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Context: Rehabilitation after spinal cord injury (SCI) relies on the use of exercise training, which has limited
functional gains. There is a need to develop more efficient approaches to facilitate recovery after SCI.
Methods: This review focuses on a neuromodulation method where transcranial magnetic stimulation (TMS)
over the primary motor cortex is paired with transcutaneous electrical stimulation over a peripheral nerve to
induce plasticity at corticospinal-motoneuronal synapses. These two stimuli are applied at precise inter-
stimulus intervals to reinforce corticospinal synaptic transmission using principles of spike-timing-dependent
plasticity applied alone or in combination with exercise training.
Results: Transmission in residual corticospinal axons, assessed using TMS and maximal voluntary motor
output, increased after stimulation combined with exercise training in persons with SCI. There were also
significant improvements in functional outcomes, including walking speed and grasping function, which
persisted after 6–9 months post stimulation. Moreover, the data suggested that the effects of the stimulation
protocol can be augmented with a higher number of sessions and with multiple stimulation sites in the
spinal cord.
Conclusions: Voluntary movement is enhanced in people with SCI through the strengthening of corticospinal-
motoneuronal synapses using paired stimulation. This neuromodulation technique represents a novel powerful
strategy to facilitate functional recovery after SCI.
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Introduction
Spinal cord injury (SCI) can lead to devastating conse-
quences predominantly resulting from impairment in
motor function. To date, there is no medical treatment
that improves recovery of motor function after SCI.
Considering that SCI rarely results in a complete
spinal cord transection,1 promoting neuroplasticity to
strengthen residual connections is key to restoration
of motor function. The corticospinal tract is a major
descending pathway in the spinal cord that contributes
to the control of voluntary movement.2 Therefore,

interventions that successfully engage residual corti-
cospinal neurons and strengthen the connections
between corticospinal neurons and spinal motoneurons
are crucial to increase corticospinal transmission to
facilitate functional recovery. The conventional
approach to promote plasticity following SCI is rehabi-
litative exercise training.3,4 While exercise training aims
to drive neural networks in an activity-dependent
manner to facilitate functional recovery,3,4 the func-
tional gains remain limited.
Invasive and noninvasive neurostimulation strategies

have been combined with traditional rehabilitative exer-
cise training in an attempt to restore function more
effectively following SCI.5–13 Combined with exercise
training, several approaches have demonstrated to
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more efficiently recover function in people with com-
plete or incomplete SCI, surpassing the effects of exer-
cise training alone. Specifically, epidural5,9,13 or
transcutaneous8,10 stimulation of the spinal cord and
paired associative stimulation targeting the spinal
cord11 have demonstrated comparable effects in recent
studies. Paired associative stimulation targeting the
spinal cord, also referred to as paired corticospinal-
motoneuronal stimulation (PCMS), is based on the
well-known principles of spike-timing-dependent plas-
ticity14,15 and it is a relatively new method compared
to epidural and transcutaneous stimulation approaches.
This review will focus on the application of PCMS in
humans with SCI to discuss its potential as a clinical
therapeutic intervention.

Short-term effects of PCMS
PCMS is an efficient physiological strategy to enhance
connectivity at corticospinal-motoneuronal synapses,
thereby exploiting the naturally occurring adaptation in
neuronal connections based on principles of spike-
timing-dependent plasticity – ‘neurons that fire together,
wire together’.15 This mechanism relies on precisely
timed stimulation of presynaptic neurons just prior
(within a fewmilliseconds) to stimulation of their postsyn-
aptic neurons to engage endogenous plasticity, which
enhances synaptic strength. In humans, PCMS targeting
corticospinal-motoneuronal synapses can induce tempor-
ary increases in corticospinal excitability and motor
output in people with incomplete chronic SCI6,7,11,12

and in people without SCI.16,17 Specifically, PCMS-like
plasticity is elicited at the corticospinal-motoneuronal
synapse via the combination of peripheral nerve stimu-
lation and transcranial magnetic stimulation (TMS).
Descending volleys elicited by TMS over the primary
motor cortex can be precisely timed to reach the corti-
cospinal-motoneuronal synapses in the spinal cord a
few milliseconds prior to antidromic volleys elicited by
electrical stimulation of the peripheral nerve (Fig. 1).
Bunday and Perez6 applied PCMS for the first time in

humans with incomplete cervical SCI and demon-
strated that plasticity at residual corticospinal-moto-
neuronal synapses can be achieved. These authors
showed that the arrival of presynaptic volleys prior to
motoneuronal volleys in the spinal cord enhanced cor-
ticospinal excitability in the first dorsal interosseous
(FDI) muscle, and in hand motor function as measured
by time to perform the Nine-Hole-Peg-Test.
Importantly, the changes in corticospinal transmission
positively correlated with enhancements in voluntary
motor output, suggesting an association between
motor output and strength of the induced plasticity.

