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Methods for diagnosing prostate cancer (PCa) are developing in the direction of imaging.
Advanced ultrasound examination modes include micro-Doppler, computerized-
transrectal ultrasound, elastography, contrast-enhanced ultrasound and
microultrasound. When two or more of these modes are used in PCa diagnosis, the
combined technique is called multiparameter ultrasound (mp-US). Mp-US provides
complementary information to multiparameter magnetic resonance imaging (mp-MRI)
for diagnosing PCa. At present, no study has attempted to combine the characteristics of
different ultrasound modes with advanced classification systems similar to the PIRADS
system in mpMRI for the diagnosis of PCa. As an imaging method, mp-US has great
potential in the diagnosis of PCa.

Keywords: multiparameter ultrasound, prostate cancer, contrast - enhanced ultrasound, elastography, ultrasound
molecular imaging
HIGHLIGHTS

1. This article is a review of the application and development of various ultrasound techniques in
the diagnosis of PCa.

2. Multiparameter ultrasound is a new combined mode of several ultrasound techniques, which is
similar to multiparameter magnetic resonance imaging and it can significantly improve the
diagnosis rate of PCa.

3. A complete ultrasound examination scoring system will have important clinical application
value in improving PCa diagnosis and follow-up.
INTRODUCTION

Prostate cancer (PCa) is the most common genitourinary system tumor in middle-aged and elderly
men, and it is common in most Northern and Western countries. With the “Westernization” of
lifestyles, the rapid aging of the population and the development of metabolic syndrome, the
incidence and mortality of prostate cancer in our country have gradually increased in recent years
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(1, 2). The onset of PCa is insidious and lacks typical clinical
manifestations. Most patients are already in the middle and late
stages when they are diagnosed. Therefore, the early clinical
diagnosis and treatment of PCa are of great significance in
improving the survival rate of patients and their quality of life.

At present, early diagnostic tests of PCamainly include on digital
rectal examination (DRE), serum prostate specific antigen (PSA)
measurement and conventional transrectal ultrasound (TRUS) (3).
DRE is limited to palpation of the posterior area of the prostate,
which can cause physical discomfort, rectal bleeding and even
syncope. The level of PSA can indicate the risk of prostate cancer,
but its sensitivity (SE) is high and specificity (SP) is low. The PSA of
prostate cancer patients can even be in the normal range. Acute
prostatitis and benign prostatic hypertrophy can also lead to an
increase in PSA levels.Twelve-core systematic TRUS-guided biopsy
for patients with serum PSA levels> 4.0 ng/mL is currently the gold
standard for diagnosing PCa. Its SE is low, however, and the
detection rate is only 27%-40.3% (4, 5). Additionally, the false
negative rate of systemic prostate biopsy ranges from 17% to 21% (6,
7). Increasing the number of core biopsies can increase the detection
rate of PCa and help better evaluate GS score (8, 9). The main
disadvantage of systematic biopsy is that it is invasive, and can cause
various complications such as prostatitis, hematuria, hematochezia,
urinary retention and hematospermia (10). Additionally, it cannot
detect small, low-risk, and clinically atypical cancers. Thus, it can
lead to misdiagnosis, missed diagnosis, too many false negatives,
and excessive puncture.

Therefore, an increasing number of researchers are dedicated to
exploring imaging technologies with high SE, SP, and
noninvasiveness. PCa imaging research focuses on two platforms:
magnetic resonance imaging (MRI) and ultrasound (US).
Multiparameter MRI (mp-MRI) is currently an important
imaging method for PCa detection and localization and guidance
of needle biopsy. The more commonly used sequences are T2-
weighted imaging (T2WI), diffusion weighted imaging (DWI),
dynamic contrast-enhanced MRI (DCE-MRI) and three-
dimensional MR spectral imaging (11). However, MRI is not
appropriate for claustrophobic patients, patients with pacemaker
implantation and patients with metal pelvic implants. US is highly
cost-effective and has wide applicability and strong practicability.
Advanced US modalities include micro-Doppler, computerized-
transrectal ultrasound, elastography, contrast-enhanced ultrasound
and microultrasound. When different modes are used in
combination, it is called multiparametric ultrasound (mp-US).
This is a novel US examination mode similar to mpMRI, that can
significantly improve the diagnosis rate of prostate cancer. This
article introduces the basic principles and performance of different
ultrasound-based modes and reports the clinical effects of
combining them in mp-US.
GREYSCALE TRUS

