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Abstract

Modifier genes are believed to account for the clinical variabil-
ity observed in many Mendelian disorders, but their identifi-
cation remains challenging due to the limited availability of
genomics data from large patient cohorts. Here, we present
GENDULF (GENetic moDULators identiFication), one of the first
methods to facilitate prediction of disease modifiers using
healthy and diseased tissue gene expression data. GENDULF is
designed for monogenic diseases in which the mechanism is
loss of function leading to reduced expression of the mutated
gene. When applied to cystic fibrosis, GENDULF successfully
identifies multiple, previously established disease modifiers,
including EHF, SLC6A14, and CLCA1. It is then utilized in spinal
muscular atrophy (SMA) and predicts U2AF1 as a modifier
whose low expression correlates with higher SMN2 pre-mRNA
exon 7 retention. Indeed, knockdown of U2AF1 in SMA patient-
derived cells leads to increased full-length SMN2 transcript and
SMN protein expression. Taking advantage of the increasing
availability of transcriptomic data, GENDULF is a novel addition
to existing strategies for prediction of genetic disease modifiers,
providing insights into disease pathogenesis and uncovering
novel therapeutic targets.
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Introduction

Phenotypic heterogeneity is observed in many Mendelian diseases

such that patients with the same mutation may develop a severe

form of disease, a mild one, or show no symptoms at all. Among

the factors that account for these differences are modifier genes

(Nadeau, 2001), whose activity influences disease severity. Identify-

ing such genes has major implications for disease prognostication

and development of novel therapeutics (Antonarakis & Beckmann,

2006). However, due to the low frequency of the mutations causing

most Mendelian disorders and the scarcity of large relevant patient

cohorts, only a few modifier genes have been identified thus far

(G�enin et al, 2008; Kousi & Katsanis, 2015) leaving the mechanisms

underlying clinical variability of most Mendelian disorders poorly

understood.

Existing strategies for studying the role of genetic factors in deter-

mining phenotypic presentation are often classified into three cate-

gories depending on the type of data analyzed (G�enin et al, 2008;

Kousi & Katsanis, 2015): (i) genome-wide association studies

(GWAS), which compare the distribution of marker genotypes in

patients with different disease phenotypes, (ii) genetic linkage stud-

ies, using tools such as Superlink (Fishelson & Geiger, 2002) and

GENHUNTER-TWOLOCUS (Dietter et al, 2004), which assess the

inheritance pattern and content of alleles shared between phenotypi-

cally concordant and discordant relatives, and (iii) systematic

genome-wide exome sequencing projects, which identify individuals

who are resilient to otherwise phenotype-causing mutations. A

recent example of the third approach is the Resilience Project that

analyzes genomes to ascertain subjects who are healthy despite

harboring disease-causing mutations (Chen et al, 2016). Each of

these existing strategies as well as disease-specific wet laboratory

functional screens may yield a long list of candidate modifier genes,

emphasizing the need for complementary methods to narrow in on

a smaller set of candidate modifiers to validate.
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Here, we present a new approach for the genome-wide identifi-

cation of genetic modifiers of monogenic disorders, termed GENetic

moDULators identiFication (GENDULF). We use the term “mono-

genic disease” for disorders in which mutations in one gene deter-

mine who is affected with high penetrance, but variations in that

gene alone may not fully explain the variable phenotypes seen in

different patients. The GENDULF method is intended for monogenic

diseases in which the mechanism is loss-of-function or reduced

function. For many of these diseases with known gene modifiers

(Gazzo et al, 2016), mutations of the gene causal of disease (herein

termed GCD) often result in its reduced expression. We therefore

reasoned that some healthy individuals who have reduced expres-

sion of a GCD are protected from disease by differential expression

of other genes (the modifiers). We do not assume that every

disease-causing mutation in the GCD leads to reduced gene expres-

sion, but rather that some of them do. Under this assumption,

reduced expression of the GCD can be deleterious, even if it does

not occur in the context of a disease-causing mutation. The interac-

tions we seek between the GCD and modifiers are akin to some defi-

nitions of the genetic term “epistasis”, but we avoid using this term

because it is sometimes associated with formal measures of overall

organism fitness, which we do not compute.

GENDULF operates by mining gene expression data of healthy

tissues, available most prominently from the Genotype Tissue

Expression project (GTEx; https://gtexportal.org), and disease-vs.-

control tissues to identify expression patterns of genes that may

modify disease severity. The GENDULF approach is feasible because

gene expression in healthy individuals can vary significantly due to

genetic and non-genetic reasons (Curtis et al, 2012). Variation in the

expression of a GCD may be explained, at least in part, by regulation

of other genes that compensate for low expression levels of the GCD

in healthy individuals particularly in the tissues most relevant to the

disease etiology. Because GTEx contains tissue-specific gene expres-

sion and for some diseases, the most affected tissues are known,

GENDULF can examine gene expression in the disease-relevant

tissues of healthy subjects. By identifying unaffected GTEx individu-

als with very low tissue-specific expression levels of the GCD,

GENDULF can predict potential modifiers that may compensate for

these low GCD levels. The expression levels of these potential modi-

fier genes are then examined in disease-relevant tissues from

affected and unaffected individuals to evaluate the association of

candidate modifiers with the disease phenotype. Since we are inter-

ested in identifying ‘actionable’ modifiers, which could most readily

be targeted by drugs to inhibit their activity, we focus on negative

modifiers—genes whose inactivation could alleviate the disease

phenotype. Nevertheless, GENDULF could be readily modified to

identify targets whose increased expression may alleviate disease

phenotypes.

We first tested the ability of GENDULF to identify tissue-specific

modifiers of cystic fibrosis (CF) because it is the most common reces-

sive Mendelian disease and has variable severity. CF is caused by

biallelic mutations of the cystic fibrosis transmembrane conductance

regulator gene [CFTR (Rommens et al, 1989)], resulting in disrupted

epithelial fluid transport in lungs, pancreas, colon, and other organs

(Cutting, 2015). A twin study suggested that 50% of the variability in

CF lung function is due to genetic factors (Collaco et al, 2010).

Several CF modifiers have been previously discovered in both lung

and colon tissues (Wright et al, 2011; Gallati, 2014; Corvol et al,

2015) providing an opportunity to evaluate the GENDULF approach

for a disease in which there are established results.

To determine whether GENDULF can be utilized in other

diseases, we then applied it to spinal muscular atrophy (SMA), a

neuromuscular disorder of variable severity caused by biallelic muta-

tions of the survival motor neuron 1 gene (SMN1) (Lefebvre et al,

1995) and retention of the paralog gene SMN2. A cytosine to thymine

nucleotide change in exon 7 of SMN2 leads to frequent exclusion of

exon 7 during splicing of SMN2 pre-mRNAs and thus less functional

SMN protein (Monani et al, 1999). We applied GENDULF to SMA to

search for candidates that may influence SMN2 exon 7 pre-mRNA

splicing, as this is an important determinant of disease severity

(Prior et al, 2009; Hua et al, 2011; Wu et al, 2017).

Together, our findings support the utility of GENDULF in priori-

tizing disease modifiers in CF and SMA. Particularly, when used in

conjunction with available GWAS or relevant biological insights,

and when transcriptomic data are available, GENDULF could facili-

tate identification of modifier genes for other loss-of-function

Mendelian diseases.

Results

The GENDULF approach

We provide an overview of GENDULF here and refer the reader to a

full description in Materials and Methods below. GENDULF consists

of two steps at its core (Fig 1, Materials and Methods). [Step 1] The

aim of the first step is to find genes that are downregulated when

the GCD is downregulated in healthy individuals and particularly in

the tissues that are relevant to the disease in question. We reason

that in healthy individuals with very low tissue-specific expression

of the GCD, compensatory downregulation of some other genes may

in part help maintain the observed unaffected phenotype. We term

the candidate genes Potential Modifiers (PMs). [Step 2] The aim of

the second step is to find genes that are not downregulated when

the GCD is downregulated in disease-relevant tissues of individuals

affected with the disease, thus testifying that their co-expression

with the GCD is specific in healthy individuals and may have

compensating effect. In step 2, we examine expression levels of the

PMs in data sets that include both disease and control samples. We

define disease-associated PMs (DPMs) as those PM genes that lose

the association with the GCD (found in the tissue of unaffected indi-

viduals) in the relevant tissues of affected individuals; that is, they

are not significantly downregulated in disease samples in which the

GCD is, by definition, inactive. The downregulation of a PM in the

healthy controls and the absence of downregulation of the same PM

in patients rules out the possibilities that either the PM is generally

co-regulated with the GCD or downregulated in a signaling pathway

downstream of the GCD. As demonstrated in the analysis of SMA,

when the disease phenotype is influenced by expression of a known

specific modifying transcript, a third step may be introduced, as

described later in that case.

