNA sequences did not yield any useful crystals.

In the crystal the molecules are organized as columns of stacked duplexes, which are packed
in a pseudo-hexagonal lattice. Attempts to solve the structure in the W-C conformation were
not successful, as it is described in the Supporting Information. Views of the structure are pre-
sented in Fig. 1 and in the Supporting Information (see S1 Fig.). The electron density map of
base pairs could be matched with the bases in the Hoogsteen conformation. Furthermore the
average distance between the sugar C1’ atoms was short as expected. One of the most signifi-
cant differences between W-C and Hoogsteen base pairs is precisely the shorter value of the
C1’-C1’ distance in each base pair, as shown in Table 2.

AT-Rich DNA in Hoogsteen Conformation
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Internal features of Hoogsteen duplexes
The main features of the Hoogsteen conformation were already analyzed in detail in a previous
publication [7]. It was found that the overall features of the double helix are strikingly similar in
both, in spite of the shorter C1’-C1’ distance in the Hoogsteen conformation. The minor groove
is narrow, but similar to all-ATW-C duplexes, due to a different position of the helical axis.

The availability of the new Hoogsteen structure for d(ATTAAT)2, together with other com-
plete [7–9] or partial [15] structures, allows a more detailed comparison of the Hoogsteen and
W-C conformations, as presented in Fig. 2 and in Table 2. It is apparent that the AT and AA/
TT base steps have similar values of the ωi twist angle in both conformations. Stacking is also
similar, with a poor stacking of thymines in both AA/TT base steps (Fig. 2). In the case of the
AT base step, the Hoogsteen/W-C stacking found in one case [15] is also similar.

The main conformational difference between the two conformations is found in the TA
base step, which presents significantly different ωi twist values (Table 2). Also stacking is very
poor in the W-C case (Fig. 2). This difference between both structures has been confirmed in
all available cases, as shown in the supporting information (see S2 Fig.).

Stacking interactions between all-AT duplexes
DNA duplexes in most all-AT crystals form continuous columns of stacked double helices
(Fig. 3). The stacked duplexes form a pseudo-continuous double helix. In this configuration
the overall relative twistΩ of an oligonucleotide duplex with respect to its nearest neighbor in
the column is defined as:

O ¼ oT þ
Xi¼5

i¼1
oi ð1Þ

Table 1. Crystallographic data for d(ATTAAT).

Wavelength (Å) 0.9761

Resolution range (Å) 33.14–3.13 (3.32–3.13)

Space group C 1 2 1

Unit cell (a, b, c, α, β, γ) 24.76, 42.90, 99.42, 90.0°, 90.04°, 90.0°

Total reflections 7048 (7048)

Unique reflections 1 888 (279)

Multiplicity 3.7 (3.8)

Completeness (%) 99.6 (99.3)

Mean I/sigma(I) 7.48 (1.88)

Wilson B-factor 141.89

Rmeas 0.125 (0.254)

CC1/2 0.985 (0.96)

CC* 0.996 (0.99)

Rwork / Rfree 0.146 / 0.199

Number of non-hydrogen atoms 600

RMS(bonds) 0.009

RMS(angles) 1.25

Average B-factor 138.5

Details of Structure resolution and Refinement are given in the Supporting Information.

doi:10.1371/journal.pone.0120241.t001
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Fig 1. Electron density maps of d(ATTAAT)2. 2Fo-Fc electron density maps at 1σ level, with Refmac5 map
sharpening [24]: (a) stereo view of two duplexes. All base pairs are in the Hoogsteen conformation. The shift
between the two duplexes is very clear at the center of the column. It is shown in detail in Fig. 4; (b) one of the
central base pairs. Other base pairs have a similar map.

doi:10.1371/journal.pone.0120241.g001

Table 2. Comparison of conformational parameters.

(PDB-ID) Hoogsteen Watson-Crick

ATTAAT (4U9M) ATATAT [7] (1RSB) ATATATCT [9] (2QS6) ATATATATAT
[15] (3EY0)

AAATATTT [16] (2A2T)

C1'-C1' [Å] 8.5 8.2 8.1 8.5 10.4 10.6

ωi (AT) 29.5 33.7 31.0 — 31.1 34.0

ωi (TA) 34.8 34.7 36.0 — 41.4 38.5

ωi (AA/TT) 38.1 — — — — 37.0

ωT (TA) 42.4 43.6 40.5 46.9 -13.0 -25.2

References are given in brackets. ωi is the average twist of the base steps and ωT is the average twist of the virtual base step between neighbor duplexes

in a column (Calculated with 3DNA[25] from the C1’-C1’ virtual bonds).

doi:10.1371/journal.pone.0120241.t002
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Where ωi correspond to the twist angle between adjacent base pairs in the oligonucleotide
and ωT correspond to the rotational setting angle of the virtual base step between stacked du-
plexes. In all Hoogsteen structures the value of ωT between neighbor duplexes is similar and
close to 40°, only somewhat larger that the twist angle in the base steps inside the duplexes, as
shown in Table 2. As a result the columns of duplexes form a perfect pseudo-continuous helix,

