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The plethora of biomedical relations which are embedded in medical logs (records) demands researchers’ attention. Previous
theoretical and practical focuses were restricted on traditional machine learning techniques. However, these methods are
susceptible to the issues of “vocabulary gap” and data sparseness and the unattainable automation process in feature extraction. To
address aforementioned issues, in this work, we propose a multichannel convolutional neural network (MCCNN) for automated
biomedical relation extraction. The proposed model has the following two contributions: (1) it enables the fusion of multiple (e.g.,
five) versions in word embeddings; (2) the need for manual feature engineering can be obviated by automated feature learning with
convolutional neural network (CNN). We evaluated our model on two biomedical relation extraction tasks: drug-drug interaction
(DDI) extraction and protein-protein interaction (PPI) extraction. For DDI task, our system achieved an overall 𝑓-score of 70.2%
compared to the standard linear SVM based system (e.g., 67.0%) on DDIExtraction 2013 challenge dataset. And for PPI task, we
evaluated our system on Aimed and BioInfer PPI corpus; our system exceeded the state-of-art ensemble SVM system by 2.7% and
5.6% on 𝑓-scores.

1. Introduction

DDI and PPI are two of the most typical tasks in the field
of biological relation extraction. DDI task aims to extract
the interactions among two or more drugs when these drugs
are combined and act with each other in human body; the
hidden drug interactions may seriously affect the health of
human body.Therefore, it is significant to further understand
the interactions of drugs to reduce drug-safety accidents.
Different from DDI task, PPI task aims to extract the inter-
action relations among proteins, and it has captured much
interest among the study of biomedical relations recently
[1, 2]. There are a number of databases which have been
created for DDI (DrugBank [3, 4]) and PPI (MINT [5],
IntAct [6]). However, with the rapid growth of biomedical
literatures (e.g., MedLine has doubled in size within decade),
it is hard for these databases to keep up with the latest DDI or
PPI. Consequently, efficient DDI and PPI extraction systems
become particularly important.

Previous studies have explored many different methods
forDDI andPPI tasks.Thedominant techniques generally fall
under three broad categories: cooccurrence based method
[7], rule-pattern based method [8, 9], and statistical machine
learning (ML) based method [10–13]. Cooccurrence based
method considers two entities interacting with each other
if entities occur in the same sentence. A major weakness of
this method is its tendency for having a high recall but a low
precision.

The rule and pattern based methods employ predefined
patterns and rules to match the labeled sequence. Although
having achieved high accuracy among traditional rule and
pattern based methods, their sophistication in pattern design
and attenuated recall performance deviate them from prac-
tical usage. Besides the rule and pattern based methods,
ML based techniques view DDI or PPI task as a standard
supervised classification problem, that is, to decide whether
there is an interaction (binary classification) or what kinds
of relations (multilabel classification) between two entities.
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Compared with cooccurrence and rule-pattern based meth-
ods, ML based methods show much better performance and
generalization, and the state-of-the-art results for DDI [14]
and PPI [2] are all achieved by ML based methods.

Traditional ML based methods usually collect words
around target entities as key features, such as unigram,
bigram, and trigram, and then these features are put into a
bag-of-wordsmodel and encoded into one-hot (https://en.wik-
ipedia.org/wiki/One-hot) type representations; after that,
these representations are fed to a traditional classifier such
as SVM. However, such representations are unable to capture
semantic relations among words or phrases and fail in
generalizing the long context dependency [15]. The former
issue is rendered as “vocabulary gap” (e.g., thewords “depend”
and “rely” (these words are considered as the cue words
or interaction verbs [8] which are important in biomedical
relation extraction) are different in one-hot representations,
albeit their similar linguistic functions). The latter one
is introduced due to the 𝑛-order Markov restriction that
attempts to alleviate the issue of “curse of dimensionality.”
Moreover, the inability to extract features automatically leads
to the laborious manual efforts in designing features, which
hinders the practical use of traditional ML based methods in
extracting biomedical relation features.

To tackle these issues, in this work, we employ word
embedding [16, 17] (also known as distribution represen-
tations) to represent the words. Different from one-hot
representation, word embedding could map words to dense
vectors of real numbers in a low-dimensional space, and thus
the “vocabulary gap” problem can be well solved by the dot
product of two word vectors. Compared to one-hot model,
whichmerely allows the binary coding fashion in words (e.g.,
yes or no), our employment of the word embedding was able
to output the similarity of two words via dot product. Such
representation also yield neurological underpinning and is
more in consistent with the way of human thinking.