Applying GENDULF to identify gene modifiers of CF

To evaluate the performance of GENDULF, we first applied it to a

monogenic disorder in which several genetic modifiers have been
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previously identified (Drumm et al, 2005; Cutting, 2010; Wright

et al, 2011). CF is caused by biallelic, loss-of-function mutations of

CFTR and affects 60,000 individuals worldwide (Kerem et al, 1990).

It is clinically characterized by mucous retention in the lungs,

pancreas, colon, and other organs and repeated lung infections

result in significant morbidity and mortality (O’Sullivan & Freed-

man, 2009). It is a good model for the identification of disease modi-

fiers because it has a relatively high prevalence leading to

availability of data on many accessible patients for performing

detailed phenotypic analyses. Furthermore, while a large fraction of

patients are heterozygous or homozygous for the DF508 mutation,

these patients can exhibit quite divergent phenotypes (Drumm et al,

2005), where several other mutations cause disease via lowering of

CFTR expression; consistent with the premise of GENDULF (Kerem

et al, 1997; Ramalho et al, 2002). In our first test of GENDULF, we

focused on CF patients with either lung or intestinal disease, to miti-

gate the effects of allelic heterogeneity, as was done in other studies

seeking CF modifiers (Drumm et al, 2005; Stanke et al, 2010).

To identify modifiers of lung disease in CF, we employed Step

1 of GENDULF to RNA sequencing data derived from 320 healthy

lung samples deposited in the GTEx database, which includes

transcriptomics data from 53 tissues and 544 human subjects

(The GTEx Consortium, 2013). This step pointed to 366 PM genes

that were found significantly downregulated when CFTR was

downregulated in healthy lung tissues (Dataset EV1). Applying

Step 2 of GENDULF, we examined the expression of each of these

PM genes in nasal brushings of the inferior turbinates of mild

and severe CF patients (identical homozygote DF508) and healthy

controls (Wright et al, 2006). The expression of most PMs was

decreased in CF patient tissue compared with healthy tissue in a

similar pattern to CFTR, indicating that their expression may

simply be correlated with that of CFTR activity. However, 131

(36%) passed GENDULF step 2 and were found not to be simi-

larly downregulated when CFTR expression was impaired in CF

tissues (Materials and Methods, Dataset EV1) testifying to their

potential compensatory role as DPMs. Examining all reported CF

genetic modifiers of the lung phenotype we collected from the

literature (Dataset EV2), we find that the GENDULF-predicted

DPMs are highly enriched with previously verified modifiers of

CF manifestations in the lung (with eight overlapping genes, P-

value = 5.4109e-15 from a hypergeometric test (Johnson & Kotz,

1977), Dataset EV2).

We found that 8 of the 10 previously published CF lung modifiers

that passed GENDULF step 1 also passed GENDULF step 2; the two

exceptions (SFTPA1, SLC26A9) had no expression measurements in

the case–control data and hence could not possibly be detected at

step 2. All four previously published colon CF modifiers that passed

GENDULF step 1 were eligible at step 2 and also passed step 2. We

Identify Potential Modifiers (PMs) 
genes that are significantly down-regulated when the Gene Causing the 
Disease (GCD) is  Low in healthy tissues
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Figure 1. An overview of GENDULF computational approach.
The two steps of GENDULF: (Step 1) Mine transcriptomics of healthy disease-relevant tissues to identify PMs, which are genes that are differentially under-expressed
when the GCD is lowly expressed. GENDULF does not compute a correlation across the whole range of expression values, but specifically searches only for a significant
association at the lower level range, as shown in the region boxed in the left scatter plot, where the dots are in blue and the y-axis is labeled ‘PM’ for ‘potential
modifier’. The scatter plot on the upper right depicts an example of relationship between expression of the GCD and another gene in which GENDULF is not expected to
find the other gene as a modifier, and hence the y-axis is labeled non-PM expression. (Step 2) Evaluate the expression of PMs identified in step 1 in transcriptomic data
sets containing both diseased and control samples to find a subset of PMs that we label as DPMs (left graphs)—PM genes that are not down regulated in the disease
tissues.
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conclude that GENDULF is effective at finding those known PMs

that fit the expected pattern of expression in GTEx (Fig 1, upper)

and are measured in the case–control gene expression data. A recent

review of CF lung phenotype modifiers found evidence in favor of

two additional predicted DPM genes (Dataset EV2), namely KRT8

and MUC1 (Shanthikumar et al, 2019). Some of these known modi-

fiers are ranked within the top DPMs, including EHF, SFTPA2, and

SLC6A14, all previously identified modifiers of lung disease severity

in CF (Choi et al, 2006; Tagaram et al, 2007; Wright et al, 2011; Li

et al, 2014) (Fig 2A–C). The number of samples in this dataset with

mild lung manifestations is too small to evaluate whether modifiers

are differentially expressed between CF patients with mild lung

disease and severe lung disease. Importantly, we also find that these

four CF predicted modifiers (CLCA1, FABP1, MUC2, SLC4A4) tend

to be co-downregulated in those GTEx lung samples in which CFTR

expression is low (all pairwise hypergeometric P-values evaluating

the overlap between pairs of these modifiers are < 0.05, Fig 2D).

To estimate the robustness of these results, we apply a sensitiv-

ity, specificity, and positive predictive value (PPV) analysis of the

GENDULF-predicted modifiers against these previously verified

modifiers, when setting different thresholds for GENDULF step 1

(See Materials and Methods for details, Appendix Fig S1). The speci-

ficity is very high and close to the perfect 1.0, but this is partially

driven by the small number of known modifiers (positives). The

sensitivity is not very high, but still over two orders of magnitude

higher than would be expected by chance, providing a manageable

rate of modifiers that are predicted with GENDULF. The PPV is also

substantially higher than would be expected by chance.

To estimate the number of case–control samples that are

required for GENDULF step 2 given GENDULF step 1 results, we

provide a power calculation capability in the software (see Materials

and Methods). We evaluated the power for the GENDULF step 1

modifiers obtained for CF lung disease and find, for example, that

seven cases and seven controls are expected to be sufficient to have

80% power to detect a modifier (See Materials and Methods for

details and Appendix Fig S2).

To identify modifiers of intestinal disease in CF, we applied

GENDULF to analyze 345 non-CF colon samples from the GTEx data-

base and examined the expression of these genes in rectal mucosal

epithelia from CF patients (bearing DF508 mutation) and healthy

controls (Stanke et al, 2014). From 344 PM candidates identified in

Step 1 in the healthy colon tissue, 123 (35%) are predicted to be

DPMs in step 2, i.e., their expression is not significantly downregu-

lated when CFTR was mutated in tissues from CF patients (Dataset

EV1). Examining reported CF genetic modifiers of colon disease

collected from the literature (Dataset EV2), the top GENDULF-

predicted modifiers are highly enriched with those previously

reported (with four overlapping genes, hypergeometric test P-

value = 3.9311e-08, Dataset EV2). These include CLCA1, whose locus

has been reported to modulate gastrointestinal defect in CF (Ritzka

et al, 2004; Van Der Doef et al, 2010) (Fig 2E) and SLC4A4, which

was found to modify the intestinal phenotype in CF (Dorfman et al,

2009) (Fig 2F). Furthermore, the genes identified by GENDULF are

highly enriched with genes located on chromosome 19q13 (hypergeo-

metric enrichment P-value = 9e-04, Dataset EV2), a locus associated

with variability in the CF colon phenotype (meconium ileus) (Zielen-

ski et al, 1999). Some studies have suggested that the linkage signal

in 19q13 is best explained by the functional candidate gene TGFB1

(Bremer et al, 2008; Corvol et al, 2008), but a fine mapping study

provided evidence in favor of a tight cluster of three other immune-

related genes in 19q13: CEACAM5, CEACAM3, CEACAM6 (Stanke

et al, 2010). One of the candidates found by GENDULF in this band is

CEACAM5, supporting the latter hypothesis.

