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Abstract
Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene
transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs)
involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG
diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox
gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral
metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing
whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs
associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs
(80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in
unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had
distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling
processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline
for their inclusion in the ecosystem and geochemical models.

Introduction

Earth’s biogeochemical cycles are driven by microbial
interaction networks, with significant contributions from
the oceans [1, 2]. These networks and the distribution of
metabolic pathways within them are modulated by
environmental factors, grazing, and viral infections.
Ocean viruses are abundant, kill ~20–40% of microbial
cells per day, transfer genes between microbial hosts, and
can more subtly impact host physiology through tempe-
rate and inefficiently lytic infections [3–9]. Virus-infected
cells, termed virocells, have dramatically altered meta-
bolic output [10–12], but can also directly impact bio-
geochemical cycling through virus-encoded auxiliary
metabolic genes (AMGs) [9, 13–20]. Culture-based stu-
dies have shown that cyanophages (viruses of photo-
synthetic cyanobacteria) routinely encode core and
ancillary photosynthesis genes. Virus-encoded AMGs are
widespread among cyanophages with long latent periods
[13], and can be expressed during infection [14–19] to
enable the infecting virus to tailor host metabolism to its
own needs. AMGs have been transferred to and from

These authors contributed equally: M. Consuelo Gazitúa, Dean R. Vik

* Matthew B. Sullivan
sullivan.948@osu.edu

1 Department of Microbiology, The Ohio State University,
Columbus, OH 43210, USA

2 Viromica Consulting, Santiago, Chile
3 DOE Joint Genome Institute, Berkeley, CA, USA
4 Department of Ocean, Earth and Atmospheric Sciences, Old

Dominion University, Norfolk, VA, USA
5 Woods Hole Oceanographic Institution, Woods Hole, MA, USA
6 Department of Microbiology and Immunology, University of

British Columbia, Vancouver, BC, Canada
7 Departamento de Oceanografía & Instituto Milenio de

Oceanografía, Universidad de Concepción, Concepción, Chile
8 Department of Civil, Environmental and Geodetic Engineering,

The Ohio State University, Columbus, OH, USA

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-020-00825-6) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00825-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00825-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00825-6&domain=pdf
http://orcid.org/0000-0002-4223-1283
http://orcid.org/0000-0002-4223-1283
http://orcid.org/0000-0002-4223-1283
http://orcid.org/0000-0002-4223-1283
http://orcid.org/0000-0002-4223-1283
http://orcid.org/0000-0002-7546-899X
http://orcid.org/0000-0002-7546-899X
http://orcid.org/0000-0002-7546-899X
http://orcid.org/0000-0002-7546-899X
http://orcid.org/0000-0002-7546-899X
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-5831-5895
http://orcid.org/0000-0002-4889-6876
http://orcid.org/0000-0002-4889-6876
http://orcid.org/0000-0002-4889-6876
http://orcid.org/0000-0002-4889-6876
http://orcid.org/0000-0002-4889-6876
http://orcid.org/0000-0002-9501-5576
http://orcid.org/0000-0002-9501-5576
http://orcid.org/0000-0002-9501-5576
http://orcid.org/0000-0002-9501-5576
http://orcid.org/0000-0002-9501-5576
http://orcid.org/0000-0001-8398-8234
http://orcid.org/0000-0001-8398-8234
http://orcid.org/0000-0001-8398-8234
http://orcid.org/0000-0001-8398-8234
http://orcid.org/0000-0001-8398-8234
mailto:sullivan.948@osu.edu
https://doi.org/10.1038/s41396-020-00825-6
https://doi.org/10.1038/s41396-020-00825-6


viruses over evolutionary timescales [13, 20], and likely
provide a fitness advantage to the virus during infection
[21, 22]. Metagenomic surveys using high-throughput
sequencing platforms and advanced assembly methods
now provide sufficient genomic coverage for taxonomic
identification [23, 24], which helped identify AMGs
associated with functions beyond photosynthesis, includ-
ing nearly all of central carbon metabolism [25], phos-
phate scavenging [26, 27], sulfur cycling [28, 29], and,
most recently, nitrogen (N) cycling genes including PII (a
global N regulator) and amoC (ammonia monooxygenase
subunit C) [30, 31].

Notably, however, AMG studies in the ocean have
largely focused on surface ocean waters where photo-
synthesis is the dominant source of organic carbon. This
leaves AMGs in oxygen minimum zones (OMZs), which
have large impacts on climate active trace gas, nutrient
cycling, and fisheries productivity [32], much less stu-
died. Permanent OMZs make up ~8% of the total ocean
volume, often have high concentrations of nitrate and
nitrous oxide, and account for up to 50% of oceanic fixed-
nitrogen loss—with OMZ expansion altering surface
ocean primary production [32–37]. Under the suboxic
conditions that characterize OMZs, nitrate serves as an
alternative electron acceptor, starting the denitrification
pathway that reduces nitrate to N2 gas [38]. In fact, most
N cycling occurs in the absence of oxygen, including
assimilatory and dissimilatory nitrate reduction and
anaerobic ammonium oxidation (anammox) [38].
Because microorganisms that inhabit OMZs rely upon
chemoautotrophy for organic carbon production and
redox-coupled metabolisms that link N and sulfur cycling
[32, 39, 40], we hypothesized that OMZ viruses manip-
ulate N cycling via AMGs in ways that differ from viruses
in oxic waters. This hypothesis has some support, as
genes involved in ammonia assimilation, nitrate and
nitrite ammonification, nitric oxide synthesis, and deni-
trification have been previously identified in “gene-
resolved viromes” [41]. However, technological limita-
tions at the time prevented these genes from being con-
firmed as viral in origin, which is critical for AMG studies
given that cellular DNA is routinely encountered in vir-
omes and can lead to rampant false discovery (see re-
analyses of prior work presented in [23, 24]).

To further test the hypothesis that OMZ viruses
manipulate N cycling via AMGs, we deeply-sequenced
relatively quantitative viral particle metagenomes from
the surface to OMZ waters of the Eastern Tropical South
Pacific (ETSP) Ocean. Several N-cycle AMGs were
identified, enabling us to contemplate the functional
implications of viral reprogramming in relation to OMZ
biogeochemistry.