Based on the previous researches on word embedding,
this research builds a model on distributed word embedding
and proposes a multichannel convolutional neural network
(MCCNN) for biomedical relation extraction. The concept
“channel” in MCCNN is inspired by three-channel RGB
image processing [18], which means different word embed-
ding represents different channel and different aspect of
input words. The proposed MCCNN integrates different
versions of word embeddings for better representing the
input words. The only input for MCCNN is the sentences
which contain drug-drug pairs (in DDI task) and protein-
protein pairs (in PPI task). By looking up different versions
of word embedding, input sentences will be initialized and
transformed into multichannel representations. After that,
the robust neural network method (CNN) will be applied
to automatically extract features and feed them to a Softmax
layer for the classification.

In sum, our proposedMCCNNmodel has yield threefold
contributions:

(1) We propose a new model MCCNN to tackle DDI
and PPI tasks and demonstrate that MCCNN model
which relies on multichannel word embedding is

effective in extracting biomedical relations features;
the proposed model allows the automated feature
extraction process. We tested our proposed model on
DDIExtraction 2013 challenge dataset and achieved
an overall 𝑓-score 70.2% that outperformed the cur-
rent best system in DDIExtraction challenge by 5.1%
and recent [14] state-of-the-art linear SVM based
method by 3.2%.

(2) We also evaluated the proposed model on Aimed
and BioInfer PPI extraction tasks. The attained 𝐹-
scores 72.4% and 79.6% which outperform the state-
of-the-art ensemble SVM system by 2.7% and 5.6%,
respectively.

(3) We release our code (https://github.com/coddinglxf/
DDI) taking into account the model’s simplicity and
good performance.

In remaining sections, Section 2 details proposed
MCCNNmethods, Section 3 demonstrates and discusses the
experiments results, Section 4 briefly concludes this work,
and Section 5 details the implementation of MCCNN.

2. Method

In this section, firstly, we briefly describe the concept and
training algorithm for word embedding. And then, we intro-
duce the multichannel word embedding and CNNmodel for
relation extraction in detail; at last, we show how to train
proposed MCCNNmodel.

2.1. Word Embedding. Word embedding which could capture
both syntactical and semantic information from a large
unlabeled corpus has shown its effectiveness in many NLP
tasks. The basic assumption for word embedding is that
words which occur in similar contexts tend to have similar
meanings.Manymodels had been proposed to train the word
embedding, such as NNLM [16], LBL [19], Glove [20], and
CBOW. CBOWmodel (also known as a part of word2vec [17]
(https://code.google.com/archive/p/word2vec/)) is employed
to train our own word embedding in this work due to
its simplicity and effectiveness. CBOW model takes the
average embedding of the context words as the context
representation, and it reduces the training time by replacing
the last traditional Softmax layer with a hierarchical Softmax.
In addition, CBOW could further reduce time consumption
by negative samples. An outline architecture of CBOW is
shown by Figure 1.

2.2. Multichannel Word Embedding Input Layer. Word em-
bedding reflects the distributions of words in unlabeled
corpus. In order to ensure the maximum coverage of the
word embeddings, the articles from PubMed, PMC, Med-
Line, and Wikipedia are used for training word embedding.
Five versions of word embedding are generated based on
these corpora. The first four word embeddings are released
by Pyysalo et al. [21], while the fifth word embedding is
trained by CBOW on MedLine corpus (http://www.nlm.nih
.gov/databases/journal.html) (see Figure 1 for more details).

https://en.wikipedia.org/wiki/One-hot
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Figure 1: The architecture of CBOWmodel [17].

Table 1: Statistics for five word embeddings (all with 200 dimen-
sions).

Vocabulary size Training corpus
1 2515686 PMC
2 2351706 PubMed
3 4087446 PMC and PubMed
4 5443656 Wikipedia and PubMed
5 650187 MedLine

The statistics of the five word embeddings are rendered in
Table 1.

There are several advantages to use multichannels word
embeddings. (1) PMC, MedLine, and PubMed corpus cover
most of the literatures in the field of biology; thus these word
embeddings can in large extent be used to extract biomedical
relation features. (2) Some frequent words may occur in all
of the five word embeddings, such kind of words has more
information (weight) to leverage. (3) Word information can
be shared among different word embeddings. Multichannel
word embeddings could enlarge the coverage of vocabulary
based on different ways of word embedding and decrease the
number of unknown words.

The architecture of our proposed MCCNN is showed
by Figure 2. 𝑐 is defined as the number of the channels, V
is the corpora’s vocabulary size, 𝑁 (𝑁 is the max length
of the input sentence) is the length of input sentences, and𝑑 is the word embedding dimension. By looking up the
pretrained multichannel word embeddings D ∈ 𝑅𝑐×V×𝑑, the
multichannel inputsV can be represented as a 3-dimensional
array with size 𝑐 × 𝑁 × 𝑑; the subsequent convolutional layer
would take V as input and extract the features.