Combining GENDULF with association or linkage studies

A particular strength of GENDULF is its ability to be used in

conjunction with prior genomic data to help guide discovery of

modifier genes. We studied the incorporation of GENDULF with

data from association studies and its application to a given list of

genes in a locus. In one study, five independent genomic loci were

shown to have significant associations with variation in the clinical

severity of CF lung disease (Corvol et al, 2015). Yet, as such associa-

tion loci typically include numerous genes, the identification of the

individual genes within the loci that correlate to disease variation

can be challenging (G�enin et al, 2008). We applied GENDULF to

evaluate each of the genes contained within these five loci. To this

end, for each gene in a given locus, we evaluated the level by which

its expression is significantly downregulated when the expression of

CFTR is low in non-disease lung tissues (GENDULF step 1). We

found that at four of these five loci (all except chr5p15.3) at least

one gene is significantly downregulated when the expression of

CFTR is low (Fig 2G, Appendix Fig S3A). Notably, the genes having

the maximal co-downregulation levels with CFTR coincide with the

strongest modifiers reported in the literature (Wright et al, 2011;

Corvol et al, 2015) including EHF, MUC4, HLA-DRA, and SLC6A14.

A robustness analysis shows that the number of genes pinpointed

by GENDULF that are also previously published modifiers is more

than would be expected by random chance, as it is never obtained

when randomly shuffling the CFTR expression values (Materials

and Methods). Evaluating GENDULF Step 1 for three loci found

associated with CF intestinal phenotype (Sun et al, 2012), we find a

similar trend to the one observed for lung loci (Fig 2G), but consid-

erably less significant (Appendix Fig S3B). Taken together, these

results show that GENDULF can be applied successfully in a hybrid

manner in which GWAS or linkage analysis is used to first identify a

genomic locus containing numerous candidate modifier genes, and

GENDULF is then applied to those candidate genes to find genes

whose low expression is most associated with low GCD expression

in healthy tissues.

Applying GENDULF to identify gene modifiers of SMA

We next applied GENDULF to predict novel genetic modifiers of

SMA, a neuromuscular disease that is the leading inherited cause of

infant mortality and is characterized by degeneration of a motor

neurons in the spinal cord as well as atrophy and weakness of skele-

tal muscles (Crawford & Pardo, 1996). SMA can manifest with vari-

able severity, but is always caused by recessive mutations of the

survival motor neuron 1 (SMN1) gene (Brzustowicz et al, 1990;

Lefebvre et al, 1995), which is the GCD. SMN1 mutations are often

genomic deletions leading to loss of SMN1 mRNA expression.

Embryonic lethality is prevented in SMA patients by retention of the

SMN2 paralog gene in variable copy number (Burghes & Beattie,

2009). SMN2 pre-mRNAs undergo alternative splicing, often exclud-

ing exon 7, resulting in a transcript that encodes a truncated SMN
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protein that is rapidly degraded (Burnett et al, 2009; Cho & Drey-

fuss, 2010). Enhanced inclusion of exon 7 into mature SMN2

mRNAs is associated with increased SMN protein levels and reduced

disease severity (Prior et al, 2009; Hua et al, 2011; Finkel et al,

2016). Hence, SMN2 constitutes an attractive target for SMA ther-

apy, where increased expression of full-length SMN2 is desired. We

first applied GENDULF Step 1 to GTEx transcriptomics data derived

from healthy muscles (n = 430) and subsequently to spinal cords

(n = 79). While these are healthy tissues, we observe variations in

SMN1 and SMN2 expression, which could be due to underlining

variations in SMN1 and SMN2 copy number. We find 484 PMs that

are significantly low when SMN1 mRNA expression levels are low

in these tissues (lowest 10% of expression levels, Dataset EV3). We

next applied GENDULF Step 2 to muscle and spinal cord tissues

derived from SMA patients vs. healthy controls, which yielded 296

DPMs (Dataset EV3). Among these DPMs are several previously

reported negative modifiers of SMN2 splicing (for which downregu-

lation is reported to enhance exon 7 retention), such as HNRNPU,

SF1, and SRSF4 (Xiao et al, 2012; Wee et al, 2014) (Fig 3A–C).

SMN2 exon 7 inclusion serves as a unique modifier of SMA.

Therefore, we added a transcript-specific third step to GENDULF

(Materials and Methods). First, we investigated whether exon 7

inclusion may also compensate for low levels of SMN1 in

healthy individuals. Indeed, we find that the ratio between full-

length SMN2 (SMN2-FL, i.e. containing exon 7) to truncated

SMN2 (SMN2D7, i.e. lacking exon 7) is increased in healthy indi-

viduals when SMN1 expression is low (Appendix Fig S4A and

B). Given this pattern, we hypothesized that enhanced exon 7

inclusion and thus increased SMN2-FL expression may act as a

compensatory rescue mechanism in healthy tissues when SMN1

expression is very low. Supporting this notion, we find that

several previously reported modifiers that specifically enhance

SMN2 exon 7 inclusion show significantly higher expression in

healthy tissues with a high SMN2-FL to SMN2Δ7 ratio compared

to tissues with a low SMN2-FL to SMN2Δ7 ratio

(Appendix Fig S4C). Thus, in Step 3 of the GENDULF analysis

we set out to identify, among the candidates identified from

GENDULF steps 1–2, those that are most significantly associated

with SMN2 exon 7 inclusion, pinpointing U2AF1 and HNRNPA0

(Fig 3D and E). We then further evaluated these candidates

experimentally. As controls (or potential positive modifiers,

whose inactivation could aggravate the disease phenotype), we

also evaluated SF3B3 and NECAP1, as these were PMs identified

in GENDULF step 1 but were not confirmed as DPM in steps 2

and 3 (Appendix Fig S5). To summarize, based on the GENDULF

analysis, we predict that inactivation of U2AF1 and HNRNPA0

would enhance SMN2 exon 7 inclusion, whereas the inactivation

of SF3B3 and NECAP1 would either reduce or have no effect

over SMN2 exon 7 inclusion.

Experimental validation of predicted SMA DPMs

To investigate further the predictions of GENDULF, we knocked

down the expression of the novel negative modifiers (U2AF1 and

HNRNPA0) and the neutral or positive modifiers (SF3B3 and

NECAP1, whose inactivation may be deleterious) using silencing

RNAs (siRNAs) in HEK293T human embryonic cells. Transfection

with pools of four unique siRNAs specifically targeting either

U2AF1, HNRNPA0, SF3B3, or NECAP1 for 72 h achieved robust

reductions in the targeted mRNAs (Fig 4A–D). A splice-switching

oligonucleotide known to increase SMN2 exon 7 inclusion [SMN2

SSO (d’Ydewalle et al, 2017)] was used as a positive control.

Changes in SMN1, SMN2-FL, and SMN2Δ7 mRNA expression were

assessed with RT–qPCR. Knockdown of U2AF1 increased SMN2-FL

mRNA by 50% compared with cells treated with a scrambled

control siRNA (Fig 4E and F). Conversely, knockdown of SF3B3

resulted in a 35% decrease in SMN2-FL and 62% increase in

SMN2Δ7 mRNA levels (Fig 4E and F). As expected, there was no

effect on inclusion of exon 7 in SMN1 mRNAs (Fig 4G).

U2AF1 is the top-ranked potential modifier according to P-values

from step 3. We used the output of step 3 for ranking because of the

established relationship between higher full-length/truncated SMN2

transcript ratio and reduced SMA severity (Prior et al, 2009; Wu

et al, 2017). To determine whether the knockdown of the top SMA

disease modifier, U2AF1, also increases SMN2-FL expression in the

SMA disease context, we assessed changes in SMN2 mRNA and

◀ Figure 2. CF modifiers identified by GENDULF.

A–C Upper panels: Scatter plots associating the expression of the GCD (CFTR) vs. identified PMs (A) EHF, (B) SLC6A14, and (C) SFTPA2 in healthy lung tissues from GTEx.
Bottom panels: Boxplots associating the expression of the identified DPMs in case–control studies; the expression of (A) EHF, (B) SLC6A14, and (C) SFTPA2 in severe
and mild CF and in healthy controls. For all boxplots, center lines indicate medians, box edges represent the interquartile range, whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted individually. Points are defined as outliers if they are greater than q3 + w × (q3 � q1) or
< q1 � w × (q3 � q1), where w is the maximum whisker length, and q1 and q3 are the 25th and 75th percentiles of the sample data, respectively. There are five
severe (red), four mild (orange), and eleven control (blue) biological replicates.

D Map of coincidence of the low expression (lowest 10% of expression levels) of the 7 top DPMs with the low expression of CFTR in GTEx lung samples (lowest 10%
of expression levels, when symptoms would be present in CF patients Ramalho et al, 2002; Kerem et al, 1997); each small rectangle inside the big rectangle
represents one individual; all presented samples are those with low CFTR expression. Dark blue rectangles indicate samples with low expression of the listed DPM).

