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Abstract

Motivation: Clustering analysis is a key technique for quantitatively characterizing structures in lo-

calization microscopy images. To build up accurate information about biological structures, it is

critical that the quantification is both accurate (close to the ground truth) and precise (has small

scatter and is reproducible).

Results: Here, we describe how the Rényi divergence can be used for cluster radius measurements

in localization microscopy data. We demonstrate that the Rényi divergence can operate with high

levels of background and provides results which are more accurate than Ripley’s functions,

Voronoi tesselation or DBSCAN.

Availability and implementation: The data supporting this research and the software described are

accessible at the following site: https://dx.doi.org/10.18742/RDM01-316. Correspondence and

requests for materials should be addressed to the corresponding author.

Contact: adela.staszowska@gmail.com or susan.cox@kcl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Localization microscopy is a super-resolution imaging method based

on detecting randomly activated, single molecules in a sequence of

images. A super-resolution image is then reconstructed using this list

of single molecule localizations (Betzig et al., 2006; Rust et al.,

2006). A common application of localization microscopy is to

study proteins clustered on the cell membrane. These clusters

[approximated as Gaussian (Sengupta et al., 2011; Shivanandan

et al., 2015) or Lorentzian (Pertsinidis et al., 2013)] can be analysed

with quantitative methods to provide measurement of their proper-

ties or functions. For example, analysis of protein clusters present in

the cell plasma membrane revealed their role in cell signalling [LAT,

LFA-1 and Src-family proteins clusters in T-cells (Owen et al., 2010;

Shannon et al., 2015)], dynamics [GPI-anchored proteins in COS-7

cells (Sengupta et al., 2011)] and their influence on the structural

changes [sphingolipid ceramides in Jurkat, U2OS and HBMEC

(Burgert et al., 2017)]. However, analysing this type of data is often

challenging, as the data often contains background localizations or

multiple fluorophore re-appearances (Deschout et al., 2014), which

can make it difficult to identify clusters and/or lead to inaccurate

size measurements.

The methods used for cluster analysis of localization microscopy

images can be roughly divided into spatial statistical methods [such

as Ripley’s functions (Ripley, 1976)] and density based algorithms

[such as DBSCAN (Ester et al., 1996) or SR-Tesseler (Levet et al.,

2015)]. DBSCAN uses a distance measure to aggregate data points

into separate categories: clustered points and noise. SR-Tesseler
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method is based on creating the Voronoı̈ diagrams to segment data

points into separate ‘cells’. Both of these methods use a global defin-

ition of density to filter areas with higher point aggregation (Ester

et al., 1996; Levet et al., 2015). However, it has been argued that

obtaining the density parameter for localization microscopy data

may be difficult (Ankers et al., 1999; Steinbach et al., 2003).

Generally, the spatial statistical analysis methods are more universal

and require less prior knowledge about the system than the density

based algorithms (Deschout et al., 2014).

Ripley’s K function is a widely used method which provides a

measure of the difference between the data distribution and a uni-

form distribution. There are three versions of Ripley’s functions

called K, L and H (Supplementary Note S1). The K and L functions

are usually used to detect the presence of clustering in the data and

the H function is used to calculate cluster size using the maximum

of H(r) (Deschout et al., 2014; Sengupta et al., 2011; Shannon

et al., 2015). Recently, it has been noted that measuring the cluster

radius by detecting the radius for which the Ripley’s H function is

maximal can be biased (Kiskowski et al., 2009; Lagache et al.,

2013) and that the origin of this bias has been reported to be

related to density of the clusters in the dataset (Kiskowski et al.,

2009). This can lead to different bias in the measured cluster radius

for different cluster densities. Approaches have been proposed to

remove the bias from the cluster radius measurements, for example

by measuring the cluster size as a half of the radius for which the

first derivative of the Ripley’s H function has the value of –1

(Kiskowski et al., 2009) or by using a constant correction coeffi-

cient (Lagache et al., 2013; Supplementary Note S1 and

Supplementary Fig. S1a and b).

However, these methods do not remove the cause of the bias

which is intrinsically related to the method itself, as this method

weights signal (clustered points) and noise (not clustered points)

equally (Supplementary Note S2). Additionally bias removal, as pro-

posed by these approaches, can lead to new inconsistencies in the

cluster radius measurements. For example, the first derivative of

Ripley’s H function is calculated numerically, thus the frequency

with which it is calculated is going to affect the first derivative value

and detecting a specific value will be either impossible or provide

worse results than a traditional method (Supplementary Fig. S1a).

The other approach using a constant coefficient to decrease the

measured cluster radius can influence the performance of Ripley’s H

function and its resistance to noise (Supplementary Fig. S1b). It

has also been suggested that these methods for bias removal may be

better suited for analysis of simulated datasets than real data

(Kiskowski et al., 2009).

Here, we propose use of the Rényi divergence (Rényi, 1965) as a

measure for cluster analysis. The Rényi divergence quantifies the dif-

ference between two distributions:

Da p xð Þjjq xð Þð Þ ¼ 1

a� 1
ln

ð
x

p xð Þ p xð Þ
q xð Þ
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dx

" #
; (1)

where p(x) is the data distribution and q(x) is a clustered reference

distribution (if different than clustered reference distribution has

been used it has been indexed, e.g. ‘U’ for the uniform distribution,

Supplementary Note S3). We have used a clustered reference distri-

bution as more closely related to the sample distribution and is

therefore relevant for analysis clustered biological samples. Ripley’s

H function can be derived from the Rényi divergence (for a¼2),

and a uniform reference distribution qU xið Þ ¼ 1
A (Supplementary

Note S4). For the purpose of clustering analysis, we used a sampling

approximation of the Rényi divergence:
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where N is the number of points in the dataset, a is the scaling coef-

ficient, dij is the distance between the ith central point and the jth

point, and I dij < r
� �

is an indicator function, which has value 1 for

dij < r
� �

and 0 otherwise. The scaling coefficient a controls the

Rényi divergence function value, as it promotes areas with higher

density (clusters) over the lower intensity of background noise

(Supplementary Notes S3 and S2). It should be also noted that in the

case of clustering analysis all points which belong to any cluster are

treated as signal. The not clustered points we have called noise, these

points originated from localizations of background fluorescence,

free floating dye or non-specific staining. In this study we compare

the performance of our method, based on the Rényi divergence,

with Ripley’s H function, using simulated and experimental data.