2.3. Convolutional Layer. The convolution operation could
be considered to apply different filters W ∈ 𝑅𝑐×ℎ×𝑑 to the

Windows = 3 Windows = 4

Convolution

Max-pooling

Softmax

Effect of Entity_1 on pharmacokinetics of
Entity_2 in healthy volunteers

Multichannels 
word
embedding

Figure 2: The architecture of the proposed MCCNN. In this
example, the length of input sentence is 10, the input word embed-
ding dimension is 5, and there are 5-word embedding channels.
Therefore, the size of multichannel inputs is 5×10×5. Two windows
sizes 3 and 4 are used in this example. The green part is generate
by (1). The orange part, representing the max-pooling result, is
generated by take the maximum value of the blue part through (3).
Since there are 2 filters for eachwindow size, 2 features are produced.
These extracted features are then concatenated together and fed to a
Softmax layer for classification.

ℎ-word windows in each channel of the input V. Suppose
W𝑖 ∈ 𝑅ℎ×𝑑 donates the filter for channel 𝑖 and V𝑖 ∈ 𝑅𝑁×𝑑
is one of input word embeddings for channel 𝑖; a featuresm𝑘
could be generated by (1), whereV𝑖[𝑘 : 𝑘+ℎ−1] (the red and
yellow parts in Figure 2) is generated by parallel connecting
row 𝑘 to row 𝑘 + ℎ − 1 in V𝑖, 𝑓 is an activation function, 𝑏 is
a bias term, and ⊙ is element-wise multiplication

m𝑘 = 𝑓( 𝑐∑
𝑖=1

V𝑖 [𝑘 : 𝑘 + ℎ − 1] ⊙W𝑖 + 𝑏) . (1)

By applying an filter to each window in input sentence
through (1), the model could produce a new feature C called
feature map by

C = [m1,m2,m3, . . . ,m𝑁−ℎ+1] . (2)

Intuitively, convolutional layer is equal to applying filters
on n-grams of input sentence. With different window size ℎ,
convolutional layer could extract various n-grams informa-
tion.

2.4. Max-Pooling Layer. Max-pooling [26] operation by
taking the maximum value over C (see (3)) brings two
advantages: (1) it could extract the most important local
features; (2) it reduces the computational complexity by
reducing the feature dimension. A filter W would produce
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a feature C∗ (see (1), (2), and (3)), and thus 𝑀 filters would
generate 𝑀 features. All of these features are represented by
r∗ = [C∗1 ,C∗2 ,C∗3 , . . . ,C∗𝑀]

C∗ = max (C) . (3)

A single window size ℎ can only capture fixed-size context
information, by applying different window sizes, the model
could learn more abundant features, suppose we use 𝐾 to
represent the number of window sizes, by concatenating the
generated r∗ for each window size, and the full feature r ∈𝑅𝐾𝑀×1 (the second last layer in Figure 2) is represented by

r = [r∗1 , r∗2 , r∗3 , . . . , r∗𝐾] . (4)

2.5. Softmax Layer for Classification. Before feeding dis-
tributed representation r to the last Softmax layer for clas-
sifying the DDI or PPI type, original features space is
transformed into confidence space I ∈ 𝑅𝑂×1 by

I = W2r, (5)

where W2 ∈ 𝑅𝑂×𝐾𝑀 can be considered as a transformation
matrix and 𝑂 is the number of classes.

Each value in I represents the confidence of the current
sample belongs to each class. A Softmax layer can normalize
the confidences to [0, 1] and thus can view the confidence
from the perspective of probability. Given I = [𝑖1, 𝑖2, . . . , 𝑖𝑂],
the output of Softmax layer S = [𝑠1, 𝑠2, . . . , 𝑠𝑂]. The Softmax
operation can be calculated by (6). Both 𝑠𝑗 and 𝑝(𝑗 | X)
represent probability of an entity pair xwhich belongs to class𝑗

𝑠𝑗 = 𝑝 (𝑗 | x) = 𝑒𝑖𝑗
∑𝑂𝑘=1 𝑒𝑖𝑘 . (6)

2.6.Model Training. There are several parameterswhich need
to be tuned during the training: the multichannel word
embeddingsD, the multifiltersW, the transformationmatrix
W2, and the bias terms 𝑏. All the parameters are represented
by 𝜃 = (D,W,W2, 𝑏). For training, we use Negative Log-
Likelihood (NLL) in (7) as loss function (y𝑖 is annotated
label for the input sentence x𝑖, and 𝐿 is the minibatches
size which means 𝐿 samples will be fed to model in each
training time). In order to minimize the loss function, we use
gradient descent (GD) based method to learn the network
parameters. In each training time, for 𝐿 input samples ⟨x𝑖, y𝑖⟩,
we firstly calculate the gradient (using the chain rules) of each
parameter relative to loss and then update each parameter
with learning rate 𝜆 by (8). It is notable that fixed learning rate𝜆would lead to unstable loss in training. In this work, we use
an improvedGD based algorithmAdadelta [27] to update the
parameters in each training step; Adadelta can dynamically
adjust the learning rate

loss = 𝐿∑
𝑖=1

− log𝑝 (y𝑖 | x𝑖) , (7)