Fig 2. Base step stacking comparison in theWatson-Crick and Hoogsteen conformations. It is similar in the AA and AT base steps, including the
uniqueW-C/Hoogsteen case found in the 3EY0 structure [15]. The TA base step is different in each case, with poor stacking in the Watson-Crick structures: it
is shown in greater detail in the supporting information (see S2 Fig.). The Hoogsteen base pairs are shown in blue/green and theWatson-Crick base pairs in
orange/purple in this and in the following figures. The dashed lines indicate virtual C1’—C1’ bonds.

doi:10.1371/journal.pone.0120241.g002
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as shown in Fig. 3. This behavior is completely different from what is found in all-AT duplexes
with Watson-Crick base pairs [10, 16], which also crystallize in columns, but with a left handed
ωT negative angle, usually around -25°. Several examples are given in Table 2. The values for
d(ATATATATAT) deviate, since in this structure the columns of duplexes are not straight, but
form a coiled-coil [15].

In fact the most striking difference between the W-C and Hoogsteen structures resides in
the virtual TA base step between neighbor duplexes, which has a different sign in either case, as
mentioned above. In this way base stacking is improved in W-C duplexes, as it is clearly appar-
ent in Fig. 4. In the Hoogsteen case only adenine stacking is favored, whereas thymines are left
poorly stacked. A significant slide of both base pairs is also apparent.

Discussion
A significant feature of the present structure is the absence of any ligand in the minor groove.
In our previous studies [7–9] we had found that extra-helical bases, mainly thymines, were
present and might contribute to the stabilization of Hoogsteen DNA. The present structure is
stable by itself and does not require any additional ligands, but it is not clear why it crystallizes
in the Hoogsteen form. No specific interactions with other molecules which might stabilize the
crystal structure have been detected. In particular no trace of ethyl-aniline is apparent in the
crystal structure, although it might help to stabilize the Hoogsteen form. Since the energetic
difference between the Hoogsteen andW-C forms is rather small [17, 18], it is likely that a
combination of crystallization conditions, oligonucleotide length and sequence favored the
Hoogsteen form in this particular case.

In conclusion, the structure that we have presented here demonstrates that in principle any
all-AT sequence of DNA should be capable of adopting the Hoogsteen conformation. Our

Fig 3. Comparison of the d(AAATATTT)2 Watson-Crick structure and the d(ATTAAT)2 Hoogsteen
structure. The overall twistΩ and the virtual base step twistωT between stacked duplexes are indicated. In
the Hoogsteen case the double helix is practically continuous throughout the column of duplexes.

doi:10.1371/journal.pone.0120241.g003
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work complements the results of Nicolova et al. [2, 19], who have shown that transient Hoogd-
teen base pairs are frequent in canonical duplex DNA. Such transient base pairs may be a nu-
cleation point for continuous Hoogsteen duplexes, such as those described here and elsewhere
[7–9]. Occasional base pairs are also found in some complexes of DNA with drugs and pro-
teins, as reviewed by Nicolova et al [20]. It is also likely that some regions of the genome may
have this conformation “in vivo” under appropriate conditions, since the transition between
both forms has a very low energetic cost. The tendency to accommodate extra-helical bases in
the minor groove [7–9] may help to form DNA crosslinks during meiosis [21] or in the com-
pact territories of gene-poor chromosomes in the nucleus [22]. Furthermore the formation of
continuous helices (Fig. 3), even when there is a break in the chain, may help in the repair of

Fig 4. Stereo views of the virtual TA base step between neighbor duplexes in a column in different
Watson-Crick and Hoogsteen structures. In all Hoogsteen cases the base pairs show a similar slide and a
practically identical twist angle, close to 40° (Table 2). In theWatson-Crick caseωT is negative. The dashed
lines indicate virtual C1’—C1’ bonds. The PDB codes are indicated.

doi:10.1371/journal.pone.0120241.g004
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double strand breaks, in DNA recombination, in the action of topoisomerases, etc. We should
note that base-stacking is an important contribution to the stability of the double helix [23].

Supporting Information
S1 Fig. Crystal packing. The organization of duplexes in the crystal in pseudo hexagonal pack-
ing is shown at the left. The unit cell is indicated. The column at the right is formed by five
stacked duplexes, which correspond to two asymmetric units.
(TIF)

S2 Fig. Stereo views of all internal TA base steps. Comparison of superposed steps in differ-
ent Watson-Crick (orange/purple) and Hoogsteen (green/blue) structures. The TA step shows
better stacking for Hoogsteen than WC. The PDB codes are indicated.
(TIF)

S3 Fig. ωT angle in WC and Hoogsteen. Comparison of two columns of five standard B-DNA
duplexes with Watson-Crick base pairing and ωT = -26° on the left and Hoogteen with
ωT = 42° on the right. Note the very different overall geometry of the columns.
(TIF)

S4 Fig. Pseudo hexagonal symmetry P1 related to C2.
(TIF)

S1 Table. The five twin operators found for the C2 space group and the six twin domains
and its fraction as refined in Refmac5.
(PDF)

S1 File. Structure solution and refinement.
(PDF)
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