E, F Upper panels: scatter plot associating the expression of the GCD (CFTR) vs. identified PMs in healthy colon GTEx tissue; the expression of CFTR (x-axis) vs. that of (E)
CLCA1 and (F) SLC4A4, respectively, in healthy colon tissues. Bottom panels: Boxplots associating the expression of the identified DPMs in case–control studies; the
expression of (E) CLCA1 and (F) SLC4A4 in colon tissues from CF and healthy controls. Empirical P-value significance is indicated qualitatively for two thresholds.
There are sixteen CF (red) and thirteen control (blue) biological replicates.

G The P-values assigned by GENDULF to genes within chr11p12-p13, chr6p21.3, chr3q29, and chrXq22-q23 chromosomal segments, ordered by their location. The
lower dashed line represents a significance threshold corrected for the number of genes evaluated, and the upper dashed line represents a significance threshold
corrected for all genes and transcripts in GTEx, with alpha = 0.05.

Data information: **P-value < 0.01 and ***P-value < 0.001, using the permutation test defined in the Materials and Methods section. The P-values in panels (A, B, C, E,
F, and G) are for the hypergeometric enrichment test.
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SMN protein expression after treating primary fibroblasts derived

from a SMA patient with siRNAs targeting U2AF1. Fibroblasts

derived from a healthy carrier for SMA were also treated with

scrambled siRNA and were used as a reference. We found that

knockdown of U2AF1 with 25 nM or 100 nM of siRNA for 72 h,

resulted in robust reductions of U2AF1 mRNA and protein expres-

sion (Fig 4H, K, and L), was associated with 27 and 46% increases

in SMN2-FL mRNA and 59 and 76% increases in SMN protein

levels, respectively (Fig 4I–M). Little change was observed in

SMN2Δ7 mRNA levels, raising the possibility that U2AF1 may func-

tion at the splicing and transcriptional levels. Together, these data

verify that reduction of U2AF1 expression in the SMA genetic back-

ground is associated with increased SMN2-FL mRNA and SMN

protein expression.
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Figure 3. GENDULF identification of SMA modifier genes.

A–C Previously reported modifiers. Upper panels: Scatter plots associating the expression of the GCD (SMN1) vs. identified PMs in healthy GTEx muscle tissues (left
panels) and spinal cord tissues (right panels); the expression of SMN1 (x-axis) vs. that of (A) HNRNPU, (B) SF1 and (C) SRSF4. Bottom panels: Boxplots associating the
expression of the identified DPMs in case–control studies; the expression of (A) HNRNPU, (B) SF1, and (C) SRSF4 in SMA and in healthy-control muscle (left panels)
and spinal cord (right panels) tissues.

D, E Candidate modifiers. Upper panels: Scatter plots associating the expression of the GCD (SMN1) vs. identified PMs in healthy GTEx muscle tissues (left panels) and
spinal cord tissues (right panels); the expression of SMN1 (x-axis) vs. that of the negative DPM modifiers (D) U2AF1 and (E) HNRNPA0. Bottom panels: Boxplots
associating the expression of the identified DPMs in case–control studies; the expression of (D) U2AF1 and (E) HNRNPA0 in SMA and in healthy-control muscle (left
panels) and spinal cord (middle panels) tissues. Right panels show the levels of these predicted modifiers in healthy muscle samples with low ratio of SMN2-FL to
SMN2Δ7 and those with high ratio of SMN2-FL to SMN2Δ7.

Data information: Empirical P-values significance is indicated for two thresholds (**P-value < 0.01 and ***P-value < 0.001, using the permutation test defined in the
Materials and Methods section). The P-values denoted in the upper panels of (A, B, C, D, and E) are for the hypergeometric enrichment test. There are six control (blue)
and eleven SMA biological replicates (red) from muscle tissues and four control (blue) and six SMA biological replicates (red) from spinal cord tissues. The Reads Per
Kilobase Million (RPKM) measure was used in the GTEx dataset, and the Fragments Per Kilobase Million (FPKM) measure was used in the SMA case–control dataset.
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Discussion

While there is growing recognition that genomic context strongly

modulates the clinical severity of many monogenic disorders,

few modifier genes have been identified to date (Kousi &

Katsanis, 2015). Recently, Kerner et al (2020) proposed a case-

only, disease-specific, genome-wide strategy based on DNA vari-

ants identified in whole exome sequencing. One can also search

simultaneously for modifiers of many disease genes in large

sequencing databases such as ExAC by identifying putatively

healthy individuals who carry one or more variants that are

expected to cause a monogenic disorder (Tarailo-Graovac et al,

2017); this approach also uses DNA analysis (not gene expres-

sion) and is not targeted to a disease since databases such as

ExAC ascertain healthy individuals.

Although existing strategies to identify monogenic disorder

modulators, including association and linkage studies and genome-

wide screens, have successfully identified modifiers of disease,

methods that incorporate gene expression data could help uncover

novel modifiers that might compensate at the level of transcriptional

regulation. There are existing methods that use GTEx to identify

variants associated with various traits and diseases. Several

approaches have been established to integrate GWAS and GTEx

gene expression data (Giambartolomei et al, 2014; Gamazon et al,

2015; Gusev et al, 2016; Aguet et al, 2017), but these are limited to

associations with common traits that vary among the GTEx samples,

which exclude monogenic disorders. More recently, at least three

methods that integrate GWAS and GTEx data have been developed

and applied to analyze some specific GWAS data searching for

modifiers of CF (Hormozdiari et al, 2016; Wen et al, 2017; Gong

et al, 2019). One strength of these methods is that they can analyze

individual SNPs and one weakness is that they require large GWAS

studies for modifiers, which are feasible for very few Mendelian

disorders. Even more recently, a new method called ANEVA has

been described to combine GTEx data with DNA sequencing to

interpret whether point mutations are the primary cause of a rare

Mendelian disease in individual patients (Mohammadi et al, 2019).

To follow up on GWAS studies that find multiple individual SNPs

associated with a complex disease, there are methods to seek statis-

tically significant interactions between pairs of SNPs to strengthen

the combined association (e.g., Yip et al, 2018 and references

therein). However, these methods assume that there are many SNPs

that are individually significantly associated with the disease and

thus are less suitable for monogenic disorders that have one primary
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Figure 4. Knockdown of U2AF1 enhances SMN expression.

A–D Expression of (A) HNRNPA0, (B) U2AF1, (C) SF3B3, or (D) NECAP1 72 h post-transfection with either SMN2 SSO or knockdown of each target using siRNAs in HEK293T
cells.

E–G Expression of (E) SMN2-FL, (F) SMN2Δ7, or (G) SMN1-FL following SMN2 SSO or siRNA transfection (n = 4).
H–J mRNA expression of (H) U2AF1, (I) SMN2-FL, or (J) SMN2Δ7 in SMA patient-derived fibroblasts (red bars) 72 h post-transfection with SMN2 SSO, scrambled siRNA,

or U2AF1 siRNA at the indicated dose. Unaffected, SMA carrier fibroblasts (blue bars) treated with scrambled siRNA.
K Representative Western blot.
L, M Quantification of protein expression of (L) U2AF1 or (M) SMN normalized to GAPDH (n = 3).

Data information: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; empirical P-values are determined by a simulation and sampling method described in Materials
and Methods. The error bars show the Standard Error of Mean (SEM). Data from (A–G) represent 4 biological replicates. Data from (H-M) represent 3 biological replicates.
Three technical replicates were performed during qPCR for each biological replicate and averaged. Scrambled siRNA condition for each experiment was set to 1.
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causal gene plus modifiers. In principle, direct computations of

expression quantitative trait loci (eQTL) could be used to find DNA

variants in PMs that affect the expression of the GCD in the tissue(s)

of interest. However, human eQTL studies including GTEx (The

GTEx Consortium, 2015, 2017) are positionally biased because they

find mostly eQTLs in which the variant is close to the target gene

(called “cis-eQTLs”) rather than trans-eQTLs, for which the variant

and the target gene may be far apart or on different chromosomes.

Adding to this existing collection of methods, GENDULF allows a

positionally unbiased search for PMs irrespective of gene location or

proximity to the GCD.

GENDULF can be used to further analyze previously identified

genomic loci in which the modifier gene has not been distinguished.

It can be particularly useful when biological mechanisms underlying

the disease are understood. Here, we demonstrated the utility of

GENDULF in two relatively common monogenetic diseases, CF and

SMA, because both have been studied to search for modifiers and

patient gene expression data are available. Like GWAS, the second

step of GENDULF uses a case–control design and the output items

(SNPs for GWAS, genes for GENDULF) are ranked by significance.