𝜃 = 𝜃 − 𝜆𝜕loss𝜃 . (8)

Table 2: An example for preprocessing of sentence “Caution should
be exercised when administering nabumetone with warfarin since
interactions have been seen with other NSAIDs” in DDI task. There
are 3 entities in this example, and thus 3 entity pairs would be
generated.

Entity1 Entity2 Generated inputs

Nabumetone warfarin

Caution should be exercised when
administering Entity1 with Entity2
since interactions have been seen
with other EntityOther

Nabumetone NSAIDs

Caution should be exercised when
administering Entity1 with
EntityOther since Interactions have
been seen with other Entity2

Warfarin NSAIDs

Caution should be exercised when
administering EntityOther with
Entity1 since interactions have been
seen with other Entity2

3. Experiments

In this section, we firstly demonstrate the preprocessing
method for both train and test corpora in DDI and PPI
tasks. Secondly, the experimental results on DDI and PPI
tasks are reported, respectively, for each task, we start from a
baseline model with one-channel randomly initialized word
embedding, and then, we show the results of one-channel
word embedding; after that, we conduct the experiments on
multichannel CNNmodel. In discussion part, we analyze the
effects of hyperparameters settings aswell as the typical errors
caused by MCCNN.

3.1. Preprocessing for Corpora. The standard preprocessing
includes sentence splitting and word tokenise. If there are 𝑛
entities in a sentence, then, 𝐶2𝑛 entity pairs would be gener-
ated. To reduce the sparseness and ensure the generalization
of features, we share the similar preprocessing method as
[11, 14] by replacing two target entities with special symbols
“Entity1” and “Entity2,” respectively, and entities which are
not target entities in inputs are all represented as “Enti-
tyOther.” Table 2 demonstrates an example of preprocessing
method.

The preprocessing method mentioned above may also
produce some noise instances. For instance, entity pairs
referred to the same name are unlikely to interact with each
other. Such noise instances may (1) cause the imbalance
distribution of the data, (2) hurt the performance of classifier,
and (3) increase the training time.Wedefine two rules to filter
the noise instances. The rules are listed as follows. Table 3
shows the examples of noise instance for the rules.

Rule 1. Entity pairs referred to the same name or an entity
which is an abbreviation of the other entity should be
removed.

Rule 2. Entity pairs which are in a coordinate structure
should be discarded.
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Table 3: Examples of noise instance for defined rules; thementioned
entities are in italic.

Rule 1 Anesthetics, general: exaggeration of the hypotension
induced by general anesthetics

Rule 2

To minimize CNS depression and possible
potentiation, barbiturates, antihistamines, narcotics,
hypotensive agents or phenothiazines should be used
with caution

3.2. Evaluation on DDI Task

3.2.1. Datasets. DDIExtraction 2013 challenge (https://www
.cs.york.ac.uk/semeval-2013/task9/) provides the benchmark
corpora and annotations forDDI task [28].Themain purpose
of this task is to pursue the classification of each drug-drug
interaction according to one of the following four types:
advice, effect, mechanism, and int; therefore, DDI is a 5-label
(four interaction types plus one negative type) classification
task. We shortly describe each interaction type and give an
example for each type:

(1) advice: a recommendation or advice regarding the
concomitant use of two drugs. For example, interac-
tion may be expected, and UROXATRAL should not
be used in combination with other alpha-blockers;

(2) effect: a description for the effect of drug-drug inter-
action. For example, Methionine may protect against
the ototoxic effects of gentamicin;

(3) mechanism: pharmacodynamic or pharmacokinetic
interactions between drug pairs. For example,
Grepafloxacin, like other quinolones, may inhibit the
metabolism of caffeine and theobromine;

(4) int: an interaction simply stated or described in a
sentence. For example, the interaction of omeprazole
and ketoconazole has been established.

(5) negative: no interaction between two entities. For
example, concomitantly given thiazide diuretics did
not interfere with the absorption of a tablet of digoxin.

The training and testing corpora in DDIExtraction 2013
consist of two parts: DrugBank and MedLine. A detailed
description for these corpus could be found in Table 4. As can
be seen from Table 4, our filtering rules are effective. In train
datasets, the negative noise instances are reduced by 34.0%
from 23665 to 15624 and only 22 out of 4020 (about 0.5%)
positive instances are falsely filtered out. As for testing data,
35.0% of noise instances are discarded, while only 3 positive
instances are mistaken. Such simple preprocessing method is
beneficial to our system; especially it can reduce training time
and avoid unbalanced classes.