Materials and methods

Sample collection

In total, 22 samples were collected from six stations in the
ETSP OMZ region on December 31, 2014–January 22,
2015, during the R/V Atlantis cruise AT-2626, while tra-
versing a transect from coastal to pelagic waters. A pump-
profiling system was used to collect 20 L of seawater per
sample. Oxygen concentrations per sample were measured
with a nanoscale sensitive, STOX oxygen sensor. Samples
for NO2

−, NO3
−+NO2

−, and NH4
+ were collected with

Niskin bottles and filtered using a 0.2-µm cartridge filter.
The filtrate was collected into sterile FalconTM tubes and
stored upright at −20 °C until analysis. NO2

− and NO3
−+

NO2
− concentrations were measured using an Astoria-

Pacific autoanalyzer and standard colorimetric methods [42],
and NH4

+ was determined using fluorometric methods [43].
The limits of detection (LOD) for NO2

−, NO3
−+NO2

−, and
NH4

+ were 0.02 µM, 0.14 µM, and 10 nM (3σ, n= 7),
respectively (Selden et al. submitted). Environmental
features associated with each sample including oxygen,
nutrient, and mineral concentrations can be found in Sup-
plementary Table S1. Corresponding nitrate, nitrite, and
ammonium concentrations were only available for half of
the samples. The remaining concentrations were drawn from
other samples within 10 m of the sampling depths from
which our viromes were developed (denoted by an asterisk
in Supplementary Table S1). Due to these sampling
inconsistencies, the N-species measurements were only
used qualitatively. The samples were selected correspond-
ing to depth and habitat, including the surface chlorophyll
maximum, suboxic upper oxycline, anoxic upper OMZ
(with or without a deep chlorophyll maximum), and the
core of the OMZ as indicated by measurements of oxygen
and chlorophyll concentrations (Fig. 1 and Supplementary
Table S1). A 0.2-μm filter (Millipore Express Plus; Milli-
pore) was then used for each sample to remove cells and
large debris. The filtrate from each sample was retained for
subsequent viral concentration and DNA sequencing.

Iron chloride flocculation was used to concentrate the
viral particles from each of the 22 samples [44, 45]. Viral
particles were then resuspended in an ascorbic-EDTA buf-
fer (0.1 M EDTA, 0.2 M MgCl, 0.2 M ascorbic acid, pH
6.0). Free DNA was then removed from the viral con-
centrates using DNaseI at 100 U ml−1 concentration [25]. A
wizard DNA purification kit with 1 ml of resin to 0.5 ml of
sample was then used to extract the concentrated viral DNA
(Promega). A CsCl density gradient was used to further
purify the viral DNA in samples with >1 μg DNA (surface
chlorophyll maximum samples from stations 7, 8, 14, and
16, oxycline samples from stations 14 and 16, and the core
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OMZ sample from station 16). Contigs derived from the
CsCl-purified samples were only retained if they were the
longest representative sequence of a population cluster [25].
The 22 DNase and CsCl-purified (where appropriate)
samples were then used for downstream ecological ana-
lyses. Library preparation and sequencing were conducted
at JGI using a Nextera kit and protocol, and an Illumina
Hiseq 2000 platform.

Assembly and processing

Data processing and metagenomic analyses were performed
using high-memory computer nodes from the Ohio State
Supercomputer Center [46]. Reads were split into paired
and unpaired groups, adapter sequences were removed and
low-quality sequencing regions below a Phred score
threshold of 15, using a sliding window of four bases, were
removed using a Trimmomatic version 0.33 [47], resulting
in a mean read length of 149 bp. SPAdes version 3.11.1,
using the –meta –sc and –careful option, was then used to
assemble both paired and unpaired reads, from both samples
purified with CsCl and those without, with k-mers of 21, 33,
and 55 bases [48]. Population scale ecological groups were
derived from these scaffolds using an in-house wrapper
script for MUMmer with the nucmer package by clustering
sequences at 95% ANI over 80% of the shorter sequence
[49, 50]. Scaffolds that contained the same potential AMG
sequence and shared an overlapping region >1 kb and 99%
ANI were merged, and N-gaps in or nearby potential AMG
genes were filled based on alignments against members of
the same cluster. The edited scaffolds were mapped against

the reads from their corresponding sample and visualized
with Integrative Genomics Viewer (IGV) [51] to address
even distribution of the paired reads. The edited scaffolds
were identified with the letter E at the end of their name.

Viral identification and classification

Viruses were identified among the populations larger than 5
kbp or circular and larger than 1.5 kbp using the viral
identification tools VirSorter and Virfinder [52, 53]. Popu-
lations with clearly identifiable viral or viral hallmark genes
in VirSorter categories 1 and 2, and populations with a
Virfinder score higher than 0.9 and a P value < 0.05 were
considered to be viral. A final size threshold of 10 kbp was
implemented. Taxonomic assignment of the AMG encoding
contigs was established using vConTACT v2.0 with default
settings on CyVerse [54] (http://www.cyverse.org).

Viral relative abundance and distribution

The final selection of high-confidence viral populations
larger than 10 kbp was concatenated into a single reference
database, used with a custom wrapper script for bowtie2 to
recruit quality trimmed reads from each sample, except for
the CsCl treatment samples which were replaced with their
corresponding non-CsCl counterparts to avoid treatment-
specific effects [55]. An in-depth analysis of the viral
community ecology from the same samples revealed no
detectable correlation between the minimal variation of
sequencing depth and the diversity in these samples [56].
The relative abundance of each population per sample was

Fig. 1 Map of the study area and vertical characterization of the
sampling stations. A Location of stations 7, 8, 14, 16, 17, and 18, off
the coast of Peru in the ETSP oxygen minimum zones (OMZ). The
map was created with Ocean Data View (http://odv.awi.de). B Oxygen
(solid blue) and fluorescence/chlorophyll (solid green, dark/light)
depth profiles from each station. Fluorescence is reported instead of

chlorophyll for Station 18 due to differences in the sensors used during
the collection of this sample. Sampling depths are indicated with
dashed lines, connected by depth category: surface chlorophyll max-
imum (scm) in yellow, oxycline (oxy) in orange, upper OMZ with
deep chlorophyll maximum (uomzD) in green, and without DCM
(uomz) in light blue, and omz core (omz) in dark blue.
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then derived from the resulting bam files and converted into
a relative abundance table using a custom wrapper script for
BamM (https://github.com/ecogenomics/BamM). Coverage
values as relative abundance proxies were calculated using
the “tpmean” algorithm, normalized for the size of each
metagenome in bases, and the length of each contig. Rela-
tive coverages were only reported for populations with read
mapping coverage greater than 80% of contig length, and
having at least 5× the coverage.

AMG identification and annotation

Predicted genes were functionally annotated as done in
Daly et al. [57]. Briefly, ORFs were predicted with prodigal
v2.6.3 using the meta option [58]. Each predicted ORF was
then screened against the KEGG, Uniref90, and InterPro
database using USEARCH and Interproscan respectively
[59–63]. The quality of annotation was then prescribed by a
hierarchical ranking score from highest confidence to lowest
confidence on a scale of A-E as follows. Annotations with a
reciprocal blast hit (RBH) bitscore >350 to the KEGG
database were given a score of A, RBH to the Uniref90
database with a bitscore >350 were given a score of B, the
one-way blast hits to the Uniref90 database were given rank
C, annotations with hits only to InterPro database were
given a score of D, and those annotations with a bitscore of
<60 to any database were given a rank of E [57]. Genes
involved with nitrogen metabolism were then identified by
manual curation of the functional annotations.