For experimental data we have also compared the performance of

the Rényi divergence with SR-Tesseler and DBSCAN, which are the

density based clustering methods. We have imaged three types of

structures to assess the precision and accuracy of the Rényi diver-

gence as a measure of cluster size: DNA-origami plates with known

size (Rothemund, 2006), clathrin-coated pits in HeLa cells, the size

of which has been confirmed via electron microscopy (Saffarian

et al., 2009; Sochacki et al., 2017), vaccinia virus particles in HeLa

cells, which were imaged with correlative localization and electron

microscopy (Brama et al., 2015; Peddie et al., 2017) and podosome

cores in THP-1 cells which size varies across the cell and were previ-

ously imaged using electron microscopy (Tanaka et al., 2015) and

atomic force microscopy (Labernadie et al., 2010; Luxenburg et al.,

2007). These biological structures were selected because they can be

observed in different cell types. Clathrin coated pits are responsible

for active intra-cellular transport (endocytosis), the mechanism of

which is similar across different cell types. The vaccinia virus is a

poxvirus previously used in smallpox vaccination. Currently, the

vaccinia virus is used for study of gene expression and for creating

new vaccines [using a vaccinia virus mutant (Jacobs et al., 2009)].

2 Materials and methods

2.1 Sample preparation
DNA origami is structures formed by artificial folding of DNA.

Here, we used flat DNA origami plates with known size of

60�90 nm (GATTAquant). The DNA plates were uniformly cov-

ered with Alexa Fluor 647 molecules (each plate with approximately

20 molecules). Localization microscopy samples were prepared

according to the protocol supplied by GATTAquant. The DNA ori-

gami was immobilized on BSA-biotin-neutravidin surface. The

dishes (35 mm dishes with #1.5 glass coverslip bottom, Ibidi,

Germany) were washed with PBS (three times) and incubated with

200 ll of BSA-biotin solution (0.5 g/l in PBS) for 5 min, followed by

biotin solution removal and further washes in PBS (three times).

Dishes were then incubated with neutravidin solution (0.5 g/l in

PBS) for 5 min (neutravidin solution was removed and washed with

PBS, three times). The diluted solution of DNA origami (around 100

times: 0.5 ll of DNA origami solutionþ50 ml of PBS) was placed in

the dish and incubated for 5 min followed by a washing step (three

times in PBS). The optimal dilution factor was selected using guide-

lines provided in the sample preparation protocol, leading to an

average density of DNA-origami plates �1 plate/lm2.

Samples with labelled clathrin coated pits were prepared using

HeLa cells (ATCC, CCL-2) seeded on 35 mm dishes with #1.5 glass
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coverslip bottom (Ibidi, Germany) �5�104 cells/dish. After leaving

the cells to adhere for 16 h, the cells were fixed for 20 min in 3.6%

formaldehyde, permeabilized for 5 min in 1% saponin and blocked

in 3% BSA for 30 min. The anti-clathrin anti-body (BD Biosciences,

610499) was added diluted 1:200 or 1:500 in PBS with 3% BSA and

0.5% saponin and incubated for 1 h. An Alexa Fluor 647 conjugated

secondary anti-body (Invitrogen, A21235) was diluted to 1:500 in

PBS with 3% BSA and incubated for 30 min.

Vaccinia virus samples were prepared according to the protocol

published in (Peddie et al., 2017).

Podosome samples were prepared using THP-1 cell line (ATCC,

TIB-202). The cell culture, fixation and staining were performed

according to the protocol presented in Staszowska et al. (2017);

Vijayakumar et al. (2015). For the staining of actin present in the

podosome core we have used Alexa Fluor 647 conjugated to phal-

loidin (Invitrogen, A22287). To identify podosomes in fixed cells,

adhesive rings were confirmed using vinculin conjugated Alexa

Fluor 488.

2.2 Imaging
The localization microscopy imaging was performed using the

STORM system at Nikon Imaging Center at King’s College

London. This system is equipped with an Eclipse Ti-E Inverted

Nikon Microscope, Andor Ixon EMCCD back-illuminated camera

(DU-897U-CSO-#BU), laser and LED light sources (laser wave-

lengths and powers are: 405 nm, 30 mW; 488 nm, 90 mW;

514 nm, 50 mW; 561 nm, 90 mW and 647 nm, 170 mW) and is

operated with NIS Elements software with N-STORM module.

The imaging was performed with TIRF, using a 100x, N.A. 1.49

objective.

The 647 nm laser power was adjusted during the acquisition

to acquire similar number of counts in every frame (as far as

possible). To improve the signal-to-noise (S/N) of the images

the excitation light angle was adjusted to include only the

fluorophores at a given optical plane and exclude background

fluorescence. The imaging angle was adjusted for every imaged

section and selected so that the image has the highest possible

contrast.