In a subsequent study, PCMS was used to target
spinal synapses of lower-limb motoneurons in humans
with chronic incomplete SCI.12 During PCMS, presyn-
aptic volleys elicited by TMS of the leg motor cortex
arrived at the spinal cord a few milliseconds prior to
antidromic volleys elicited by electrical stimulation of
the common peroneal nerve. The results showed that
the size of motor evoked potentials (MEPs) in the tibia-
lis anterior muscle increased after PCMS but not sham-
stimulation. In addition, physiological changes present
after the stimulation were accompanied by increases
in electromyographic activity in the tibialis anterior
and increases in isometric dorsiflexion force. Overall,
the effect of PCMS on physiological and behavioral
outcomes in upper and lower limb muscles occurred
after 100–200 pairs of stimuli at 0.1 Hz and lasted for
up to 30–120 min.
Additionally, the effect of PCMS on corticospinal

excitability when pairs of stimuli were delivered
during short-lasting low-intensity isometric voluntary
contractions was explored.7 The results showed that
MEPs elicited by TMS and electrical stimulation at
the cervicomedullary junction increased to a larger
extent when PCMS was applied during voluntary
activity compared with rest in SCI participants. Here,
SCI participants who did not respond to PCMS at
rest responded to voluntary activity and those partici-
pants who responded to both protocols showed larger
increments in corticospinal transmission when PCMS
was applied during voluntary activity. Possibly, this is
because spinal lesions are associated with reduced cor-
ticospinal inputs to motoneurons and increasing the
number and size of descending volleys by voluntary
contraction could boost spinal plasticity after SCI.

Long-term effects of PCMS
After proof-of-principle studies showing that PCMS
can elicit short-term functional improvements in both
upper and lower extremities after SCI, efforts have
been made to potentiate the aftereffects of this type of
stimulation. For the first time, the clinical potential of
PCMS was tested when this stimulation was combined
with exercise training for repeated sessions. Jo and
Perez11 studied individuals with different levels of
chronic incomplete SCI who underwent 10 sessions of
PCMS with or without exercise training. Upper limb
exercises involved gross and fine grasping and hand
cycling, and lower limb exercises involved over-ground
and treadmill walking, and stair climbing. Note that
in this study, we were able to involve people with differ-
ent levels of SCI and therefore during PMCS peripheral
nerve stimulation was delivered to different nerves to
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target different muscles (ulnar nerve at the wrist to
target the first dorsal interosseous; median nerve at
the wrist to target the abductor pollicis brevis; brachial
plexus at the Erb’s point to target the deltoid and biceps
brachii; common peroneal nerve under the head of the
fibula to target the tibialis anterior). The results showed
that corticospinal excitability and maximal voluntary
contraction in targeted muscles increased ∼50% after
PCMS with or without exercise but not after sham-
stimulation with exercise, suggesting that the exercise
program tested alone was not sufficient to elicit physio-
logical changes. Although previous studies showed that
a single session of PCMS facilitated small levels of
voluntary output after SCI,6,12 it did not increase
maximal voluntary contraction.18 However, the results
of this trial suggested that repeated stimulation sessions
potentiated the effect on maximal voluntary contrac-
tions enhancing the therapeutic potential of this
approach. Another important result was that behavior-
al effects obtained after 10 sessions were preserved for
up to 6 months in the group receiving PCMS combined
with exercise but not sham-stimulation, suggesting that
this stimulation protocol can be used to maximize the
effect of exercise rehabilitation (Fig. 2).

One of the promising features of PCMS is its func-
tional effects after repeated sessions. In a follow-up
study, we applied PCMS combined with exercise train-
ing for 40 sessions and targeted multiple spinal levels in
parallel.19 Although its application has been restricted
to one specific muscle at a time in previous studies,
PCMS in theory could target multiple muscles if each
antidromic volley from different peripheral nerves is
precisely timed with the corresponding descending
volleys. With this principle, our precisely timed stimu-
lation protocol targeted corticospinal-motoneuronal
synapses of multiple upper and lower limb muscles sim-
ultaneously in eight different muscle groups. We found
that after 40 sessions, corticospinal responses increased
by 328% and maximal voluntary motor output by 193%
in all target muscles. Parallel to changes in electro-
physiological parameters reflecting synaptic poten-
tiation, participants improved significantly across
several functional metrics. The time to perform a grasp-
ing task and 10-m walk decreased ∼50% (compared to
20% after 10 sessions) and persisted 9-month post-
intervention. Also, both motor and sensory function
evaluated by the International Standards for
Neurological Classification of Spinal Cord Injury

Figure 1 Illustration of paired corticospinal-motoneuronal stimulation (PMCS). (a). Corticospinal neurons are activated via
transcranial magnetic stimulation (TMS) over each motor cortex (green lines). Spinal motor neurons are activated antidromically
via peripheral nerve stimulation (purple line). (b). The interstimulus interval (ISI) between paired pulses allows descending volleys,
elicited by TMS, to arrive at the presynaptic terminal of corticospinal neurons (1st, green spike) 1–2 ms before antidromic volleys,
elicited by peripheral nerve stimulation, arrive at the dendrites of the corresponding spinal motor neurons (2nd, purple spike). The
precise timing is measured for each muscle targeted using central and peripheral conduction times.
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(ISNCSCI) exam significantly improved after 40 ses-
sions. The functional gains in this study were compar-
able to those reported with epidural stimulation13 but,
notably, with significantly less sessions. Although
further investigations are needed to adequately deter-
mine superiority in the efficiency of different types of
neuromodulation techniques, our results strongly
support the view that targeting spinal synapses using
principles of spike-timing-dependent plasticity rep-
resents a novel effective strategy to facilitate exercise-
mediated recovery in humans with different levels of
SCI.

Conclusions
We propose that noninvasive stimulation targeting cor-
ticospinal-motoneuronal synapses using principles of
spike-timing-dependent plasticity can represent a
method to strengthen simultaneously multiple lower
and/or upper limb muscles after SCI. Overall,
approaches targeting corticospinal-motoneuronal

synapses represent a new promising tool to promote
meaningful functional recovery after SCI.
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