3.2.2. PretrainedWord Embedding. Asmentioned before, five
versions of pretrainedword embeddings are used inMCCNN
as shown in Table 5. There are 13767 words (some of drug
entities consisted withmultiwords are all considered as single
words) in DDI corpus. As a result, unknownwords in smaller
PMC and MedLine can be “made up” by word embedding

with larger vocabulary coverage such as Wikipedia and
PubMed.

3.2.3. Experimental Settings and Results. The experimental
settings for DDI task are as follows: 200 filters are chosen
for convolutional layer; minibatches size is set with 20; and
window size ℎ is set by 6, 7, 8, and 9, respectively. We
select Relu as the activation function for convolutional layer
due to its simplicity and good performance. Gaussian noise
with mean 0.001 is added to the input multichannel word
embedding, to overcome and prevent overfitting; we also
add the weight constraint 5 to the last Softmax layer weight.
Discussion section gives the details on parameter selection as
well as the impact of the parameters.

Table 6 shows experimental results of baseline, one-
channel, and the proposed MCCNN. As shown in Table 6,
for each interaction type, we calculate the precision (𝑃), recall
(𝑅), and the𝑓-scores (𝐹).We also report the overall micro-𝑓-
scores which has been used as a standard evaluation method
in DDIExtraction 2013 challenge.

The baseline model utilizes randomly initialized word
embedding, and the semantic similarity between words is not
considered. Table 6 shows that one-channel with pretrained
word embedding model performed much better than the
baseline model and improved the overall 𝑓-scores from 60.12
to 66.90. This demonstrates that semantic information is
crucial in DDI.

From Table 6, we can also find that, compared with
one-channel model, MCCNN model achieved better results
and improved the overall 𝑓-scores by 3.31%. For individual
interaction type classification, MCCNNmodel also achieved
the best 𝑓-scores. This demonstrates the effectiveness of the
use of multichannel word embedding and richer semantic
information.

We also trained the model on the corpus without pre-
processing; the results could be found in Table 7. As we can
see, preprocessing is important, which can improve the 𝑓-
scores by 2.21% through reducing the potentially misleading
examples.

Another aspect to note is that all three models behave
worst on interaction type “Int,” such results are consistent
with other systems [29–31], and the poor performance is
mainly due to the lack of training samples (only 188 samples
for training data and 96 samples for test data in Table 4).

In conclusion, (1) semantic information is important in
DDI task, (2) rich semantic information can improve the
performance, (3) preprocessing rules are crucial in DDI task,
and (4) data scale would affect the model performance.

3.2.4. Performance Comparison. In this section, we compare
the proposed MCCNN model with the top 3 approaches
in DDIExtraction 2013 challenge (FBK-irst [29], WBI [29],
and UTurku [31]). We also compare with the recently [14]
novel linear kernel based SVM method. All of the four
systems use SVM as the basic classifier. Both the FBK-irst
and Kim’s system detected the DDI at first (binary classi-
fication) and then classified the interaction into a specific

https://www.cs.york.ac.uk/semeval-2013/task9/
https://www.cs.york.ac.uk/semeval-2013/task9/
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Table 4: Statistics for DDIExtraction 2013 challenge corpus. The entities pairs interacting with each other are labeled as positive, otherwise
negative. The abstract indicates the number of article abstracts in datasets.

Train Test
DrugBank MedLine Overall DrugBank MedLine Overall

Abstract 572 142 714 158 33 191
Positive 3788 232 4020 884 95 979
Negative 22118 1547 23665 4367 345 4712
Advice 818 8 826 214 7 221
Effect 1535 152 1687 298 62 360
Mechanism 1257 62 1319 278 24 302
Int 178 10 188 94 2 96

After preprocessing and filtering rules
Positive 3767 231 3998 884 92 976
Negative 14445 1179 15624 2819 243 3062
Advice 815 7 822 214 7 221
Effect 1517 152 1669 298 62 360
Mechanism 1257 62 1319 278 21 299
Int 178 10 188 94 2 96

Table 5: Vocabulary included in five pretrained word embeddings.

Vocabulary size Word embedding
1 9984 PMC
2 10273 PubMed
3 10399 PMC and PubMed
4 10432 Wikipedia and PubMed
5 9639 Medline

type (multilabel classification). Different fromFBK-irst’s one-
against-all strategy, Kim et al. utilized the one-against-one
strategy for DDI type classification.They claimed the strategy
could reduce the effect of unbalanced classes. WBI and
UTurku ignored strategies problem by usingmulticlass SVM.
The characteristics of the four approaches and the result
comparisons are all listed in Tables 8 and 9.