Prior to imaging, the samples (DNA origami, clathrin coated pits

and podosomes) were immersed in the imaging buffer. The base buf-

fer was made with b-Mercaptoethylamine (MEA, Sigma Aldrich,

30070-50G) according to the recipe presented in (Nikon, 2015). For

better stability of the Alexa Fluor 647, Cyclooctatetraene (COT,

98%, Sigma Aldrich, 138924-1G) dissolved in DMSO (Sigma

Aldrich, 472301-1L-D) was added to the base buffer to a final con-

centration of 2 mM (Dave et al., 2009).

In each imaging series about 6000 frames for DNA origami sam-

ples and 10 000 for clathrin-coated pits and podosomes were

acquired at a rate of 30–50 frames per second.

Imaging of vaccinia virus samples, using scanning electron mi-

croscopy and localization microscopy was performed as discussed in

(Brama et al., 2015; Peddie et al., 2014).

Super-resolution images were reconstructed with ThunderSTORM

(Ovesn�y et al., 2014) using single-emitter and multi-emitter settings.

Molecule localizations were filtered to remove false localizations

with FWHM sizes much smaller than the predicted PSF (110 nm for

DNA-origami, clathrin coated pit and podosome samples and 90 nm

for vaccinia virus particles). Additionally, drift was removed from the

reconstructed images using the cross correlation option with binning 5

and magnification 5.0.

2.3 Monte Carlo data generation
The simulated datasets for cluster analysis were created using

Cþþ and Matlab (2016b). For each dataset the cluster positions

were selected randomly. Clusters were simulated with desired

parameters varying the number of clusters in the dataset, density of

points in the cluster, cluster size, distribution of points in the cluster

(uniform or Gaussian). Uniform background noise was added at the

desired level. Both the noise and clustered points had the same inten-

sity. Signal-to-noise ratio was calculated for each noise level as a

ratio of number of points in the same area, in areas classed as signal

and background. See Supplementary Figure S2 for more information

about signal-to-noise ratio and an example of the data.

2.4 Localization microscopy data simulation
The localization microscopy data were simulated using a Matlab

(2016b) software. The positions of fluorophores in the data were defined

using 10 datasets simulated for Monte Carlo testing (10 clusters with 80

and 160 nm radius). As the localization precision and quality of data

depends in a great deal on the density of data we have simulated single

molecules with varying density (by setting a different number of frames

for which a fluorophore was in the dark state). For each density, 3000

frames of single molecule data were simulated with pixel size 100nm.

We have also set the simulated fluorophores not to bleach permanently.

Then the single molecule images were analysed with ThunderSTORM

(similarly to experimental data) and clustering analysis.

2.5 Clustering analysis software
The Rényi divergence analysis of clustering datasets was performed

using Equation (14) in Supplementary Note S3. The Rényi diver-

gence was calculated for a range of a values (usually 10–120 with

increments of 10). Additionally, the same software also computed

the Ripley’s H function. The first and second derivatives of the

Rényi divergence and Ripley’s H function were calculated using the

numerical derivative: f 0 xð Þ ¼ f xþhð Þ�f x�hð Þ
2h and f 00 xð Þ ¼ f 0 xþhð Þ�f x�hð Þ

2h

for second derivative calculation. The step size h was set to be equal

to the sampling for the Rényi divergence and Ripley’s function cal-

culation. It should be noted that the derivative calculated for the

Rényi divergence clustering analysis was only used to detect gradient

changes in the Rényi divergence and its first derivative curves.

Prior to the Rényi divergence and Ripley’s H function calculation

for the clathrin coated pit and vaccinia virus particle datasets, we

have selected regions of interest for the localization microscopy

images. This was performed to include only areas where the ana-

lysed structures were present in the images, and exclude areas where

clusters were not present or false clustering occurred. For clathrin

coated pits we have created mask images to cover the area of the

HeLa cell as the clathrin pits were present throughout the cell.

Region of interest was selected similarly also for podosomes, to in-

clude only the areas where the podosomes were present in the

images. For vaccinia virus particles we have selected rectangular

regions of interest containing a high density of vaccinia virus par-

ticles. The masks and notes on the size of each region of interest can

be found in the data bundle. It should be noted that no region of

interest was selected for analysis of DNA-origami samples as the

DNA-plates were randomly distributed across the whole image.

The density based clustering was performed using the SR-

Tesseler software (Levet et al., 2015), which also performed the

DBSCAN analysis. The cluster radius was also calculated using SR-

Tesseler software using the Voronoı̈ diagrams, which segmented the

data into single point domains. Then the segmented image was

thresholded to exclude regions with density which was two times
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smaller than the average density [as suggested in (Levet et al., 2015),

we have also tested different values of the density threshold param-

eter, Supplementary Fig. S3]. The last step was to spatially filter the

diagram image to exclude structures smaller or bigger than the size

of the analysed structure. Both the SR-Tesseler and DBSCAN meas-

ured the cluster radius using an ellipse fitted to a segmented cluster

patch. The cluster radius is the calculated as a half of an average of

the longest and shortest axis of the fitted ellipse. It should be also

noted that the fitted ellipses were smaller than the segmented clus-

ters, leading to underestimation of cluster size. For DNA origami we

set the desired cluster radius to be between 15 nm and 100 nm, for

clathrin coated pits––50 nm and 170 nm and Vaccinia virus particles

60 nm and 170 nm. For the DBSCAN analysis we have adjusted the

distance parameter, which is used by the software to estimate cluster

radius: 54 nm for DNA origami (Supplementary Note S5), 100 nm

for clathrin coated pits [estimated based on the electron microscopy

images presented in (Sochacki et al., 2017)] and 108 nm for vaccinia

virus particles (measured for scanning electron microscopy images).