The nitrogen metabolism genes identified on viral
populations were then submitted to a series of careful in
silico validation steps in order to ensure that they were
encoded on a bonafide viral sequence and that the functional
annotations were correct. Only viral contigs larger than 10
kbp and encoding viral-like genes were reported. Where
appropriate, BLAST-based homology searches and syntenic
comparison with either viral or microbial references were
conducted to identify the most related microbe and/or virus
encoding similar metabolic and flanking genes. Genome
maps and the systemic organization of related sequences
were visualized using genbank files derived from NCBI for
reference microbial and viral genomes, and PHANOTATE
[64] for viral contigs, and the Easyfig package with
tBLASTx (min. length 30 bp, max. e-value 0.001) [65].

Conserved residues and active sites for each predicted
nitrogen metabolism-related AMG were identified using
PROSITE (release 2019_02 of 13-Feb-2019, default set-
tings, https://prosite.expasy.org/) [66] and HHpred v2.0.13
(against PDB, default settings) [67]. Binding sites were
checked manually when available, and promoter/terminator
regions were predicted as done by Sullivan et al. [26], with
some modifications. Briefly, ORF predictions were made
using PHANOTATE [64], and manually refined where

alternate start sites were present, to maximize ORF size and
coverage against reference genes. Bacterial sigma-70 pro-
moters and terminators were predicted using BPROM
(LDF > 2.75, Softberry, Mount Kisco, NY) [68] and
TransTermHP (confidence score >90%) [69], respectively,
using default parameters. Known cyanobacterial NtcA
promoters were identified using the probabilistic model of
NtcA-binding sites [70] that was more specifically adapted
for use with marine cyanobacteria (5′-GTA-N8-TAC-3′;
[71]). In addition to probability scoring cut-offs, all pro-
moters or terminators also were required to be intergenic or
within 10 bp of the start/stop of an ORF.

To avoid reporting erroneous functional annotations,
based solely on sequence similarity searches, and to further
support the possibility that the AMGs may be functional in
the environment, we also predict the protein structure for
each AMG. Secondary and tertiary structural homology
searches were conducted for each AMG by first predicting
the structure of the protein of interest with Phyre2 (version
2.0) [72] in expert batch submission mode. Predicted sec-
ondary structures with a 100% confidence score and
alignment coverage above 70% were considered for further
analyses. The most current version of SWISS-MODEL was
then used to predict the quaternary structure of each protein
with a Global Model Quality Estimation (GMQE) score
above 0.5 [73]. Transmembrane domains were predicted
with TMHMM [74].

Synonymous and non-synonymous mutations were cal-
culated in order to determine the mode of selection acting
on each protein. pN/pS values were calculated using the
method from Schloissnig et al. [75], without reading cov-
erage downsampling, and values of <0.3 were interpreted to
indicate strong purifying selection.

Phylogenetic tree generation

A phylogenetic analysis was used to further investigate
the evolutionary origin of the AMGs. Sequences from this
dataset were compared with the NCBI nr database [76]
(blastp, the cutoff of 50 on bitscore, and 0.001 on e-value)
to recruit closely related sequences and to add nonviral
context to the phylogenetic trees. The best blast hits of
each AMG, together with reference microbial sequences
and previously described viral sequences (for amoC and
glnK), were included in the final dataset for phylogenetic
analysis. The multiple alignments and trees were built
using ete3 toolkit v3.1.1 [77] with the eggnog41 pipeline,
i.e., multiple alignments computed with the built-in
metaligner function, automatic alignment trimming with
trimAL [78], automatic model selection with ProtTest
[79], and tree built with Phyml [80] with Chi2-based
parametric branch supports. Trees were visualized using
the ITOL (v3) online server [81].
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Results and discussion

The ETSP virome dataset and overview of
discovered N-related AMGs

A total of 29 viral metagenomes were sequenced from
22 samples that spanned oxic to anoxic waters across six
depth profiles in the ETSP (Fig. 1A, B). The resultant 210
Gb dataset averaged ~49M reads per virome and yielded
61,700 non-redundant, >5 kb scaffolds. Of these, 46,127
(75%) were identified as viral and 3,589 (6%) as microbial,
while the remaining 11,984 scaffolds (19%) could not be
identified confidently [56]. Collectively these pooled viru-
ses recruit between 19 and 53% of the total reads, and the
microbial contigs between 2 and 19%, with the rest repre-
senting unidentified contigs, or contigs smaller than 5 kb
(Supplementary Fig. S1).

These high-confidence viral genomic scaffolds were
screened for AMGs involved in N cycling and regulation.
This screen was conducted using: (I) homology-based
comparisons using USEARCH and interproscan with refer-
ence databases (KEGG, Uniprot90, Interpro), (II) analyses
for conserved residues using PROSITE and HHpred, and
(III) structural modeling using PHYRE2 for tertiary struc-
tures and SWISS-MODEL for quaternary structures when
applicable (details in “Materials and methods”). Together
these analyses revealed six AMGs— focA, nirA, nirK, norB,
amoC, and glnK—, of which only two, the nitrogen reg-
ulator PII gene encoded by glnK and the ammonia mono-
oxygenase encoded by amoC, were previously known as
AMGs. Below we describe the genomic contexts and taxo-
nomic origins of these AMGs, assess their evolutionary
histories and potential ecological roles and functionality, and
map their distributions within the ETSP OMZ.

Ferredoxin-nitrite reductase and a nitrite transporter

The first and second of the six N-cycle AMGs included a
nitrite transporter gene (focA) and a ferredoxin-nitrite
reductase gene (nirA), neither of which had been pre-
viously detected in viral genomes. Both genes were co-
localized on the viral scaffold St14_omz_1401E (11,826
bp) that contained 20 genes, 15 of which were viral-like
according to VirSorter [52], and other features ordered as
follows: two predicted NtcA-binding sites, a promoter,
focA, an unknown gene and nirA, though with no terminator
predicted (Fig. 2A). Three lines of evidence suggest this
viral scaffold originated from a T4-like cyanomyophage.
First, glycosyltransferases and hypothetical protein genes
surrounding focA and nirA were most closely related to
those from the T4-like cyanomyophage Synechococcus
phage S-SM2, and 5 of these genes were enriched in
Synechococcus and/or Prochlorococcus T4-like phages [26]

(Fig. 2A and Supplementary Table S2). Moreover, nine
viral scaffolds with the most similar abundance profile as
the focA-nirA-encoding scaffold, had a gene composition,
including viral hallmark and structural genes, also asso-
ciated to cyanophages, and synteny with Synechococcus
phage S-SM2, suggesting that they all represent genome
fragments of the same cyanophage population (Supple-
mentary Fig. S2). Second, high-confidence gene-sharing
network clustering (sensu vConTACT 2.0. [54]) placed this
viral scaffold with the T4-like cyanophages (Supplementary
Table S3). Consistent with this, the viral FocA and NirA
were most similar to homologs in Prochlorococcus and
Synechococcus (Fig. 2B, Supplementary Figs. S3 and S4),
with identities of 86 and 67%, respectively, suggesting the
AMGs were derived from and may function during infec-
tion in these hosts, as was observed for cyanophage pho-
tosynthesis AMGs (e.g., hliP/psbA/psbD [13, 14, 16]).
Third, the putative regulation of these genes by NtcA is a
common feature in cyanobacteria, where it activates genes
involved in nitrogen transport and assimilation, including
the nirA operon, heterocyst differentiation and acclimation
to nitrogen starvation [82–86] (Fig. 2A).