However, taking a different tack than GWAS, GENDULF uses two

different sources of data for step 1 and step 2. This enables it to

remove from consideration most genes at step 1, before analyzing

any patient data at step 2. In this way, GENDULF provides a data-

driven filtering step that can be incorporated with other bioinfor-

matic analysis tools or wet laboratory experiments. GENDULF oper-

ates at the level of genes rather than at the level of SNPs and

analyzes gene expression data to assess how changes in transcrip-

tion may contribute to the underlying mechanism of modifier genes.

If both gene expression and genotyping data are available, then

GENDULF and GWAS can be used in series (and in either order)

such that one method identifies candidates and the other method

evaluates the candidates.

GENDULF is based on the assumption that for a subset of mono-

genic disorders, modifier genes are inactivated in healthy tissues

when a disease-causing gene is downregulated or lost, compensat-

ing for its low levels. Going beyond conventional approaches that

look at the differential expression of genes, GENDULF examines

how the relationship of expression levels between pairs of genes

changes in healthy vs. disease states. The output of GENDULF is a

list of candidate modifiers which is enriched with true modifiers that

may be then used for experimental screens. Alternatively, GENDULF

may be used in combination with other approaches, as demon-

strated here by combining association studies with GENDULF for

CF. GENDULF may also be augmented by incorporating a third,

diseases-specific or knowledge-based step, as exemplified for SMA,

to yield a manageable list of candidates of interest for small-scale

experiments. In addition to identifying modifiers of CF from whole

genome transcriptomic data, GENDULF also successfully identified

the known CF modifier genes contained within multi-genic loci

previously associated with CF severity. At four of five of these loci,

the genes assigned with the lowest P-values from GENDULF coin-

cided with those reported in the literature (Wright et al, 2011;

Corvol et al, 2015). When applied to SMA, the added third disease-

relevant step provided a refined list of modifiers, which were then

tested and validated in cultured cells from SMA patients.

Like CF, SMA is a monogenic disorder with a range of clinical

phenotypes. Several modifier genes have been reported to

modulate SMA downstream of SMN deficiency including plastin

3, neurocalcin delta, and calcineurin-like EF-hand protein 1

(Riessland et al, 2017; Janzen et al, 2018). Perhaps, the most crit-

ical determinant of SMA severity is the amount of SMN2 exon 7

retention. Enhancing exon 7 inclusion is a principal objective of

SMA therapeutics. Nusinersen is an antisense oligonucleotide now

in commercial use that targets an intronic splicing silencer N1

(ISS-N1) in intron 7 of SMN2 sterically hindering the binding of

HNRNPA1 and thus promoting exon 7 inclusion (Hua et al, 2011;

Finkel et al, 2016). Small molecule splice modifiers are currently

in clinical trials and may promote exon 7 inclusion by binding

the 50 splice site of exon 7 and stabilizing U1 snRNP interactions

(Palacino et al, 2015; Sivaramakrishnan et al, 2017). While these

novel therapeutics are improving outcomes in SMA patients, clini-

cal and biochemical responses are variable (Sumner & Crawford,

2018; Ramos et al, 2019), raising the real possibility that modifier

genes play important roles not only in initial SMA disease sever-

ity, but also in therapeutic responsiveness.

When applied to SMA, GENDULF identified a number of possible

modifiers known to be involved in pre-mRNA splicing. The top

predicted modifier, U2AF1, is a known component of the spliceo-

some and important for 30 splice site selection (Lee & Rio, 2015).

While U2AF1 is classically understood to promote 30 splice site

recognition, there is evidence linking U2AF1 depletion to increased

exon inclusion (Kim et al, 2018). The reasons for this are poorly

understood, but in the context of SMN2 may involve reduced recog-

nition of the 30 splice site of exon 8, thus increasing the probability

of 30 splice site recognition at exon 7, as speculated by (Jodelka

et al, 2010). Another consideration is that HNRNPA1 binds an exon

silencer site (ESS) that overlaps with the U2AF1-binding site at the

30 splice site of exon 7. As it has been demonstrated that recruitment

of HNRNPA1 can be U2AF1-dependent (Tavanez et al, 2012), it is

possible that U2AF1 disruption reduces recruitment of HNRNPA1,

thus promoting exon 7 inclusion (Koed Doktor et al, 2011). Regard-

less of the mechanism, our experimental data confirm that knock-

down of U2AF1 is associated with increased SMN2-FL mRNA and

SMN protein expression in patient-derived fibroblasts. These data

are in agreement with prior data from cultured HeLa cells co-trans-

fected with a SMN2-splicing reporter and an siRNA-targeting U2AF1

(Xiao et al, 2012). Importantly, it has also been shown that the

disruptions of U2AF1 expression that occur in patients with lung

adenocarcinoma also cause changes in SMN2 splicing (Kim et al,

2018), emphasizing that variations of U2AF1 and SMN2 splicing also

occur in humans in vivo. Future studies will be needed to determine

how variation of U2AF1 specifically in SMA patients affects disease

severity as well as response to splice-modifying therapeutics. In

addition to U2AF1, the identification of SF3B3 as a modifier whose

downregulation results in a decrease in SMN2-FL and increase in

SMN2Δ7 mRNA levels together imply that GENDULF may also be

used to uncover targets whose activation can improve disease

phenotype.

Like many computational genomics methods, GENDULF

analyzes large-scale, noisy omics data and has a few notable limita-

tions; first, it can only be applied to monogenic diseases in which

low GCD expression is a possible disease mechanism, as Step 1 of

GENDULF relies on analyzing low GCD expression samples from

healthy individuals in GTEx. Second, GENDULF can only be applied

to diseases in which there is considerable phenotypic variability.
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Third, GENDULF has only been applied to disorders with autosomal

recessive inheritance in our study. GENDULF could be extended to

X-linked recessive inheritance for which one must take gender into

account in both steps. Extensions to dominant inheritance disorders

would require evidence of haploinsufficiency rather than a gain of

function mutation. However, even in haploinsufficiency-driven

dominant diseases, sufficiently low expression of the GCD by defi-

nition would be expected to result in the disease phenotype and

would hence not likely be observed in healthy individuals. A fourth

limitation is that GENDULF requires transcriptomics data in both

GTEx (step 1) and derived from disease and control samples (step

2). The case–control data are often of modest size; the tissue that is

most representative of the disease may be missing in GTEx; some

genes or transcripts may have the expression value as 0 for many

samples in GTEx (as we observed for SMN2-specific transcripts);

some genes may not have expression measured at all in the case–

control samples (as we observed for two previously published CF

lung modifier genes). Moreover, the available transcriptomic data

from case–control studies do not always perfectly match the tissue

identity of the healthy tissues available from GTEx, the cell types

collected in GTEx may not represent that most affected in disease,

and different RNA sequencing preparation methods may introduce

additional confounding factors. It is important to note that the sensi-

tivity of GENDULF is generally low, even if substantially higher than

random. Incorporating a disease-specific step into the framework of

GENDULF, as done in the SMA analysis, increased the sensitivity of

the predicted sets and yielded a manageable list of strong candi-

dates. This should be done whenever possible. Regardless,

GENDULF predictions should be followed by experiments to test the

emerging candidates and validate predictions.

Addressing the latter topic, exploration of the literature revealed

several diseases that might be amenable to GENDULF. The relevant

literature includes instances of a GCD with a modifier, instances of

true digenic inheritance where neither gene alone is sufficient to

cause the full disease, and other more complicated two-gene scenar-

ios. When there are sufficiently many examples, these three scenar-

ios can be formally distinguished with machine learning techniques

(Gazzo et al, 2017; Versbraegen et al, 2019). We identified seven

sets of diseases that have so far received considerable attention in

such studies: CF, SMA, globinopathies (thalassemias, sickle-cell

anemia), deafness, long QT syndrome, ciliopathies especially

Bardet–Biedl syndrome, and hypogonadotropic hypogonadism (in-

cluding Kallman Syndrome) (Sch€affer, 2013; Kousi & Katsanis,

2015; Gazzo et al, 2016). These disorders should be amenable to the

GENDULF method except for deafness because measuring gene

expression in the inner ear is challenging. Indeed, previous studies

of digenic inheritance found almost exclusively cases in which

mutations or reduced expression of the second gene are associated

with a more severe phenotype (Gazzo et al, 2016), again with the

exception of deafness (Yousaf et al, 2018). The case of ciliopathies

is striking since every one of the many examples in which two genes

are implicated together as causing or worsening a human ciliopathy,

the deleterious mutation or reduced expression of the second gene

is associated with a more severe phenotype. This phenomenon in

ciliopathies includes the formally identified disease modifier

CCDC28B (Cardenas-Rodriguez et al, 2013) as well as many families

considered to have digenic inheritance in which the primary gene

(here we would call it the GCD) has biallelic mutations and the

secondary gene (here we would call it the PM) has a heterozygous

mutation. In contrast to the human data, a mouse study shows that

mutation of the ciliopathy gene Mkks mitigates the severity of

Cep290 deficiency (Rachel et al, 2012). Thus, ciliopathies would be

good candidates for GENDULF. Additional examples from the litera-

ture are provided in an Appendix Discussion.