2.6 Cluster radius calculation
The cluster radius was calculated using the Rényi divergence and

Ripley’s H function. The Rényi divergence for a specific a was calcu-

lated as a function of radius. The function counts the number of

points inside a given radius. Because of the weighting effect of a, the

main component of the function value comes from high density

areas (clusters). Thus, when the radius is equal to the actual cluster

size the function value does not change or changes by a very small

amount for several radius values. This means that a plateau can be

detected on the function and the cluster radius can be found by look-

ing for points with gradient equal to 0 (first and second derivatives

of function need to be equal to 0). In practice, we did not detect the

0 gradient but set a tolerance values for the first and second deriva-

tives. We have used a tolerance of 1% change for the first and 0.5%

for the second derivatives. These values were set experimentally,

using simulated data with 10 clusters, 80 nm radius with and with-

out any noise points. We have used the same tolerance values for all

analysed data. In practice, we have used a set of tolerance values for

the plateau detection. Our algorithm searched for the first point in a

plateau as an estimate for the radius value (at least three points

needed to be equal to 0 within a set tolerance).

The radius measurements using Ripley’s H function were calcu-

lated by detecting the maximum of the Ripley’s H function.

2.7 Estimation of size of clathrin coated pits
Clathrin coated pits have been extensively studied using electron mi-

croscopy (Saffarian et al., 2009; Sochacki et al., 2017), and their

size in HeLa cells depends on the size of their cargo (Saffarian et al.,

2009). A visual inspection of electron microscopy images suggests a

size of around 100 nm (Saffarian et al., 2009; Sochacki et al., 2017).

Additionally, we also performed a visual check of the cluster radius

measurement for the clathrin coated pits. We have used a local-

ization microscopy image of the clathrin coated pits (prepared with

1:200 anti-clathrin anti-body and pre-processed with single-emitter

fitting) to draw circles which enclosed the clustered points. We have

selected this dataset at random (it was dataset six from the first sam-

ple). Each circle drawn was numbered (Supplementary Fig. S4c) and

its radius measured (by saving the size of the drawn circle). We have

collected results from 203 clusters and these are presented in

Supplementary Figure S4d. The mean radius measured was

74 6 13 nm, close to the expected value and radius measured with

the Rényi divergence. We have also used the same methodology to

investigate size of DNA origami in reconstructed localization mi-

croscopy images.

2.8 Detection and characterization of vaccinia virus

particles in electron microscopy images
HeLa cells infected with vaccinia virus were prepared using an in-

resin fluorescence protocol which introduces electron contrast into

the sample whilst preserving fluorescence (Peddie et al., 2014).

Thus, the virus particles appear in the electron microscopy images as

dark circular features, often surrounded by a bright ring. In order to

match the area where the fluorescent proteins are present in the sam-

ple, we applied a thresholding method to include only electron dense

core of each particle. The radius of each particle was measured as an

average of its shortest and longest dimension. It should be also noted

that in this method each particle radius is measured separately,

while the Rényi divergence and Ripley’s H function provide an aver-

age measurement for a dataset.

The analysis of vaccinia virus particles was performed using

Matlab (2016b). Each electron microscopy image was thresholded

using a range of thresholds to account for the variation of brightness

on the image (this was usually from 75% to 100% of the mean in-

tensity value). Thresholded images were binarized using im2bn()

function and inverted using function imcomplement() to ensure that

the white areas in the binary images correspond to the areas with

low intensity on the original image. Some particles had holes and

empty edges due to variation in brightness in the original image,

these were filled using imfill() and bwmorph(). Then, particles were

filtered using a spatial filter (excluding particles smaller or bigger

than a set range of area values, here it was 40 and 600 pixels, with

pixel size 16.5 nm), eccentricity and solidity filter, which used a stat-

istic provided by the regionprops() function. The filtering to remove

elliptical and empty (non-solid) particles was performed using ex-

perimentally set ranges, 0–0.8 for elliptical filtering and 0.2–1 for

solidity filtering. The particles identified by the software were con-

firmed by the user, by selecting the correct particle identifications.

Lastly, the software saved an image with identified particles and a

file containing information about the radius of each virus particle

(see Supplementary Fig. S4 for a region of a particle identification

image).

2.9 Statistical analysis
We used Monte Carlo simulations to establish the stability of our

analysis method compared with Ripley’s H function. The Monte

Carlo testing was performed for simulated data similarly to

(Kiskowski et al., 2009). Random datasets with the same character-

istics (as an original dataset––number and size of clusters, noise

level) were generated and for each new dataset cluster radius meas-

urements with the Rényi divergence and Ripley’s H function were

performed. The number of the Monte Carlo repetitions was selected

by testing the changes in the value of measured mean and SD. The

simulations stopped when the variation in both of these values was

around 0.5% (Supplementary Fig. S5).

The histograms of the results of cluster radius measurements for

simulated data suggested that the results do not belong to the same

distributions (Fig. 1c). Thus to check if these results could originate

from the same distribution we have performed the two-sample

Kolmogorov–Smirnov test. Our null hypothesis was that they do be-

long to the same distribution. The test suggested that it is extremely

unlikely that the results from the Rényi divergence and Ripley’s H

function originate from the same distribution. The P-values for 5%

confidence level are shown in Supplementary Table S1.
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3 Results

3.1 Selection of the scaling coefficient a

The scaling coefficient a tunes the Rényi divergence response to dif-

ferent properties of data such as the cluster size/shape or the back-

ground noise level. The Rényi divergence calculation is performed

by raising the number of points surrounding a central point (in a

given radius) to a power a� 1ð Þ. Thus, the Rényi divergence value

from the regions with higher density (clusters) is greater than from

those with smaller density of points (noise) for a > 2

(Supplementary Note S3). This also means that the signal is pro-

moted over the noise. The optimal value of a should be selected

according to the data properties and usually higher noise levels re-

quire a higher value of a. In our investigations, we selected a by

looking for no or small change in the measured cluster radius value

(less than a 2% change as a is increased further, Fig. 1a). In this

work, we used a single value of a¼70, as it provided stable radius

measurements for all analysed datasets (for example, Fig. 1a).