Phylogenetic and comparative genomic analyses of these
genes suggested a complicated evolutionary history. focA
likely serves niche-defining functions in Prochlorococcus
and Synechococcus as it was absent from most surface
water metagenomes where nitrite is not abundant [87], and
mostly absent in Prochlorococcus sps. from high-light (HL)
clades [88]. Among cyanobacteria, regions encoding nitrate
assimilation genes do not have conserved composition or
order (synteny) [86]. However, the presence of these genes
in multiple closely related cyanobacteria indicates that they
can be horizontally transferred, perhaps even with viral
versions being transferred back into the cyanobacterial
genome, as observed for psbA [13]. These genes’ mobility
is also supported by the loss and subsequent gain of nirA in
Prochlorococcus HLII strains (marked in yellow in Fig. 2B
and Supplementary Fig. S4), where phages may have
mediated these changes given the proximity of integrase
genes to nirA in the genome of Prochlorococcus MIT0604
[87]. Furthermore, evidence for focA and nirA mobility has
also been suggested for the high-light adapted AG-363-P06
single cell from the HLVI clade, which has recently acquired
the nitrite assimilation cassette from a low-light adapted
Prochlorococcus [88] (Fig. 2B). Only two (out of eleven)
cyanobacterial nitrate assimilation gene arrangements enco-
ded both nirA and focA, disposed in the opposite order from
the OMZ viral genomic scaffold (Fig. 2A). While the variable
synteny prevents the robust reconstruction of the HGT events
that led to these genes being encoded by phages, it is possible
that the different placement of these AMGs in single-gene
trees reflects an independent acquisition of each gene, likely
from Prochlorococcus sps. from LLIV clade (Fig. 2B).

Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters 985



Fig. 2 Genomic context, diversity, and protein structure of viral
focA and nirA. A Genetic map of the scaffold encoding nirA and focA
and its alignment to a reference cyanobacterial genome and a reference
cyanophage genome. Detailed annotation of the ETSP viral contig can
be found in Supplementary Table S2. B Maximum-likelihood trees
from amino-acid alignments of the viral FocA or NirA found in ETSP
and cyanobacterial sequences. Branches from viral AMGs found in
this study are highlighted with thick lines. Internal nodes and SH-like

supports are represented by proportional circles (all nodes with support
<0.50 were collapsed). Asterisks indicate Prochlorococcus sequences
where horizontal gene transfer of nirA and focA (AG-363-P06 single
cell (HLVI clade)) and nirA (Prochlorococcus MIT0604 (HLII clade))
have been proposed (from refs. [87, 88]). Colors represent Synecho-
coccus subcluster 5.1, and Prochlorococcus high-light (HL) and low-
light (LL) adapted clades. C Quaternary structure of viral FocA and
tertiary structure of viral NirA.
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Evidence of function for these viral AMGs stems from in
silico observations of the proteins. For FocA, known fea-
tures (six transmembrane domains) and a conserved and
highly charged C-terminal regulatory region [89, 90] were
identified (Supplementary Fig. S5A). The viral protein was
similar (86% amino-acid identity) to that in Pro-
chlorococcus marinus MIT1323 and Prochlorococcus sp.
MIT0701 (LLIV) (Fig. 2B), and the structural model was
predicted with 100% confidence to be a formate/nitrite
transporter (Fig. 2C and Supplementary Table S4). For
NirA, known features that were identified included two
nitrite/sulfite reductase ferredoxin-like half domains and a
nitrite/sulfite reductase 4Fe–4S-binding site [84] (Supple-
mentary Fig. S5B). The viral protein was similar (67%
amino-acid identity) to a functionally active Synechococcus
NirA (Fig. 2B), and the structural model was again pre-
dicted with 100% confidence to be a NirA (Fig. 2C and
Supplementary Table S4). In addition, the calculated ratio
of non-synonymous to synonymous polymorphisms (pN/
pS) for focA was 0, with seven single-nucleotide poly-
morphisms (SNPs) identified, and 0.25 for nirA, with 27
identified SNPs, indicating strong purifying selection (pN/
pS ratios <0.3; Supplementary Table S5) as would be
expected for a gene encoding a functional protein.

Functionally, it is plausible that the acquisition of nirA
and focA genes could benefit OMZ viruses. NirA is involved
in assimilatory nitrite reduction (nitrite reduction to ammo-
nia; [91]), whereas FocA is a nitrite transporter from the
formate/nitrite family [92]. NirA was initially described in
cyanobacteria but is widely distributed among eukaryotic
algae and vascular plants [91], as well as other bacteria and
archaea, as observed in the NCBI database, while FocA is
found in bacteria, predominantly Proteobacteria, archaea,
fungi, algae, and parasites [93]. In OMZs, the lack of oxygen
requires the use of alternative electron acceptors, with nitrate
being the most energetically favorable. Nitrate is reduced by
denitrifiers to nitrite, which in turn accumulates in OMZs
and can fuel anaerobic ammonia oxidation [40]. Presumably
then, if functional, viral FocA and NirA would be advan-
tageous during infection by reducing their host’s need to
compete for limited nitrate and ammonia.

Finally, two additional features suggested that the viral
nirA and focA are transcribed during host infection. First,
both genes were in the same transcriptional unit, similar to
what has been reported for Prochlorococcus MIT9313,
where nirA, focA, and the uncharacterized gene between
them are co-expressed [85]. Second, two NtcA-binding sites
followed by sigma-70 promoters were observed upstream of
these genes (Supplementary Table S6). In Prochlorococcus,
these regulatory features were present and more numerous
in this same region (triplicate in MIT9313 and duplicate in
MIT1323, Supplementary Table S6), which suggests the
downstream nirA and focA genes are likely to be active.

Similarly, we posit that the binding sites for NtcA and
sigma 70 promote an efficient expression of viral focA and
nirA during infection.