Although diseases are often referred to as “monogenic”, there are

multiple genes influencing disease manifestations, patient treatment

strategies, and outcomes (Dipple & McCabe, 2000). Both CFTR

mutations and the splicing variant in SMN2 have the property that

the active protein expression in patients is low, but not completely

absent. Hence, it is possible to find healthy individuals who have

gene expression levels comparable to patients; it remains to be

determined whether GENDULF could work for more extreme cases

in which the expression of the GCD in patients is completely absent.

By using GENDULF, the gray area between a monogenic disorder

diagnosis and disease presentation can begin to become elucidated.

With the growing number of publicly available transcriptomics

resources, GENDULF offers new and innovative ways to study gene

expression. Because alternative splicing and post-transcriptional

modification of many genes can alter protein expression in the

absence of changes at the RNA level, future studies may further

expand the scope of GENDULF to assess changes of disease genes at

the proteome and phosphoproteome levels, which have not been

included in this analysis. Importantly, GENDULF can be readily

modified to incorporate such additional data types, allowing for the

discovery of novel modifiers that may function at the post-transcrip-

tional level.

Materials and Methods

Reagents and Tools table

Reagents/Resource Reference or Source Identifier

Software

GENDULF This study https://github.com/noamaus/GENDULF

Gene expression datasets

Healthy gene expression data The GTEx Consortium (2013)

CF lung case–control Wright et al (2006) GSE2395

CF colon Stanke et al (2014) GSE15568
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Reagents and Tools table (continued)

Reagents/Resource Reference or Source Identifier

SMA muscle This study GSE159642

SMA spinal cord This study GSE159642

Curated modifiers list Dataset EV2

Transcript distinction

TruSeq RNA protocol The GTEx Consortium (2013)

Other

siRNA/SSO Appendix Table S3

Taqman Probes for qPCR detection Appendix Tables S4 and S5

SYBR Green primers for qBase + GeNorm analysis Appendix Table S6

Antibodies and dilutions for Western blot Appendix Table S7

Methods and Protocols

The GENDULF pipeline
GENDULF is implemented as a set of Python functions in a single

module. As described in Fig 1 and in the following subsections,

GENDULF includes two or three major steps.

1 GENDULF Step 1. Identification of PM (potential modifier)

genes. The first step aims to identify genes that, when downreg-

ulated, may compensate for the low expression of a GCD in

healthy individuals. This step takes as input only data from

healthy individuals in GTEx and the user specifies one or more

tissues of interest, such as lung for CF. Using the reads per kilo-

base of transcript per million mapped reads (RPKM) gene

expression values downloaded directly from the GTEx data

version V6p, GENDULF identifies genes that have very low

expression (in the bottom 10% of expression levels) in healthy

individuals in which the GCD is particularly low (in the bottom

10% of expression levels). To evaluate the significance of the

overlap between samples with low expression of the candidate

and that of the GCD, we use a Bonferroni-corrected hypergeo-

metric P-value with a = 0.01, i.e., P-value < 0.01/m when m is

the number of hypotheses tested (genes). We focus on the

bottom 10% as in CF, patients with less than 4–20% of normal

CFTR expression can show clinical phenotypes (Kerem et al,

1997; Ramalho et al, 2002). The healthy tissue that is studied is

that most affected in the disease; if multiple tissues are affected,

the analysis is performed for each affected tissue separately and

then the intersection of the genes selected for every tissue is

passed to step 2. The output of step 1 is a list of genes that have

lower than expected expression in individuals who are in the

lowest 10% of expression of the GCD. The 10% threshold can

be changed by the user.

2 GENDULF step 2 and the Empirical P-value computation. While

the first step of GENDULF may identify candidates that are

simply co-expressed with the GCD that may or may not have a

direct functional association, step 2 of GENDULF is designed to

eliminate such PMs. In step 2, GENDULF compares the expres-

sion of each PM in an independent (non-GTEx and not pre-

selected to have low expression of the GCD) set of affected cases

vs. controls, testing the hypothesis that the PM expression is

higher or comparable in the cases compared with the controls.

GENDULF then excludes candidates showing a clear pattern of

co-expression with the GCD in both healthy and affected individ-

uals and are hence unlikely to be true modifiers. GENDULF Step

2 thus returns a subset of the PM genes, termed disease-associ-

ated PM (DPM) genes, which are more likely to compensate for

the loss of the GCD in the disease.

• To compare the expression of the PMs in cases and controls, we

use a permutation test rather than a standard test of differential

expression. By doing so, step 2 excludes PMs that are low express-

ing in cases relative to controls, yielding a list of genes whose

expression is either higher or comparable between cases and the

controls. Because the tissue of origin may differ between the GTEx

and the case–control data, we compare the PM ranks between the

cases and controls with the PM ranks in the GTEx data between

GCD-low and non-GCD-low samples, as explained below.

• The sample size of the case–control studies analyzed in step 2 is

typically small, usually an order of magnitude smaller than the

sample size available to us in healthy tissues and used in step 1

of GENDULF. In addition, the tissue of origin in the case–control

studies may not perfectly match that of GTEx, used for step 1,

and the usage of different sources may introduce other confoun-

ders and technical covariates. To overcome these challenges, we

introduce an empirical P-value to quantify the difference in the

PM-GCD association between healthy and disease tissues. For

this, the following notations are defined: the healthy-control

samples used only in step 2 are denoted as Sc, whereas the

disease samples as SD. The GTEx tissue samples from step 1

where the GCD is low (bottom 10 percentile) are denoted as SGL,

and the rest of the GTEx samples as SGH.

• In this test, the null hypothesis H0 is that the PM expression is

always low when the GCD is low, regardless of the tissue type

(GTEx healthy tissues of case–control data). Hence, the null

hypothesis is that the PM expression is as much lower in SD
compared with Sc, as it is lower in SGL compared with SGH. The

alternative hypothesis HA is that the PM expression is low when

the GCD is low only when the phenotype observed is healthy.

Hence, the alternative hypothesis is that the PM expression is not

lower in SD compared with Sc as much as it was lower in SGL
compared with SGH.

• To perform this test, we randomly sample 10,000 groups of (A)

|SD| samples from the respective GTEx healthy tissue in which the
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GCD is low (maintaining the GENDULF defined threshold, of

bottom 10% of GCD expression levels) and (B) |Sc| samples where

the GCD expression is not low. Within each group, sampling is

without replacement. Thus, each group of |SD| GCD-low expres-

sion samples, and |Sc| not GCD-low expression samples has the

same sample sizes as the original case–control study. For each

group i (=1,. . .,10,000), we calculate the number of Pairs Pi
between from all possible pairs < xL, xH > (xL in SGL and xH in

SGL), where xL < xH. Since there are 10,000 sampled groups, this

step gives 10,000 number of pairs Pi. We count the number of

times, T, the number of pairs < yD, yC > ( yD in SD and yC in Sc)

where yD < yC is greater or equal to Pi. We define the permutation

P-value to be the ratio of T divided by 10,000, the number of

replicates. If this empirical P-value is smaller than 0.05 (i.e.,

T < 500), H0 is rejected. Because T is small, the event that the

number of pairs is high in the case–control study compared with

a sampled group of healthy individuals is rare. Therefore, we

infer that the difference in gene expression of the PM in disease

vs. control is consistently of greater magnitude in healthy tissues

with low vs. not low GCD expression.

Application of GENDULF to CF
For the identification of CF genetic modifiers, data from previously

published case–control studies were separately analyzed for lung

and colon tissues, as distinct CF phenotypes are associated with

each of these tissues:

For lung, the case–control gene expression study used is from

nasal brushings of the inferior turbinates of mild and severe CF

patients (with identical homozygote DF508 mutations) and healthy

controls (Wright et al, 2006).