Additionally, we investigated the noise resistance of the Rényi diver-

gence and Ripley’s H function on simulated datasets with different

noise levels (Fig. 1b and Supplementary Fig. S1c–e).

The results for simulated data suggest that the Rényi divergence

provides a more accurate and reliable cluster radius measurements

than Ripley’s H function. We have analysed data with different size

of clusters (80 nm and 160 nm radius, Fig. 1 and Supplementary Fig.

S1c), different point distribution across the clusters (uniform and

Gaussian, Supplementary Fig. S1), different number of points in the

same size cluster (Supplementary Fig. S1), different number of clusters

in a dataset (Supplementary Fig. S7). These datasets were simulated

with uniform noise. We have also simulated single molecule data with

different densities to test an impact of artefacts and localization preci-

sion on fidelity of cluster radius measurement (Fox-Roberts et al.,

2017) (Supplementary Figs S8 and S9). The results for different

cluster types were similar so here we discuss one example, the uniform

clusters with 80 nm radius (for results for other cluster types see

Supplementary Figs S1 and S6–S9). The results for simulated data sug-

gest that the Rényi divergence provides a more accurate and reliable

cluster radius measurements than Ripley’s H function. The cluster ra-

dius measurements for data with different noise levels suggest that the

Rényi divergence provides similar values of radius for different levels

of noise caused by background localizations. For the same data

Ripley’s H function can struggle to provide similar measurements or

be unable to measure the cluster radius for data with high noise or

small number of clusters (because the function does not have a max-

imum, required for the cluster measurement, Fig. 1b). The comparison

of the SDs suggest that while the Rényi divergence scatter is higher

than for Ripley’s H function, it remains similar only slightly increasing

with noise (�15 nm, Fig. 1b and c and Supplementary Fig. S1c–e).

It should be also noted that the cluster measured with the Rényi

divergence has a small bias up to around 15%. We think that this is

connected to the method used to measure clustering by detecting the

gradient changes in the Rényi divergence curve. The formula used

for the numerical derivative calculation increases the measured ra-

dius (offset by a sampling step value). Other cause of the biased

Fig. 1. Variation of measured cluster radius with a and noise level for 100 000 simulated datasets. Clusters of radius 80 nm were simulated with a uniform distribu-

tion of fluorophores across the cluster. (a) Results of cluster radius measurements with different a values for datasets with increasing levels of noise (measured

as mean). (b) Comparison of cluster radius values measured with the Rényi divergence (marked with black) and Ripley’s H function (red) for datasets with increas-

ing noise levels. The Ripley’s H function radius measurements were only possible for datasets with S/N higher than 16 [for lower S/N H(r) function does not have

a maximum]. The Rényi divergence provided stable radius measurements S/N as low as 6. (c) The histogram of results of cluster radius measurements for simu-

lated clusters with S/N 29. The mean and median are shown in dashed lines for each method (in green and blue, respectively). (d) Visualization of the radius

measured with the Rényi divergence (red circles) and Ripley’s H function (cyan circles) for simulated clusters with radius 80 nm and S/N 29
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cluster radius measurement is reporting of the mean value of the ra-

dius as it is more widely used statistical measure. As the Rényi diver-

gence results display a sharp peak and a long tail the median

indicates much better the most measure value (Fig. 1). For Ripley’s

H function the SD was higher for datasets with no or low noise

(�5 nm for uniform and �30 nm for Gaussian clusters) and lower

for higher noise levels (�3–5 nm). This suggests that the accuracy of

the measurement is less influenced by noise for the Rényi divergence

than for Ripley’s H function.

3.2 Cluster size measurement for localization

microscopy images
In addition to investigating performance of the Rényi divergence

and Ripley’s H function with simulated data, we also used local-

ization microscopy data of DNA origami, clathrin coated pits, vac-

cinia virus particles and podosomes. These structures were selected

because we could confirm their size through techniques other than

localization microscopy. For each structure, we have collected a ser-

ies of images and localized single molecules using ThunderSTORM

(Ovesn�y et al., 2014) with single- and multi-emitter fitting (for

multi-emitter data results see Supplementary Fig. S10).

The DNA origami constructs were designed to have a specific

shape and size (Rothemund, 2006), here 60�90 nm rectangular

plates (with around 20 Alexa Fluor 647 molecules per plate). As the

Rényi divergence and Ripley’s H function are designed to detect

circular clusters, the measured cluster size is not directly related to

the plate size. We estimated that the measured cluster radius should

be smaller than the radius of a circle passing through all corners (ra-

dius 54 nm) of the DNA-origami plate and bigger than a circle

enclosed on the plate (radius 30 nm, Supplementary Fig. S4a and

Supplementary Note S5). To validate this, we simulated rectangular

plates with size and shape of the actual DNA plates. We have

observed that the mean radius measured for the simulated rectangu-

lar plates was 52 6 8 nm (around 4% smaller than the maximum

expected radius) for the Rényi divergence measurement, and

69 6 5 nm (22% bigger than the maximum expected radius) for

Ripley’s H function. We expected to see this behaviour preserved in

the experimental results.