Nitrite reductase and nitric oxide reductase

The third and fourth of the six N-cycle AMGs included a
copper-containing nitrite reductase gene nirK and a nitric
oxide reductase gene norB, neither of which had been
previously detected in viral genomes. Similar to the focA
and nirA AMGs, nirK and norB were contiguous, with norB
immediately followed by nirK, though also with a predicted
promoter and terminator (Fig. 3A), which might indicate the
kind of transcriptionally autonomous unit (termed a
“moron”) that is a hallmark of phage genome evolution
[94]. The original viral scaffold containing these new
AMGs, St16_omz_317 (52,903 bp), had 68 genes, 22 of
them identified as viral-like by VirSorter. Two of these
genes corresponded to T4 core genes (gp44 clamp loader
subunit and gp43 DNA polymerase), and one to a non-
cyanophage T4 core gene (gp9 baseplate wedge tail fiber
connector) (Fig. 3A and Supplementary Table S2). Despite
the low percent of genes annotated as viral in this scaffold,
the high proportion of genes with no affiliation, viral or
otherwise, together with the low rate of strand switching
(i.e., change of coding strand between two consecutive
genes), are also an indicator of a viral sequence, reinforcing
the viral origin of this scaffold [52]. The norB / nirK region
likely represents a viral genomic island where host DNA
accumulates akin to that in T4-like cyanomyophages
[26, 95] as it is surrounded by genes that encode proteins of
unknown function, proteins involved in protein biosynthesis
and modification, and in tricarboxylate transport (Supple-
mentary Table S2). Taxonomic annotation of the viral-like
genes suggested the virus is a Myovirus (Supplementary
Table S2), though it is likely a new genus as it formed its
own separate viral cluster in gene-sharing networks (Sup-
plementary Table S3) that resolve genus-level taxonomy
[54, 96].

The viral NirK protein clustered with microbial NirK
from Clade I [97], being most closely related to Gamma-
proteobacteria (67–70% protein identity; Fig. 3B), while
NorB was most closely related to Acidobacteria (57–62%
protein identity), Magnetovibrio blakemorei (62% protein
identity), and the Gammaproteobacteria strain HdN1
(59.3% protein identity) (Fig. 3B). These genes could have
been acquired by the virus together or, more likely, in
separate events, as the order and orientation of the genes is
different from that of any known microbial genome. Inter-
estingly, mobility has been suggested for both of these
genes, with nirK reported in plasmids from Azospirillum
brasilense [98], and norB present in microbial contigs of
four different phylotypes in metagenomes from ETNP
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OMZ, one of which contained plasmid competence genes
upstream of norB [99]. The presence of these genes in viral
genomes defines an adjunct agent for transferring niche-
defining traits in the oxygen-deficient water column.

In silico, both genes appeared to be functional (Supple-
mentary Table S4). Viral NirK contained two copper-
binding motifs and key active site residues required for
nitrite reducing activity [97] (Supplementary Fig. S6A) and

Fig. 3 Genomic context, diversity, and protein structure of viral
norB and nirK. A Genetic map of the scaffold encoding norB and
nirK. Detailed annotation of this contig can be found in Supplementary
Table S2. B Maximum-likelihood trees from amino-acid alignments of
viral NorB or NirK found in ETSP and reference microbial sequences.
The first tree represents the heme–copper oxidases superfamily,
including cytochrome C oxidase cbb3-type (cbb3 oxidase),

cytochrome c-dependent nitric oxide reductase (cNORs), and quinol-
dependent nitric oxide reductases (qNORs) including the potential NO
dismutases (in red) (from ref. [101]). Viral AMGs found in this study
are highlighted in bold. Internal nodes and SH-like supports are
represented by proportional circles (all nodes with support <0.50 were
collapsed). C Tertiary structures of viral NorB and viral NirK.
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had a strongly supported (100% confidence) structural
prediction as a copper-containing nitrite reductase (Fig. 3C
and Supplementary Table S4). Viral NorB had similarity
(59% protein identity) to a NOD-like NorB from Gamma-
proteobacteria strain HdN1, which is a proposed protein
family of length similar to that of the canonical NorB, with
12+ transmembrane domains, but with altered quinol
binding and active sites [100, 101]. These sites in the viral
“NorB” were also more similar to those from NOD-like
NorB enzymes than the canonical NorB (Supplementary
Fig. S6B). In contrast, the structural model prediction of the
viral “NorB” was of high (100%) confidence to be a nitric
oxide reductase (Fig. 3C and Supplementary Table S4), but
the absence of a crystal structure of the NOD-like NorB
enzyme hindered the discrimination between reductase and
dismutase activity using this tool. Interestingly, numerous
NOD-like NorB sequences were found in ETNP OMZ
waters, with a maximum at the same depth as the second
N2O peak (140 m) [99]. Since canonical NorB was absent at
this same depth, it is suggested that some of these NOD-like
NorB enzymes retain their function as nitric oxide reduc-
tases [99]. Thus, we interpret this viral NorB to be a NOD-
like NorB, with its reductase and/or dismutase activity yet
to be determined. Moreover, the pN/pS value for the viral
norB gene was 0, with 2 SNPs identified, and no SNPs were
identified for nirK (from one sample with minimal gene
coverage >10×) (Supplementary Table S5), suggesting that
both genes are likely functional and under strong purifying
selection.

Functionally, both AMGs are denitrification genes that
could be of benefit to the viruses, with the NirK protein
reducing nitrite to nitric oxide, and NorB reducing nitric
oxide to nitrous oxide (canonical NorB), or nitric oxide to
nitrogen and oxygen (postulated nitric oxide dismutase,
NOD-like NorB [101]). Denitrifying bacteria vary in the
extent of denitrification genes they encode: some genomes
contain all denitrifying genes to be able to reduce nitrate all
the way to nitrogen gas, whereas others contain subsets of
these genes that enable utilization of specific niches and
interactions among partial denitrifiers in a community set-
ting. Thermodynamically, complete and partial denitrifica-
tion are both theoretically favorable, with Gibbs-free energy
(ΔG°) of −532 kJ/mol for the complete pathway, −131 kJ/
mol for nitrate reduction to nitrite, −105 kJ/mol for nitrite
reduction to nitric oxide, −139 kJ/mol for nitric oxide
reduction to nitrous oxide, and −314 kJ/mol for nitrous
oxide reduction to nitrogen gas (calculated with pyruvate as
an electron donor, standardized to the reduction of one mol
of the electron acceptor, Supplementary Table S7). From a
bioenergetic perspective, though, the proton-motive force
generated from complete versus partial denitrification is the
same, at most six protons per pair of electrons, since the
nitrate reductase is the only denitrification module that

translocates protons [102]. However, if denitrifiers were
able to make use of nitric oxide dismutation, the amount of
energy conserved would improve, translocating 7.3 protons
per electron pair, leading to 36.5% energy conservation
[102]. Thus, we posit that viral NirK and NorB could
benefit the host during infection through the exploitation of
specific niche-defining genes or help to safeguard energe-
tically vital pathways in low-redox environments, while the
host genome is degraded over the course of infection, thus
compensating for the likely elevated energetic cost asso-
ciated viral production. Additionally, if the viral NorB
functions as a nitric oxide dismutase, the increase in energy
conservation associated with nitric oxide dismutation would
significantly improve the host’s fitness. Future efforts
focused on energy budgets and mining SAGs (Single-cell
Amplified Genomes) could help resolve these and related
hypotheses.