• For colon, the case–control gene expression study used is from

rectal mucosal epithelia from CF patients (bearing DF508 muta-

tion) and healthy controls (Stanke et al, 2014).

(Appendix Table S1)

• To evaluate an overlap between GENDULF-predicted modifiers

and previously verified modifiers collected from the literature

(Dataset EV2), we applied the hypergeometric enrichment test.

The hypergeometric test is standard in statistics when comparing

the overlap between a new set of multiple items to an established

set of multiple items (Johnson & Kotz, 1977). The hypergeometric

test is widely used in interpreting results of gene expression analy-

sis and GWAS to assess whether the set of genes identified is

enriched for any class of genes such as (i) genes already published

or (ii) genes in a particular biological pathway such as DNA

damage repair (Falcon & Gentleman, 2008). In the standard appli-

cation of the hypergeometric test in genomics, all genes are

weighed equally in the analysis, regardless of how much data

there is for each gene or by what ratio the gene expression differs

or according to what P-value is assigned to the gene (Falcon &

Gentleman, 2008).

Application of GENDULF to SMA and a disease-specific
GENDULF step 3
The two steps of GENDULF were applied consecutively to muscle

and spinal cord tissues, as a similar SMA phenotype is associated

with both of these tissues.

• GENDULF Step 1 was applied to the two tissues (muscle, spinal

cord) sequentially, and then, the results are combined via inter-

section of gene lists during the SMA analysis.

• GENDULF Step 2 was applied to identify genes from step 1 that

lose their association with SMN1 in disease tissues based on an

empirical P-value calculation. RNA sequencing data from SMA

and control muscle and thoracic spinal cord tissues were analyzed

to identify those genes from step 1 that were not significantly

downregulated in the disease tissues vs. healthy controls.

• In the case of SMA, GENDULF adds a third step. In this SMA-

specific step, we search for PMs that passed the test at step 2, and

whose decreased expression is associated with higher expression

of the full-length (exon 7 containing) SMN2 transcript relative to

the truncated SMN2 transcript, as full-length SMN2 can at least

partially compensate for the function of the mutated SMN1 and

can influence disease severity. To this end, we searched in GTEx

for genes whose downregulation is associated with a higher ratio

of full-length SMN2 vs. exon 7 skipped SMN2 in healthy muscle

tissues (as GTEx spinal cord has insufficient number of samples

for this evaluation). To this end, we applied a one-sided rank-sum

test testing the association of the expression of each PM emerging

from step 2 with a high (> 1) ratio of full-length to exon 7 skipped

SMN2 expression levels. The third step was used as a criterion to

rank the PMs, which revealed U2AF1 as the top predicted modifier

for SMA.

Power analysis estimating the number of positive and negative
samples necessary for GENDULF step 2
Because step 2 requires an independent sample dataset, which may

not be available in published data, users of GENDULF may naturally

be interested in an estimate of how many cases and controls should

be collected to form such a case/control set. Therefore, GENDULF

offers a power calculation function to detect which PMs reported in

step 1 have a high probability to pass the test in step 2 as a function

of the number of cases and controls used in step 2 (thus limiting

type 2 error of GENDULF step 2).

• The empirical test receives as input

1 The tissue of interest,

2 A GCD,

3 A PM (found in GENDULF step 1),

4 N = number of positive (case) and negative (control)

samples.

It outputs the level of confidence (likelihood) in which

GENDULF step 2 is expected to correctly identify the PM if it

is a DPM.

• The procedure applies (R = 10) iterations of sampling N samples

of the GCD expression from SGL and again another N samples from

the same distribution SGL, and runs GENDULF step 2 procedure to

examine if it correctly accepts this PM as DPM (as the sampled

distributions are not the same as the original distribution, which

are from SGL and SHL). The fraction of times (out of denominator

R) that this procedure accepts the PM as DPM is the level of confi-

dence in which GENDULF step 2 is expected to correctly identify

the PM if it is a DPM. To make an overall estimate for the minimal

number of samples (case and controls) to collect, the minimal
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value of N with which the average over the confidence levels for

all PMs of a given tissue and GCD (obtained from GENDULF step

1) is above 0.8 is taken. The power calculation for CF in lung

tissue is provided in Appendix Fig S2.

• In addition to the standard power analysis that estimates the

number of cases and controls that would limit type 2 error,

GENDULF can estimate the number of cases and controls that

would limit type 1 error, and thereby improve its positive predic-

tive value (PPV). To evaluate the “prospective PPV”, we consider

a situation in which the null hypothesis should not be rejected;

i.e., we want to avoid a false positive that would decrease the

PPV. This estimation of prospective PPV differs fundamentally

from the calculation of “retrospective PPV” in Appendix Fig S1C

because the prospective calculation looks only at hypothetical

expression data to determine what are true-positive replicates and

false-positive replicates. In contrast, for the retrospective analysis

in Appendix Fig S1C, the true positives are the predicted modifiers

that have been reported in the literature and the false positives

are predicted modifiers that have not been reported in the litera-

ture. The primary motivation for new methods such as GENDULF

is the general awareness that many modifier genes still remain to

be found, given our yet limited knowledge of the biology of many

monogenic disorders. Hence, the retrospective PPV for the

reported modifiers as shown in Appendix Fig S1C is expected to

be low, even if the hypothetical PPV based on simulations may be

high.

• As for the power estimation, we sample N cases and N controls.

For this type 1 error estimation, we take N samples of the GCD

expression from SGL and N samples from SGH and evaluate

whether the null hypothesis should be rejected with each sample.

We do this sampling for all PMs of a given tissue and GCD (ob-

tained from GENDULF step 1). Then, we compute what is the

probability among all PMs that the type 1 error is below 0.05. We

found that for any number of samples considered in

Appendix Fig S2, the probability is greater than 0.95 that the type

1 error is below 0.05.

Evaluation of GENDULF for identifying modifiers in candidate
chromosomal segments arising from GWAS or linkage studies
In principle, GENDULF can search for PMs across the genome.

In practice, it is also of interest to apply GENDULF to selected

lists of PMs produced by other methods. GENDULF supports this

functionality by allowing the user to specify a list of genes (or

all genes) in a genomic interval, which GENDULF can then

further rank according to their likelihood to be disease modifiers.

For example, GWAS are often used for the identification of

genetic modifiers and genetic linkage analysis of pedigrees has

also been attempted. However, these studies often reveal a chro-

mosomal segment that may include multiple genes. As a comple-

mentary analysis to our primary method of de novo modifier

prediction, we studied the ability of GENDULF to identify other

potential modifiers lying in these regions.

• We separately analyzed five loci implicated in the CF lung pheno-

type (Corvol et al, 2015) and the two loci implicated in housing

modifiers of the CF intestinal phenotype (Sun et al, 2012). We

used the UCSC Genome Browser (https://genome.ucsc.edu) to

identify genes closely located within each reported genomic region

and evaluated the P-value resulting from applying GENDULF step

1 for each of these genes.

• For the lung phenotype, a similar trend was observed for four of

the five loci (Fig 2G), which was not observed for the fifth locus

(Appendix Fig S3A).

• For the colon phenotype (meconium ileus), the trend observed

was similar, but of lesser strength (Appendix Fig S3B).

• To evaluate the robustness of our analysis, we randomly shuffled

the CFTR expression in GTEx healthy lung samples and repeated

the GENDULF analysis. For all 10,000 repetitions, we do not find

any gene with a significant P-value when correcting for multiple

hypotheses testing (GENDULF step 1, hence yielding a permuta-

tion P-value < 1e-4).

Robustness analysis applied to CF lung disease
We performed a sensitivity, specificity, and positive predictive value

(PPV) analysis for the CF modifiers identified for lung tissues

(where the largest number of previously reported modifiers is avail-

able).

• To evaluate the sensitivity of GENDULF step 2, we sampled sets

of patients with similar sizes as the case–control data, in the same

manner described for the empirical P-value calculation for

GENDULF step 2.

• For all measures, we find that the results reported are not too

sensitive to small variations in the threshold values used in this

step: using 0.15, 0.2, 0.35, and 0.3 yield comparably significant

results (Appendix Fig S1). However, lowering the threshold below

0.1 yields far less significant results, likely because the number of

samples having this percentile of expression is too small.

• The list of candidates obtained with GENDULF is highly enriched

with previously reported modifiers, and the sensitivity is over 2

orders of magnitude higher than random (Appendix Fig S1). To

narrow down to a smaller list of modifiers for small-scale

experiments, it is recommended to use an additional step, either by

incorporating GENDULF with another approach (as demonstrated

for CF), or to include a disease-specific knowledge-based step

(as demonstrated for SMA), which also allows a ranking of the

predictions.