Aswe can see, feature engineering still accounts for a large
proportion of these systems. The features like word-levels
features, dependency graphs, and parser trees are commonly
used. In addition, syntax and dependency analysis are not
effective for long sentences. The proposed MCCNN is able
to avoid these problems by using word embedding and CNN.
As shown by Table 9, MCCNN performs better than other
methods for detecting interaction types “Advice,” “Effect,”
and “Mechanism” and further improves the state-of-the-art
overall 𝑓-scores by 3.2%.

In addition, for interaction detection subtask (DEC),
MCCNN achieved the second best 𝑓-scores compared to the
FBK-irst’s 80.0. DEC is a binary classification task, focusing
on distinguishing the negative and positive instances. For
most of the traditional methods, the most direct way is using
cue words as they are not likely to be included in negative
instances; in other words, “vocabulary gap” problem is not
serious in these traditional methods. But in the problem of

fine-grained interaction type classification, semantic infor-
mation shows importance to classify different types.MCCNN
showed its effectiveness on fine-grained classification by
combing richer semantic information.

3.2.5. Compared with Other CNN Based Models. It is notable
that CNN was also utilized by Zhao et al. [32] recently;
they combined traditional CNN and external features such
as contexts, shortest path, and part-of-speech to classify
the interaction type and achieved an overall 𝑓-scores 68.6
which was similar to our results.The differences between [32]
and our model lie on two aspects: (1) feature engineering
still plays an important part in [32] model, whereas our
model demands no manually feature sets; (2) multichannel
word embeddings in our model contain richer semantic
informationwhich has been proved to bemuch useful in fine-
grained interaction classification task.

3.2.6. Evaluation on Separated DrugBank and MedLine Cor-
pus. Table 10 shows the performances of MCCNN on sepa-
rated DrugBank and MedLine corpus. As shown in Table 10,
MCCNN obtained 𝑓-scores 70.8 (compared to Kim’s 69.8,
FBK-irst’s 67.6) on DrugBank and a sharp decline 𝑓-scores
28.0 (compared to Kim’s 38.2, FBK-irst’s 39.8). Reference
[29] pointed out that such worse performance on MedLine
might be caused by the presence of the cue words. From
our point of view, the smaller number of training sentences
in MedLine could also lead to the poor performances, as
a proof, the MCCNN performed much better on MedLine
(52.6) when trained on larger DrugBank and much worse
(10.0) on DrugBank when trained on smaller MedLine in
Table 10. As mentioned earlier, the scale of the data still has a
great impact on the final results.
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Table 6: Experimental results of baseline, one-channel, and the proposed MCCNN on DDI task. Baseline: with one-channel randomly
initialized word embedding. One-channel: with one-channel Wikipedia and PubMed word embedding.

Baseline One-channel MCCNN𝑃 𝑅 𝐹 𝑃 𝑅 𝐹 𝑃 𝑅 𝐹
Advice 89.39 53.88 67.24 80.77 67.12 73.32 82.99 73.52 77.97
Effect 56.32 57.42 56.87 60.46 73.67 66.41 67.03 69.47 68.23
Mechanism 78.33 53.36 63.47 64.72 70.81 67.63 85.00 62.75 72.20
Int 93.55 30.21 45.67 82.05 33.33 47.41 75.51 38.54 51.03
Overall (micro) 70.00 52.68 60.12 66.50 67.31 66.90 75.99 65.25 70.21

Table 7: Performances of model with and without preprocessing.

𝐹-score
MCCNN (with preprocessing) 70.21
MCCNN (without preprocessing) 67.80

Table 8: Feature sets for four approaches.

Method Feature sets

Kim
Word features, dependency graph features
Word pair features, parse tree features

Noun phrase constrained coordination features

FBK-irst Linear features, path-enclosed tree kernels
Shallow linguistic features

WBI Features combination of other DDI methods

UTurku Linear features, external resources
Word features, graph features

Table 9: Comparisons with other systems on 𝑓-scores. ADV,
EFF, MEC, and INT donate advice, effect, mechanism, and int,
respectively, while DEC refers to interaction detection.

ADV EFF MEC INT DEC Overall
Kim 72.5 66.2 69.3 48.3 77.5 67.0
FBK-irst 69.2 62.8 67.9 54.7 80.0 65.1
WBI 63.2 61.0 61.8 51.0 75.9 60.9
UTurku 63.0 60.0 58.2 50.7 69.6 59.4
MCCNN 78.0 68.2 72.2 51.0 79.0 70.2

Table 10: Evaluation results (overall 𝑓-scores) on separated Drug-
Bank and MedLine corpus. The first column corresponds to the
training data set, while the first row corresponds to the test data set.