Ammonia monooxygenase subunit C

The fifth N-related AMG identified was ammonia mono-
oxygenase subunit C gene (amoC). In addition to an
archaeal version that has been observed in the Tara Oceans
Global Ocean Virome (GOV) dataset [30], a recent study
described 15 new Thaumarchaeota virus populations that
encode viral capsid and thaumarchaeal amoC genes. These
are potentially tailed viruses that share a common ancestor
with related marine Euryarchaeota viruses and are globally
distributed in various marine habitats, including OMZs [31].
We found two archaeal-like amoC genes and one bacterial-
like amoC in the ETSP OMZ dataset. These archaeal
viruses, represented by scaffolds St14_oxy_254 (35,926 bp)
and St17_scm_137 (42,459 bp), corresponded to species
“C” and “G” of the previously mentioned 15 new Thau-
marchaeota virus population [31], and thus will not be
described in this section. The bacterial amoC-containing
viral population, represented by the scaffold St17_oxy_54
(144,618 bp) appeared to be a complete, circularly per-
muted, T4-like phage genome of 144 kb that encoded 179
genes (Supplementary Table S2). Whole-genome align-
ments of this scaffold against its closest reference phage,
Pelagibacter phage HTVC008M, revealed a high degree of
homology and synteny between them (Supplementary
Fig. S7). It also contained 52 of the 60 hypothesized “core
T4” genes [26] (BLASTp e-value <0.001). As a reference,
50 hypothesized “core T4” genes were found in Pelagi-
bacter phage HTVC008M, with the remaining 10 genes
either absent or miss-annotated. The bacterial amoC was
flanked by a promoter and a terminator and was also located
next to the major capsid protein gene Gp23, which is a
region known to be an AMG hotspot in T4-like phages
(Fig. 4A) [26]. Not surprisingly, this viral contig was
clustered with T4-like phages by the gene-sharing network
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analyses (Supplementary Table S3). Evolutionarily, the
bacterial-like amoC clusters within the Nitrosomonas clade
(Fig. 4B), and was most closely related to AmoC from
Nitrosomonas communis, with 86% amino-acid identity.

Functionally, as posited previously [30], amoC could
benefit OMZ viruses by enabling access to energy liberated
by ammonia oxidation. Across diverse archaea and bacteria,
ammonia monooxygenase performs the first step and rate-
limiting step in nitrification, aerobically oxidizing ammonia
to either nitroxyl or hydroxylamine, respectively [103].
These intermediaries are further oxidized to nitrite, either
spontaneously or with the help of additional oxidor-
eductases. While both ammonia-oxidizing bacteria and
archaea are present in the ETSP OMZ [104–106], meta-
transcriptomic and metaproteomic data suggest that the
ammonia-oxidizing archaea, mostly represented by Nitro-
sopumilus maritimus, dominate nitrification in the OMZ
[106–108]. The resultant nitrite either continues through
nitrification to nitrate in aerobic waters or is converted to

nitric oxide or nitrogen gas via denitrification or nitrogen
gas via anammox pathways in deeper suboxic waters
[33, 109]. While no conserved residues for this enzyme
have been described, the high sequence similarity with
microbial AmoC suggests that these viral AmoC are likely
functional. The pN/pS ratio for the archaeal-like viral amoC
was 0 for St17_scm_137, with two identified SNPs, and
0.13 for St14_oxy_254, with nine identified SNPs. No
SNPs were identified for the bacterial-like amoC (from two
samples with minimal gene coverage >10×) (Supplemen-
tary Table S5), showing a strong purifying selection of the
three viral amoC genes.

GlnK PII regulator

The last of the six N-related AMGs was GlnK, a PII signal
transduction protein also previously observed in viruses in
the GOV dataset [30]. There are three major subgroups of
microbial PII proteins, based on gene linkage and similarity

Fig. 4 Genomic context,
diversity, and protein
structure of viral amoC. A
Genetic map of the viral scaffold
encoding the bacterial-like
amoC, and alignment to a
reference microbial genome
containing this gene. Detailed
annotation of the viral scaffold
can be found in Supplementary
Table S2. B A maximum-
likelihood tree from an amino-
acid alignment of the bacterial-
like viral AmoC found in ETSP
and reference microbial
sequences. The viral AMG
found in this study is bolded.
Internal nodes and SH-like
supports are represented by
proportional circles (all nodes
with support <0.50 were
collapsed). C Tertiary structure
of the bacterial-like viral AmoC.
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at the amino-acid sequence level: glnB linked to glutamine
synthetase (glnA) or NAD synthetase (nadE), glnK linked to
ammonia channel protein (amtB), and nifI linked to the
nitrogenase operon (reviewed in refs. [110] and [111]).
Phylogenies from the prior GOV work found viral repre-
sentatives of the glnK and glnB subgroups (designated PII-1
and PII-2, respectively), and a functionally ambiguous PII
protein that lacked a conserved motif (designated PII-3).
PII-1 was widely distributed throughout mesopelagic
waters, while PII-2 and PII-3 were geographically restricted
to the North Pacific and the South Atlantic Oceans,
respectively [30]. We identified three viral populations
containing the glnK gene followed by the amtB gene in the
ETSP OMZ dataset (Fig. 5A). The first two belonged to the
previously described PII-1 group, and the third was a new
viral glnK that we designated as PII-4 (Fig. 5B). The first

viral scaffold encoding glnK, St07_scmB_167 (35,108 bp),
contained 66 genes, 26 of them considered viral-like by
VirSorter, including one hallmark gene annotated as a portal
protein. The second viral scaffold, St14_oxy_4266E
(12,943 bp), had 19 genes, with 8 of them corresponding to
viral-like genes, including one hallmark gene (terminase).
In both cases, there was a predicted promoter upstream of
glnK and a terminator downstream of the ammonium
transporter gene (amtB), and a porin gene (ompL) imme-
diately downstream of amtB (Fig. 5A). These viral contigs
clustered together in the gene-sharing network analyses
(Supplementary Table S3), but no reference viral genome
was assigned to this cluster. The third viral population,
represented by St18_uomzD_1285 (15,491 bp), had 18
genes, two of them hallmark viral genes (the major capsid
protein Gp23 and the capsid assembly protein Gp20), and 9

Fig. 5 Genomic context, diversity, and protein structure of viral
glnK. A Genetic map of the scaffolds encoding glnK, and alignment to
reference microbial genomes containing this gene. Detailed annotation
of the viral contigs can be found in Supplementary Table S2. B A
maximum-likelihood tree from an amino-acid alignment of viral GlnK

found in ETSP and reference microbial sequences. Viral AMGs found
in this study are highlighted in bold. Internal nodes and SH-like
supports are represented by proportional circles (all nodes with support
<0.50 were collapsed). C Tertiary structure of viral GlnK.
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viral-like genes. The glnK gene was close to the Gp23 gene,
similar to the bacterial-like amoC viral contig, and a pro-
moter and terminator flanking the glnK and amtB genes
were also predicted. This contig formed a singleton in the
gene-sharing network analysis, but the presence of the
hallmark structural proteins previously mentioned strongly
suggests that it’s a T4-like phage.