• To assess whether the GENDULF P-values are inflated, we did the

following computational experiments for CF and lung tissue. First,

we tabulated the step 2 P-values for all genes with enough lung

data in GTEx if all genes pass step 1 regardless of the step 1 P-

value (Appendix Fig S6A and B). Second, we tabulated the step 2

P-values for all interesting genes that pass the P-value threshold at

GENDULF step 1 (Appendix Fig S6C). 4% of the P-values

are < 0.01 and 1% of the P-values are < 0.001. The rightward

shift in the plot of Appendix Fig S6C is expected because it repre-

sents the signal of true modifiers as supported by the high speci-

ficity in Appendix Fig S1.

SMA human tissue collection as a precursor to validating results
from GENDULF step 3 for SMA
Following legal and institutional ethical regulations, as well as

patient- or parent-informed consent, thoracic spinal cord or iliop-

soas was dissected from patients at the time of autopsy and immedi-

ately flash frozen in liquid nitrogen. Samples were stored at �80°C
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until RNA isolation for RNA sequencing experiments. Protocols for

autopsy were approved by the Institutional Review Boards at the

Johns Hopkins University School of Medicine. Some thoracic spinal

cord samples were obtained through the National Institutes of

Health NeuroBioBank (University of Maryland, Baltimore, MD)

following proper procedures. The human subject experiments

conformed to the principles set out in the WMA Declaration of

Helsinki and the Department of Health and Human Service Belmont

Report. More details about the SMA samples are provided in

Appendix Tables S1 and S2.

SMA RNA isolation and library preparation as precursor to
validating results from GENDULF step 3 for SMA
Total RNA was extracted from about 20 mg tissues using RNeasy�

Plus Mini Kit (Qiagen, Valencia, CA) according to manufacturer’s

instructions. The RNA integrity (RIN) was examined using TapeSta-

tion 2200 (Agilent, Santa Clara, CA). All the RNA used in RNA

sequencing had a RIN of 5.8 or above. The RNA-seq libraries were

prepared using TruSeq Stranded Total RNA Library Prep Kit with

Ribo-Zero Gold (Illumina, La Jolla, CA) following the manufac-

turer’s instruction. The libraries were pooled for pair-end 50-bp

sequencing on HiSeqTM 2500 (Illumina, La Jolla, CA). Paired-end

reads were then aligned to hg19 reference sequence using the STAR

aligner (Dobin et al, 2013) with default parameters. Gene expression

was quantified using the HTSeq package (Anders et al, 2015) with

the intersection_nonempty option and the GENCODE v19 annota-

tion (GRCh37) as the reference.

Identification of SMN1 and SMN2 transcript isoforms as a
precursor to validating results from GENDULF step 3 for SMA
SMN1 and SMN2 transcript isoforms were classified in the GTEx

data(The GTEx Consortium, 2013). The full-length SMN2 transcript

used for identification is ENST00000380743, and the SMN2D7 tran-

script is ENST00000380741. The full-length SMN1 transcript used

for identification is ENSG00000172062 (the sum of all SMN1 tran-

scripts). The distinction between these different transcripts was

made using long RNA-seq reads with 76-base, paired-end Illumina

TruSeq RNA protocol, and unique read mapping that enabled identi-

fication of the close splice isoforms with accuracy that could not be

obtained with expression arrays (The GTEx Consortium, 2013).

SMA-derived cell lines and transfections
We obtained human SMA patient-derived fibroblast (Coriell Cell line

ID: GM00232; 0 copies SMN1; 2 copies SMN2) and unaffected SMA

carrier-derived fibroblast (Coriell Cell line ID: GM08333; 3 copies

SMN1; 1 copy SMN2) cell lines from Coriell Cell Repository and

HEK293T cells from American Type Culture Collection (ATCC). We

maintained HEK293T cells and fibroblasts in Dulbecco’s modified

Eagle medium supplemented with 10% fetal bovine serum, 50 U/ml

penicillin, and 50 µg/ml streptomycin.

HEK293T cells were transfected with siRNAs and splice skipping

oligonucleotides (SSOs provided by Ionis Pharmaceuticals) using

DharmaFECT 1 (GE Healthcare) using recommended manufacturer’s

instructions. Fibroblasts were transfected with siRNAs and SSOs using

cytofectin (Generously provided by Ionis Pharmaceuticals). siRNAs,

SSOs, and lipid reagent were diluted in reduced serum Opti-MEM

medium, transfection complexes were added dropwise to the cells,

and siRNAs/SSOs were incubated for the indicated time periods before

RNA or protein isolation. Sequence information for SSOs and catalog

numbers for siRNAs used are listed in Appendix Table S3.

RNA extraction and quantitative PCR on SMA samples
and controls
RNA was isolated using the RNeasy mini kit (Qiagen) per manufac-

turer’s recommendations including optional on-column DNase treat-

ment. First strand cDNA was synthesized using total RNA and the

High Capacity cDNA conversion kit (Thermo Fisher) per manufac-

turer’s recommendations. Quantitative real-time PCR was performed

with the HT7900 Real-Time PCR System (Thermo Fisher) using

Taqman Universal PCR master mix (Thermo Fisher) or the SYBR

Green universal PCR master mix (Thermo Fisher) and the appropri-

ate custom Taqman assays (Thermo Fisher, S6), commercially avail-

able Taqman assay (Thermo Fisher, Appendix Table S4), or primers

(Appendix Table S5).

• RT–qPCR experiments were quantified using qBase + software

(Biogazelle) (Vandesompele et al, 2002). For each experiment,

eight reference genes were run. GeNorm analysis was performed

to evaluate and select (at least 2 of) the most stable reference

genes (Vandesompele et al, 2002).

• Target gene expression levels were normalized to the most stable

reference genes and calibrated to a control, and all expression

levels are expressed as calibrated normalized relative quantities

(CNRQ) (Vandesompele et al, 2002), except where indicated.

Sequence information for SYBR Green primers used in GeNorm

analysis listed in Expanded View Table S6.

Western blots for proteins encoded by candidate SMA PMs
RIPA supplemented with protease inhibitors was incubated with

samples for 10 min on ice. Samples were kept on ice and sonicated

using a rod sonicator with 30× 1-s pulses. Samples were centrifuged

at 20,000 g for 15 min at 4°C to clear cellular debris. Protein

concentrations were determined using the MicroBCA Protein Assay

kit and a SpectraMAX Plus spectrophotometer. Equal amounts of

protein were diluted in RIPA buffer, supplemented with sampling

buffer (250 mM Tris–HCl pH 6.8, 10% SDS, 30% glycerol, 5% b-
mercaptoethanol, and 0.02% bromophenol blue), and denatured for

10 min at 95°C. Protein lysates were resolved on 4–15% Mini-

PROTEAN TGX Precast Protein Gels (Biorad). The Trans-Blot Turbo

transfer system (Bio-Rad) was used to transfer proteins to PVDF

membranes. Membranes were blocked for 60 min at room tempera-

ture (RT) in 5% BSA in TBS supplemented with 0.1% Tween-20.

Primary antibodies were diluted in 2.5% BSA in TBS supplemented

with 0.1% Tween-20 and incubated with the membrane rocking

overnight at 4°C. Secondary antibodies conjugated to alkaline phos-

phatase were diluted 1:5,000 in 2.5% BSA in TBS supplemented

with 0.1% Tween-20 and incubated for 60 min at RT. Protein bands

were visualized by incubating membranes with enhanced chemiflu-

orescence (ECF) for 5 min at RT and scanned utilizing the LAS4000

(GE Healthcare) equipped with a Cy2 filter. A list of antibodies and

dilutions used is available in Appendix Table S7.

Statistical analyses of in vitro data from SMA cases and controls
Statistical analysis was performed using GraphPad Prism version

7.03. The level of significance was set to 0.05. One-way ANOVA

was performed to compare treatments groups to a control group
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(scrambled siRNA). For fibroblast experiments, control fibroblast

line was not included in statistical analysis. Bonferroni test was

used to correct for multiple comparisons in all cases.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

i Both the datasets and code are publicly and freely available from

the GitHub repository: https://github.com/noamaus/GENDULF.

ii The transcriptomic data of the SMA patients analyzed are avail-

able from GEO (GSE159642; https://www.ncbi.nlm.nih.gov/ge

o/query/acc.cgi?acc=GSE159642).

Expanded View for this article is available online.
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