We analysed localization microscopy datasets collected from five

DNA origami samples analysed using single-emitter fitting (for

multi-emitter fitting results see Supplementary Fig. S10a). The

results suggest that the Rényi divergence provides cluster radius

measurements which are more accurate than Ripley’s H function

(Fig. 2c). While the average cluster radius measured with the Rényi

divergence was equal to the expected radius (52 6 16 nm), the

cluster radius measured with the Ripley’s H function was almost

three times bigger (151 6 32 nm). Moreover, the comparison of scat-

ter for the Rényi divergence (SD 16 nm) and Ripley’s H function (SD

32 nm) suggests that the Rényi divergence is more precise. The ex-

perimental DNA origami data were also analysed with density based

clustering methods: SR-Tesseler and DBSCAN. DBSCAN measured

cluster radius which was exactly equal to an average of the plate

size, when SR-Tesseler measured smaller cluster radius (22 6 8 nm

for SR-Tesseler and 37 6 11 nm for DBSCAN, Supplementary

Note S5).

We have also measured sizes of the clathrin coated pits present

in HeLa cells. Clathrin-coated pits have been extensively studied

using electron microscopy (Saffarian et al., 2009; Sochacki et al.,

2017), and their size in HeLa cells depends on the size of their cargo

(Saffarian et al., 2009). A visual inspection of electron microscopy

images suggests a size of around 100 nm (Saffarian et al., 2009;

Sochacki et al., 2017). We have imaged samples with two concentra-

tions of anti-clathrin anti-body: 1:200 and 1:500 (three samples for

each primary anti-body concentration, see Methods Section and

Supplementary Fig. S10b and c), to establish if different amount of

signal from the investigated structure affects the measured radius.

For each labelling density, we have imaged 3 samples and selected at

least 10 regions for imaging.

Thus, the accuracy of the radius measurements could be com-

pared both with regard to how close the measured value is to the

predicted value and how large the scatter in the measurements is, for

the two labelling densities and different fluorophore localization

methods. Our results suggest that the Rényi divergence provided a

measurement which was both more closely related to the expected

radius of the clathrin pits and more stable. The average radius meas-

ured with the Ripley’s H function, 156 6 23 nm, was almost two

times bigger than the radius measured with the Rényi divergence,

86 6 19 nm. SR-Tesseler and DBSCAN measured cluster radii which

were smaller than the expected cluster radius, 57 6 22 nm and

65 6 20 nm, respectively. We have also observed some variation in

the values measured with regard to the labelling density for Ripley’s

H function (see Results Section in Fig. 3b and Supplementary Fig.

S10d–f). The Rényi divergence, SR-Tesseler, and DBSCAN meas-

ured radius values were not affected by the different labelling den-

sities. Additionally, to confirm our cluster radius measurements for

the clathrin coated pits we have performed a visual estimation of the

pit size using a localization microscopy image (Methods Section and

Supplementary Fig. S4c). The mean of the estimated radius was

74 6 13 nm (Supplementary Fig. S4d), close to the expected value

and radius measured with the Rényi divergence.

Fig. 2. Measurement of the average size of the DNA-origami plates in localization microscopy data. (a) Localization microscopy image of DNA-origami plates, ana-

lysis with single-emitter fitting. Scale bar 1 lm. (b) Magnified images of single DNA-origami plates. Scale bar 500 nm. (c) The average expected radius based on

the simulations (50 000 repetitions) and the radius measured in the experimental data with the Rényi divergence (52 6 8 nm for simulated and 52 6 16 nm for ex-

perimental data), Ripley’s H function (69 6 5 nm and 151 6 30 nm), SR-Tesseler (22 6 8 nm) and DBSCAN (37 6 11 nm). The error bars are the SD
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However, due to the limitations of any one imaging technique it

is highly desirable to cross-validate results against a second imaging

technique. Recent advances have made possible imaging of the same

sample with simultaneous correlative light and electron microscopy

(CLEM; Liv et al., 2013; Zonnevylle et al., 2013). Thus we could

use the electron microscopy image as an estimation of ground truth

and compare it to the quantitative results obtained from localization

microscopy data.

Vaccinia virus particles in HeLa cells were imaged using correlative

localization and scanning electron microscopy. The samples were

transfected with YFP-A3, which localizes to the core of viral particles.

The fixed and frozen samples were then embedded in resin and cut

into 200 nm thick sections (Brama et al., 2015; Peddie et al., 2017).

YFP blinks in a partially hydrated state and so it was possible to obtain

localization microscopy data by imaging at 200 Pa (Peddie et al.,

2017). Images of the matching areas in the sample were collected with

localization and electron microscopy (Fig. 4a and b). Thus, the sizes

measured for both of these imaging techniques could be directly com-

pared for exactly the same structures. To estimate the true size of the

vaccinia virus particles we analysed the electron microscopy images

using an algorithm, which identified and characterized individual virus

particles (Methods Section and Supplementary Fig. S4e–g). The mean

radius of the virus particles in the electron microscopy images was

1086 29 nm. We compared this value with the average radius meas-

ured for localization microscopy data pre-analysed with single-emitter

(Fig. 4d) and multi-emitter fitting (Supplementary Fig. S10g).

Analysis of vaccinia virus particle localization microscopy sug-

gests that the Rényi divergence provides more accurate measurement

Fig. 3. Measurement of the average size of the clathrin coated pits in localization microscopy data. (a) Localization microscopy image of clathrin coated pits in

HeLa cells (labelling 1:200). (b) Magnified images of clathrin coated pits. Scale bar 500 nm. (c) The average expected (74 6 13 nm) and measured radius,

86 6 19 nm for the Rényi divergence and 156 6 23 nm for Ripley’s H function. SR-Tesseler and DBSCAN measured cluster radius to be smaller than the expected

value, 57 6 22 nm and 65 6 20 nm, respectively. Localization position fitting was performed with single-emitter fitting. The error bars are the SD

Fig. 4. Vaccinia virus particles in HeLa cells imaging and radius measurements. (a) Localization microscopy image, and (b) electron microscopy image.