Evolutionarily, the glnK-amtB genes have been captured
by viruses at least two times, one from Bacteroidetes, where
the new and previously described PII-1 viral glnK form a
distinct clade, and the second time from Gammaproteo-
bacteria, where PII-4 is located (Fig. 5B). The association
of glnK and amtB has been reported as one of the most
ancient in biological history [112], with an early lateral
transfer event between bacteria and archaea, as proposed by
the PII evolution model [111]. Despite the ancient origin of
the PII-Amt association, found widespread in Bacteria and
Archaea, the PII-Amt-OmpL-like association found in our
PII-1 viruses have only been found in Flavobacteriales
(Fig. 5A). This suggests that the viruses acquired these three
genes from a member of Bacteroidetes, and it is most likely
that their hosts belong to this phylum. The viral porin
OmpL had a conserved beta-barrel structure, suggesting that
it is functional, though its substrate is unknown. The glnK
and amtB genes from PII-4 were most closely related to
Gammaproteobacteria, with 68% protein identity, and in
this case, no extra genes were incorporated by the phage
(Fig. 5A).

In silico, the glnK and amtB genes from the three viral
contigs were identified as PII and Amt, respectively (Sup-
plementary Table S2). The first two PII proteins (PII-1
group) were mostly related to the order Flavobacteriales
PII, with 71–72% protein identity. The third PII protein
(PII-4 group) was mostly related to Gammaproteobacteria
PII, with 68% protein identity (Fig. 5B). Conserved in the
viral GlnK proteins was the uridylylation residue Y51,
located in the T-loop, (Fig. 5C and Supplementary Fig. S8),
and the tertiary and quaternary structures, predicted with
100 confidence to be PII (Table S4). Unfortunately, pN/pS
ratios could not be calculated for the glnK genes due to low
gene coverage across the samples.

Functionally, OMZ viruses could benefit from the glnK
and amtB genes by regulating the ammonia uptake of their
host. AmtB has 11 transmembrane domains and an “N-
terminus out” and “C-terminus in” topology [113, 114], and
GlnK folds into a four-stranded β-sheet packed against two
helices, forming three loops designated the B-, C-, and T-
loops [115]. Both form homotrimeric structures, and toge-
ther they form a complex where the GlnK trimer binds to
the cytoplasmic face of AmtB by inserting the T-loop into
the cytoplasmic pore exit of an adjacent AmtB subunit,
therefore closing the channel [115]. Under nitrogen-limiting
conditions, GlnK is covalently modified by uridylylation,

inhibiting the interaction with AmtB and therefore enabling
the uptake of ammonium. Conversely, under conditions of
fixed-nitrogen excess, GlnK is de-uridylylated, enabling its
interaction with the ammonium transporter to inhibit
ammonium uptake [116, 117]. Ammonium concentration in
OMZ decreases with depth (Supplementary Table S1), due
to its consumption for cell growth, aerobic oxidation, and
anaerobic oxidation. A viral version of the transporter and
its regulator could be beneficial, especially in the oxic-
anoxic interface, by complementing or replacing the host’s
version, thereby increasing its nutrient uptake during
infection, as reported in Ostreococcus tauri infected by the
O. tauri virus RT-2011 [118]. The viral GlnK might also
compete with the host’s PII regulator on its union to the
AmtB channel, preventing its closure and therefore ensuring
ammonium uptake during infection.

The biogeochemical and ecological context of virus-
encoded N-cycling AMGs

The paradigm emerging from studies of viral AMGs is that
viruses randomly sample host genetic material, but only a
subset of these genes are retained in the viral genomes
[119]. In the case of N-cycling AMGs, nitrification (AmoC)
and ammonia regulation (GlnK) genes have been previously
identified, and to these, we add genes encoding proteins
mediating assimilatory nitrite reduction (FocA and NirA)
and denitrification (NirK, NorB and/or NOD-like NorB).
While these genes were scattered throughout known N-
cycling pathways (Fig. 6), we posit that the specific AMGs
observed, which are only a subset of known N-cycling
genes, are those that represent nutrient or energetic bottle-
necks during infection across myriad virus–host pairs in
nature. For example, the highly elevated abundances of
these genes (particularly nirK) in the dysoxic oxycline
regions may be consistent with the functioning of these
genes in microaerobic environments where some organisms
have mechanisms to switch between aerobic respiration and
denitrification pathways. The activation of each of these
nitrite reduction genes requires elaborate transcriptional
regulatory systems [120]. In the case of nirA, a nitrite
assimilation regulatory gene, it may be that the specific
virus–host interaction is augmented by the regulation of the
host nitrite reduction pathways, while in the case of nirK the
host regulatory pathways are most likely implemented for
activation of nitrite reduction as no other regulatory regions
were apparent in the virus. While many denitrification steps
require specific electron carriers, such as ubiquinone,
menaquinone, and cytochromes, none were observed in the
phages. However, cyanophages that contain photosynthesis
AMGs directly linked to electron flow often completely lack
any of the related photosynthesis electron carriers [26], so
this may simply represent parts of the metabolic machinery
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that are not prone to turnover and remain intact during viral
infection.

The N-related AMGs were distinctly distributed across
the ETSP water column in patterns that mirror those of the
key microbial N-metabolisms being modulated (Fig. 7).
Some, like the focA-nirA-containing viral population, were
present at nearly every depth and station, but considerably
more abundant in the samples from the upper OMZ that had
a deep chlorophyll maximum (normalized coverage of
97.7–382.8, compared to normalized coverage of 1.2–16.7
in the remaining samples with focA-nirA-containing viral
population) (Fig. 7A). This viral population predicted to be
a cyanophage (see above), has abundances notably coin-
cident with those of novel and uncultivated Pro-
chlorococcus cyanobacteria that predominate in the
secondary chlorophyll maximum of anoxic oceanic OMZs
(e.g., Arabian Sea, ETNP, and ETSP) [121–123]. Nitrite
reduction is expected to occur in these upper OMZ samples,
where nitrite concentration ranges from 0.45 to 11.36 µM