DrugBank MedLine
DrugBank 70.8 52.6
MedLine 10.0 28.0

3.3. Evaluation on PPI Task

3.3.1. Datasets and Pretrained Word Embedding. Two PPI
datasets Aimed and BioInfer (http://mars.cs.utu.fi/PPICor-
pora/) are used to evaluate MCCNN. Aimed was manu-
ally tagged by Bunescu et al. [33] which included about
200 medical abstracts with around 1900 sentences and was

Table 11: Statistics for Aimed and BioInfer datasets after preprocess-
ing.

Datasets Positive Negative
BioInfer 2512 7010
Aimed 995 4812

Table 12: Vocabulary in pretrained word embedding.

Aimed BioInfer Word embedding
All 6276 5461 —
1 5293 4666 PMC
2 5363 4712 PubMed
3 5404 4749 PMC and PubMed
4 5414 4762 Wikipedia and PubMed
5 4977 4328 MedLine

considered as a standard dataset for PPI task. BioInfer
[34] was developed by Turku BioNLP group (http://bionlp
.utu.fi/clinicalcorpus.html) which contained about 1100 sen-
tences. For corpora preprocessing, we do not use the filter
rules in PPI task because of the limited size of corpus. The
statistics of two datasets could be found in Table 11. We
also report the vocabulary included in five pretrained word
embeddings in Table 12.

3.3.2. Changes of Performance from Baseline to MCCNN. For
PPI experimental settings, the only difference from DDI task
is thewindow size. Because the average sentence length in PPI
task (42 in BioInfer, 36 in Aimed) is shorter than sentence
length in DDI task (51), we set windows size ℎ as 3, 4, 5, and
6.

Table 13 shows the experimental results of baseline, one-
channel, and the proposedMCCNNon PPI task.We used 10-
fold cross validation method for evaluation. As can be seen
from Table 13, one-channel model performed much better
than baseline model and improved the 𝑓-scores by 1.31%
and 4.73% on Aimed and BioInfer, respectively. MCCNN
achieved the best 𝑓-scores and improved the 𝑓-scores by
6.87% and 2.55% on Aimed and BioInfer when compared
with one-channel.

3.3.3. Performance Comparison. Table 14 shows the com-
parisons with other systems on Aimed and BioInfer cor-
pus. Kernel methods have been proved efficient in recent

http://mars.cs.utu.fi/PPICorpora/
http://mars.cs.utu.fi/PPICorpora/
http://bionlp.utu.fi/clinicalcorpus.html
http://bionlp.utu.fi/clinicalcorpus.html
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Table 13: Change of performances from baseline to MCCNN on Aimed and BioInfer datasets, respectively.

Baseline One-channel MCCNN𝑃 𝑅 𝐹 𝑃 𝑅 𝐹 𝑃 𝑅 𝐹
Aimed 71.62 61.25 64.27 72.28 60.82 65.58 76.41 69.00 72.45
BioInfer 78.13 73.00 72.34 76.06 79.43 77.07 81.30 78.10 79.62

Table 14: Comparisonswith other systems (𝑓-scores) onAimed and
BioInfer.

Aimed BioInfer
Choi and Myaeng [22] 67.0 72.6
Yang et al. [23] 64.4 65.9
Li et al. [2] 69.7 74.0
Erkan et al. [11] 59.6 —
Miwa et al. [24] 60.8 68.1
Miwa et al. [25] 64.2 67.6
MCCNN (the proposed) 72.4 79.6

researches. Reference [22] proposed a single convolutional
parse tree kernel and gave an in-depth analysis about the tree
pruning and tree kernel decay factors. Reference [11] made
full use of the shortest dependency path and proposed the
edit-distance kernel. It has been verified that a combination of
multiple kernels could improve effectiveness of kernel based
PPI extractionmethods. References [23–25] proposed hybrid
kernel by integrating various kernels, such as bag-of-word
kernel, subset tree kernel, graph kernel, and POS path kernel;
they all achieved competitive results on PPI task.

It is notable that the word embedding information was
also integrated by Li et al. [2]. They assigned a category to
each word by clustering the word embedding, which can
be used as a distributed representation feature. They also
made full use of brown cluster and instance representation
by words clustering method. The relationship between two
words is no longer a simple yes or no; words with similar
meanings are clustered and assigned with the same class
label. The methods are essential to weaken “vocabulary gap”
and proved to significantly improve the performance in
their experiments (7.1% and 4.9%𝑓-scores improvement on
Aimed and BioInfer compared with their baseline model).
Through combining the other features such as bag-of-words
and syntactic features, they obtained remarkable results on
Aimed and BioInfer.