(c) Overlay with electron microscopy image presented in grey-scale, and localization microscopy image in green. Scale bars 1 lm. (d) The average particle radius

measured for electron microscopy (EM) images, 108 6 29 nm and localization microscopy with the Rényi divergence (117 6 48 nm) Ripley’s H function

(190 6 81 nm), SR-Tesseler (56 6 15 nm) and DBSCAN (74 6 57 nm). The error bars are the SD (Color version of this figure is available at Bioinformatics online.)
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than Ripley’s H function, SR-Tesseler or DBSCAN. For both single

and multi-emitter fitting, the Rényi divergence provided cluster ra-

dius measurements, 117 6 48 nm and 137 6 62 nm respectively,

which were very close to the particle radius measured in the electron

microscopy images. However, the radius measured by Ripley’s H

function, 190 6 81 nm for single- and 221 6 135 nm for multi-

emitter fitting, was much bigger than the expected radius of virus

particle. Values smaller than expected radius were measured for

SR-Tesseler 56 6 15 nm for single- and 58 6 17 nm for multi-emitter

fitting and for DBSCAN 657 nm for single- and 661 nm for multi-

emitter fitting. It should also be noted that the SD values (error bars

in Fig. 4 and Supplementary Fig. S10) for the Rényi divergence were

smaller (48 nm for single-emitter and 62 nm for multi-emitter fitting)

than for the Ripley’s H function (81 nm for single- and 135 nm for

multi-emitter fitting) which suggests that our method provided a

more consistent cluster radius measurement. DBSCAN provided

similar level of precision to the Rényi divergence (57 nm for single-

and 61 nm for multi-emitter fitting), where SR-Tesseler had the

smallest SD for these datasets (15 nm for single- and 17 nm for

multi-emitter fitting), however it also underestimated the size of the

clusters by 42%.

Biological structures analysed above have very similar sizes

through the cell, but this is not always the case in many biological

structures. An example of such size variability is observed for podo-

somes. Podosomes are adhesive, actin rich structures formed by the

cells to facilitate cell adhesion and migration (Schachtner et al.,

2013). They consist of two major components, an f-actin rich core

and the ring complex (build with integrins and integrin associated

proteins; Foxall et al., 2016; Labernadie et al., 2010; Tanaka et al.,

2015). The ring has diameter between 0.5 lm to 2 lm in diameter

and 0.6 lm to 1 lm in depth (Meddens et al., 2014; Rafiq et al.,

2016; Walde et al., 2014). The core is smaller, usually around

0.5 lm in diameter (at the widest point) and 0.5 lm in height

(Meddens et al., 2014; Rafiq et al., 2016). The size of podosomes

varies across the cell, depending on their function or lifetime [for ex-

ample, in migrating cells, the newly formed podosomes are larger

than older ones (Meddens et al., 2014)]. In reconstructed local-

ization microscopy images (Fig. 5a and b), we have indeed seen a

variation in the size of the podosome cores. It should be also noted

that the podosome core has a shape of a cone, meaning that the

localization density will be vary across the structure (the highest in

the centre and lower on the edges). This has been confirmed using

independent imaging techniques in (Labernadie et al., 2010; Rafiq

et al., 2016).

Cluster radius measurements for podosome cores are less conclu-

sive than cluster radius measurements performed for structures pre-

viously discussed in this paper. The podosome core size had been

reported to differ across the cell and to be around 500 nm in diam-

eter at the widest point (Labernadie et al., 2010; Rafiq et al., 2016).

The podosome core has a cone shape, meaning that the density of

localizations changes across the core with higher density in the

centre and smaller density on the edge (Fig. 4c). The Rényi diver-

gence and SR-Tesseler detected the radius the area of the core

which has the highest density of localizations, 132 6 19 nm and

125 6 46 nm respectively. Both Ripley’s H function and DBSCAN

reported a larger cluster radius, 231 6 82 nm and 205 6 85 nm.

However, it should be noted that Ripley’s H function measured clus-

ter radius only for 17 datasets out of 30, and for the rest it did not

detect any clustering. The remaining methods did not have any

problem with detecting clustering. The Rényi divergence provided a

more stable cluster radius measurement with the smallest SD, than

other methods. It also had similar SD for the measurement for data

with clusters with the same size. While the SD for the remaining

methods, Ripley’s H function, SR-Tesseler and DBSCAN, was

higher than for the datasets with the same cluster size. Here, we dis-

cussed results for single-fitting, the results for multi-emitter fitting

are presented in Supplementary Table S2. The results for multi-

emitter fitting are similar to single-emitter results presented here, see

Supplementary Table S2. We think that the results for podosome

cores clearly highlight the property of the Rényi divergence to reli-

ably detect areas with high point density.

The Rényi divergence has an additional advantage of requiring

no user input. In particular, the values obtained with Ripley’s H

function can depend strongly on the region selected for analysis (be-

cause of its equal weighting of signal and noise), whereas the Rényi

divergence remains stable. This is important because it is common

to restrict analysis to structures of interest to decrease the data vol-

ume. For example, for analysis of clathrin coated pits we have

selected regions of interest to include the whole cell and exclude the

almost empty area around it. We calculated the mean cluster radius

for clathrin coated pits data with a selected region of interest

(termed ROI) and for the whole field of view (termed Image).