(Supplementary Table S1). The other AMG encoding viral
populations were less abundant across the dataset and
demonstrated strong depth preferences likely corresponding
to specific N-related microbes and metabolisms (Fig. 7B).
The norB-nirK-containing viral population was only found
in anoxic waters from stations 14 and 16. As posited earlier,
nitrite reduction is expected at these depths, where nitrite
concentration varied from 0.45 to 11.36 µM in upper OMZ
samples, and from 0.27 to 9.02 µM in OMZ core samples
(Table S1), with most of these samples showing nitrite
accumulation (>0.5 µM), which occurs only when oxygen
falls below 50 nM [124]. Though denitrifiers and anammox
bacteria are expected to be found at these depths [33, 40],
they were not predicted as hosts for this viral population due
to the scant relevant reference genomes for these groups.
Similarly, amoC-containing viral populations were dis-
tributed mostly in surface and oxycline waters, which lar-
gely followed the distribution of aerobic ammonia oxidizers
[106, 125] (Fig. 7B). Ammonium concentrations at these
oxic depths support this first nitrification step, with con-
centrations that ranged from 75.79 to 779.68 nM in the
surface samples, and from 3.48 to 891.01 nM in the oxy-
cline samples. One of the archaeal-like amoC-containing
viral populations, St14_oxy_254, was also present in OMZ
samples from station 16, and the upper OMZ sample from
station 18. Even though ammonium concentrations in these
samples support ammonium oxidation (from 12.52 to 24.1
nM, Supplementary Table S1), this reaction is not expected
in anoxic waters. However, these particular samples were
collected at shallower depths (45 and 100 m in station 16,
and 66 m in station 18), compared to the rest of the OMZ
and upper OMZ samples (Supplementary Table S1), and
might be prone to water mixing and intrusion of overlying
oxygenated waters. Finally, the glnK-containing viral
populations (Fig. 7B) were either present in surface and/or
oxycline waters from a few stations (PII-1; stations 7 and 8
for St07_scm_167 and station 14 for St14_oxy_4226) or
exclusively in upper OMZ waters (PII-4; stations 7, 8, 14
and 18 for St18_uomzD_1285). As posited earlier, ammo-
nium is present in surface and oxycline samples, and in
lower concentrations in upper OMZ samples, supporting the
presence of PII-1 and PII-4 glnK-containing viral popula-
tions, respectively (Supplementary Table S1). Considering
the wide distribution of the glnK-amtB genes among Bac-
teria and Archaea, a particular distribution of these genes
across the oxygen gradient is not expected. However, the
most closely related microbial glnK genes belonged to
Proteobacteria (for PII-4) and Bacteroidetes (for PII-1),
which represent the first and second most abundant phyla in
the OMZs [32].

Stepping back, these findings may have implications for
OMZs beyond viruses. First, reduced nitrogen assimilation
is known in many cyanobacteria, with nearly all lineages of

Fig. 6 Potential contribution of viruses to nitrogen cycling and
transport. The schematic represents the main pathways that drive the
nitrogen cycle and the participating enzymes and transporters. Proteins
with a viral version are highlighted in orange boxes. Viral NorB and
NOD correspond to the same protein that is homologous to both nitric
oxide reductase and nitric oxide dismutase. Nitrogen uptake is per-
formed by the ammonia transporter (AmtB, which is regulated by PII),
the MFS-type nitrate/nitrite transporter (Nrt), the ABC-type nitrate
transporter (NrtABCD), and the formate/nitrite transporter (FocA).
The enzymes that transform nitrogen are molybdenum-iron nitrogen-
ase (NifHDK), iron-iron nitrogenase (AnfHGDK), vanadium-iron
nitrogenase (VnfHGDK), an ammonia monooxygenase (AmoCAB),
hydroxylamine dehydrogenase (Hao), nitrite oxidoreductase (NxrAB),
ferredoxin-nitrate reductase (NarB), nitrate reductase (NAD(P)H)
(NR), assimilatory nitrate reductase (NasAB), ferredoxin-nitrite
reductase (NirA), nitrite reductase (NAD(P)H) (NIT-6), membrane-
bound nitrate reductase (NarGHI), periplasmic nitrate reductase
(NapAB), nitrite reductase (NADH) (NirBD), cytochrome c nitrite
reductase (NnfAH), copper-containing nitrite reductase (NirK), heme-
containing nitrite reductase (NirS), nitric oxide reductase (NorBC),
nitrous oxide reductase (NosZ), hydrazine synthase (HzsCBA),
hydrazine dehydrogenase (Hdh), and nitric oxide dismutase (NOD).
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Prochlorococcus encoding nirA. The potentially high
mobility of genes involved with nitrogen assimilation may
be justified by the relatively high concentration and ener-
getic favorability of nitrite (relative to ammonia and nitrate)
in this system [126]. Here, we have further identified a
cyanophage carrying focA and nirA, suggesting that N
assimilation is also of value to the viruses infecting the
novel cyanobacteria from the anoxic secondary chlorophyll
maximum [121–123, 126]. Second, this viral manipulation
of the denitrification pathway, via NirK, NorB, and/or
NOD-like NorB, underlines the relevance of this pathway in
anoxic waters. Though the host for the virus carrying these
genes could not be predicted, it might be in future studies if
parallel microbial metagenomes and single-cell amplified
genomes (SAGs) were generated [29]. In this case, we
speculate that Gammaproteobacteria or Planctomycetes
might be the hosts, and if so, infection by viruses encoding
nitrogen cycling AMGs would promote the denitrification
pathway by the reduction of nitrite to nitrous oxide, or the
anammox pathway by the reduction of nitrite to nitric oxide,
respectively. In any case, infection with the norB-nirK-
containing virus could potentially alter the nitrite, nitric
oxide, and nitrous oxide levels within the OMZ, and would
have important implications for those trying to assess cli-
mate change feedbacks resultant from changes to these
ecosystems [127, 128].

In summary, understanding how viruses alter N-
related biogeochemical cycling in OMZs is critical,
considering the expansion of these suboxic and anoxic
water masses and their effects in surface primary pro-
duction, greenhouse gas emission, and fixed-nitrogen
loss [32–34]. Our findings imply that OMZ viruses
impact N cycling not only through lysis of key N-cycling
microbes but also by modulating diverse N-metabolisms

during infection. Such infected “virocells” [10] would be
drastically altered in their metabolic capacity and bio-
geochemical outputs as has been shown now in several
environmental model virus–host systems [10, 12, 129].
With these N-related virus AMGs now uncovered, future
OMZ virus work can evaluate virocell-impacted nitrogen
cycling, as well as develop primer sets for “viral” vs
“cellular” versions to differentially quantify the bio-
geochemical impacts of viruses in OMZ N-cycling genes
and transcripts. As standardized practices emerge for
viral ecogenomics [130–132], they are enabling the
development of global maps of ocean viruses
[30, 49, 133] that can be integrated into multi-organism
ecological studies [134]. Together these efforts to
understand virus-mediated nutrient cycling in climate-
critical environments, along with parallel efforts on land
(e.g., thawing permafrosts [135, 136]), are now provid-
ing quantitative information needed to incorporate viru-
ses into predictive models [137].

Data availability

All high-quality reads and assembled contigs are available
on iVirus (CyVerse, https://doi.org/10.25739/mmj5-kt58).
Requests for further information should be directed to
Matthew B. Sullivan at sullivan.948@osu.edu.
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Fig. 7 Distribution of N-AMG-containing viral populations across
the ETSP OMZ samples. Bubble plots representing the relative
abundances, in terms of normalized coverage, of viral populations
containing the focA and nirA genes (panel A, in green), norB and nirK
genes (panel B, in red), amoC genes (panel B, in yellow) and the glnK
genes (panel B, in purple). The x axis of each grid represents the
stations (7, 8, 14, 16, 17, and 18), and the y axis represents the

sampling depths (from top to bottom: surface chlorophyll maximum
(scm), oxycline (oxy), upper OMZ (uomz) and core of the OMZ
(omz)). Station 7 had a second core OMZ sample (omz2) and station
18 was only sampled in the upper OMZ. Gray boxes represent the
OMZ: light gray for dysoxic waters below the oxycline, and dark gray
for suboxic and anoxic waters in the upper and core of the OMZ.
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