Distributed representation features proposed by Li et al.
[2] could be considered as a “hard” assignment: a cluster label
for each word, but the extracted features are still discrete.
As a benefit from word embedding and CNN, the proposed
MCCNN model is able to be trained in a continuous space
and manual assignment is not necessary. Compared with
existing kernel based methods, the baseline model yielded a
comparable performance. By replacing the randomly initial-
ized word embedding with pretrained one, the one-channel
model achieved better results and improved the state-of-
the-art 𝑓-scores by 3% on BioInfer corpora. Furthermore,
by integrating multichannel word embedding, the proposed

MCCNN model exceeded 2.7% and 5.6% compared with [2]
approach on Aimed and BioInfer.

3.4. Discussions. In this section, we firstly investigate the
effects of hyperparameters, and then we carefully analyze the
errors caused by MCCNN as well as the possible solutions to
errors.

3.4.1. Hyperparameter Settings. The hyperparameters of neu-
ral network have great impact on the experimental results.
In this work, three parameters including window size ℎ, filter
numbers 𝑀, and minibatches size need to be adjusted. To
find the best hyperparameters, we split the training datasets
into two parts: one for training and the other for validation.
The basic method is to change one of the parameters while
the other parameters remain unchanged. Filter numbers
are set by [10, 20, 50, 100, 200, 400], and the value range of
minibatches size is [10, 20, 50, 100]; in addition, windows
size ℎ is set by [3, 5, 7, 9, 11, 13]. Experimental results show
that the best settings for system are as follows: 𝑀 is 200,
minibatches size is 20, and ℎ is 7 (7 in DDI task and 3 in
PPI task). According to the suggestion that the best window
size combination is usually close to each other by Zhang and
Wallace [35], we set the windows size ℎ as [5, 6, 7, 8] in DDI
task and [3, 4, 5, 6] in PPI task.

Two methods are used to train a more robust model as
well as prevent model from overfitting. The first method is
to add Gaussian noise to the multichannel word embedding
inputs. Considering the example in Table 2, the only dif-
ferences of the three instances are the positions of Entity1,
Entity2, and EntityOther; Gaussian noise could help to
distinguish these instances. Experimental results showed that
Gaussian noise can improve the performance by 0.5% in DDI
task. In addition, according to [36], Gaussian noise could
prevent overfitting. The other method is to add the weight
constraint 5 to the last Softmax layer weight which could
prevent overfitting.

3.4.2. Errors Analysis. Subjected to the complexity and diver-
sity of the biomedical expressions, extracting relations from
biological articles remain a big challenge. In this subsection,
we carefully analyze the errors caused by MCCNN and list
the two typical errors as follows:

(1) An input sentence is very long (more than 60 words),
and Entity1 in this sentence is very close to Entity2.

(2) An input sentence is very long (more than 70 words),
and Entity1 in this sentence is far from Entity2.

As the only input forMCCNN is awhole sentence, Entity1
andEntity2 are likely to be included in the samewordwindow
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Table 15: Configurations of machine.

GPU NVIDIA GeForce GTX TITAN X
CPU Intel(R) Xeon CPU E5-2620 v3 @ 2.4GHz
System Windows 7
memory 8G

if Entity1 is very close to Entity2. In addition, due to the long
context, the irrelevant word windows also have the chance
to be chosen, and noise windows could hurt the system’s
performance. In the second case, a fixed window size such
as 7 might fail to capture long sentence context when two
entities are far from each other. A possible solution to avoid
the above two errors might introduce dependency parser
or parse tree information that would be able to capture the
syntax information nomatter the distance of the two entities.

4. Conclusion

In this work, we focused on three issues in biological relation
extraction. The first is the “vocabulary gap” problem that
would affect the performance of the biological extraction sys-
tem; the second is how integration of semantic information
will improve the performance of the system; and the third is
the investigation of a mean to avoid the manual feature selec-
tion.The first two issues could be solved by introducing word
embedding, especially themultichannel word embedding. By
integrating CNN with aforementioned multichannel word
embedding, the third problem could be well solved, and the
experimental results show that our proposed MCCNN is at
least effective for the two typical types of biomedical relation
extraction tasks: drug-drug interaction (DDI) extraction and
protein-protein interaction (PPI) extraction. In error analysis
section, we notice that the proposed MCCNN is not capable
of dealing with long sentences. In our future work, we would
like to design and evaluate our relation extraction system by
making full use ofmultichannelword embeddings, CNN, and
syntax information.

5. Implementation

We use Keras (https://keras.io/) to implement our model.
The configurations of our machine are listed in Table 15. It
takes about 400 seconds to finish an epoch in training and
21 seconds to predict the results during the test. In order to
get the best result, 10 iterations over train corpus are usually
required.
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