The mean radius measured for the data changes visibly for the

Ripley’s H function (Supplementary Fig. S11). For the Rényi diver-

gence it either changes by a small amount (Supplementary Fig. S11c)

Fig. 5. Podosome cores in THP-1 cells and their size measurement. (a) Localization microscopy image reconstructed with single emitter-fitting. F-actin podosome

cores were stained with Alexa Fluor 647 conjugated to phalloidin (reconstructed with single emitter-fitting). Scale bar 1 lm. (b) Magnified single podosome cores

with varying sizes. Scale bar 250 nm. (c) Line profiles of four podosome cores from (b). The podosome core has diameter of 500 nm at the base (indicated with

black arrow) and between 200 to 300 nm in the most dense region of the core (indicated with two black arrows). (d) Cluster radius measurement of the podosome

data. The Rényi divergence measured cluster radius of 132 6 19 nm, Ripley’s H function 231 6 82 nm, SR-Tesseler 125 6 46 nm and DBSCAN 205 6 85 nm. The

error bars are the SD
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or remains the same (Supplementary Fig. S11a, b and d). This suggests

that the Rényi divergence results are more universal and can be com-

pared between different regions of interest (Supplementary Table S2).

The major drawback of the current form of the Rényi divergence

is that it is set up to mainly analyse circular clusters. It is however

possible to change the cluster shape detected by this method using

similar methodology as presented for Ripley’s functions (Peters

et al., 2017). However, it should be also noted that the cluster size

measurement can be still performed for small clusters with non-

circular shape, as for example rectangular DNA origami plates. As

the DNA origami plates used in this work were seen in reconstructed

localization microscopy images as circular clusters due to limited

localization precision.

4 Discussion

Localization microscopy data are more and more commonly used for

quantitative analysis. However, measuring the exact size of the struc-

tures in the images/data can be problematic using the popular Ripley’s

H function. Here, we have presented a method based on the Rényi di-

vergence which can be tuned in response to noise and/or data proper-

ties. Our method provides more accurate cluster radius measurements

than widely used Ripley’s H function. It also helps to overcome the

bias present in the radius measurements provided by the Ripley’s H

function. Similarly, when compared with the density based clustering

methods, the Rényi divergence provides cluster radius measurement

which is closer to the expected cluster radius. We think that the radius

measurement was lowered for the density based methods, as they per-

form cluster radius measurement based on an ellipse fitted to a seg-

mented cluster, which is smaller than the segmented cluster.

The Rényi divergence provides an accurate and precise method

of cluster radius measurement. We have shown that the commonly

used Ripley’s H function provides cluster radius measurements big-

ger (by around 60%) than the actual cluster radius, similarly to the

results presented in (Kiskowski et al., 2009; Lagache et al., 2013).

The Rényi divergence does not require user input or selection of

region of interest (contrary to Ripley’s H function, Supplementary

Fig. S11, SR-Tesseler or DBSCAN) and the selection of a can be

done after the analysis was performed. Apart from these benefits the

Rényi divergence calculation can be performed very fast, taking

around 20 s to analyse a dataset containing 30 000 localized points.
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Rényi,A. (1965) On the foundations of information theory. Revue de l’institut

International de Statistique/Rev. Int. Stat. Inst., 33, 1–14.

4110 A.D.Staszowska et al.

Deleted Text: see 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty403#supplementary-data
Deleted Text: see 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty403#supplementary-data
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text:  see
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty403#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty403#supplementary-data
Deleted Text: , 
Deleted Text: s


Ripley,B.D. (1976) The second-order analysis of stationary point processes.

J. Appl. Prob., 13, 255–266.

Rothemund,P.W.K. (2006) Folding DNA to create nanoscale shapes and pat-

terns. Nature, 440, 297–302.

Rust,M.J. et al. (2006) Sub-diffraction-limit imaging by stochastic optical re-

construction microscopy (STORM). Nat. Methods, 3, 793–795.

Saffarian,S. et al. (2009) Distinct dynamics of endocytic Clathrin-coated pits

and coated plaques. PLoS Biol., 7, e1000191–e1000118.

Schachtner,H. et al. (2013) Podosomes in adhesion, migration, mechanosens-

ing and matrix remodeling. Cytoskeleton, 70, 572–589.

Sengupta,P. et al. (2011) Probing protein heterogeneity in the plasma membrane

using PALM and pair correlation analysis. Nat. Methods, 8, 969–975.

Shannon,M.J. et al. (2015) Protein clustering and spatial organization in

T-cells. Biochem. Soc. Trans., 43, 315–321.

Shivanandan,A. et al. (2015) Accounting for limited detection efficiency and

localization precision in cluster analysis in single molecule localization mi-

croscopy. PLoS One, 10, e0118767.

Sochacki,K.A. et al. (2017) Endocytic proteins are partitioned at the

edge of the clathrin lattice in mammalian cells. Nat. Cell Biol., 19,

352–361.

Staszowska,A.D. et al. (2017) Investigation of podosome ring protein arrange-

ment using localization microscopy images. Image Processing for Biologists.

Methods, 115, 9–16.

Steinbach,M. et al. (2003) Introduction to Data Mining. Springer, New York.

Tanaka,H. et al. (2015) Electron microscopic examination of podosomes

induced by phorbol 12, 13 dibutyrate on the surface of A7r5 cells.

J. Pharmacol. Sci., 128, 78–82.

Vijayakumar,V. et al. (2015) Tyrosine phosphorylation of WIP releases bound

WASP and impairs podosome assembly in macrophages. J. Cell Sci., 128,

251–265.

Walde,M. et al. (2014) Vinculin binding angle in podosomes revealed by high

resolution microscopy. PLoS One, 9, e88251.

Zonnevylle,A.C. et al. (2013) Integration of a high-NA light microscope in a

scanning electron microscope. J. Microscopy, 252, 58–70.
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