Currently, conventional TRUS is commonly used for prostate
cancer detection, guided systematic biopsy, and guided
radiotherapy particle placement (12). Because prostate cancer
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tissue and normal prostate tissue have similar backscatter signals
and heterogeneity in the prostate transition zone, traditional
TRUS has limitations in detecting PCa. Moreover, the higher
frequency of the transrectal transducer can cause attenuation
artifacts in the examination, especially when there are more
calcifications in the prostate tissue. Approximately 60% of PCa
lesions are hypoechoic on TRUS (13), and approximately 35–
39% are isoechoic (14). Some nonmalignant diseases of the
prostate, such as prostate inflammation and benign prostatic
hyperplasia, can also appear hypoechoic on ultrasound images,
leading to false positive test results.

The SE of TRUS in diagnosing PCa is between 8% and 88%,
and the SP is between 42.5% and 99% (15–17). Taverna et al.
observed that the PCa detection rate of 13-core TRUS-guided
biopsy was 29% in 100 patients (18). A study by Klein et al.
showed that TRUS has poor SP for early PCa, with a false
negative rate for pathological results of systematic biopsy guided
by TRUS of up to 30% (19). Hwang et al. noted that increasing
the number of transrectal ultrasound-guided prostate punctures
and the number of needles can increase the detection rate of PCa
but would also increase the incidence of puncture complications
(20). Therefore, targeted biopsy methods have arisen as the
newest direction of research, as it can reduce the number of
puncture needles and increase the detection rate of PCa. A study
showed that the SP of TRUS-guided targeted biopsy in detecting
PCa is better than that of mpMRI (41% vs. 96%) (21).

According to the European Urology Association (EAU)
guidelines, standard grayscale TRUS remains the standard
technique for biopsy guidance (22). The current US imaging
system mostly uses nonlinear imaging. Its main advantage is the
high contrast resolution of the tissue and low clutter in the
inspection. The current trend in prostate ultrasound diagnosis is
to increase the frequency of the probe and use broadband single-
crystal piezoelectric elements to provide higher contrast and
spatial resolution. In recent years, transrectal three-dimensional
ultrasound (3D-TRUS) has been developed to provide more
information for the diagnosis of PCa. Long et al. found that the
accuracy and repeatability of needle biopsy guided by real-time
three-dimensional ultrasound are better than those of two-
dimensional ultrasound (23). Zhao et al. (24) and Guo et al.
(25) showed that 3D-TRUS can help identify targeted puncture
sites and increase the positive rate of PCa examination.

As a new high-resolution imaging method to guide prostate
biopsy, microultrasound has received extensive clinical attention.
Compared with mpMRI, microultrasound has potential
advantages, such as relatively low cost and ease of operation.
Several studies have reported the use of microultrasound in
diagnosing PCa. In a meta-analysis of 769 patients, Zhang
et al. found that microultrasound had a pooled SE, SP,
diagnostic odds ratio (DOR), and area under curve (AUC) of
0.91, 0.49, 10, and 0.82, respectively (26). In 104 patients with
suspected PCa, Lughezzani et al. found that the sensitivity and
detection rate of microultrasound for the detection of csPCa were
94% and 54%, respectively (27). This study suggests that
microUS can be used as an auxiliary diagnostic tool for MRI in
diagnosis csPCa. PCa is a lower proportion of MRI-diagnosed
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PI-RADS 3 lesions, but prostate biopsy is still required. In a study
of 111 patients, Pier Paolo Avolio et al. found that microUS
detected 100% of csPCa in patients with a PI-RADS 3 lesion at
mpMRI, while reducing the detection rate of ncsPCa to 23.8%
(28). Sountoulides et al. (29) found that microultrasound-guided
prostate biopsy has a PCa diagnosis rate equivalent to that of
mpMRI-guided prostate biopsy. Laura Wiemer et al. found that
the positive predictive value of micro-ultrasound for diagnosing
csPCa was significantly higher than that of mpMRI in 159
patients (30). Microultrasound can be used as an inexpensive
and convenient alternative to mpMRI in diagnosing PCa. Based
on the findings of other studies, microultrasound can
satisfactorily diagnose clinically significant prostate cancer
(csPCa). The high SE of microultrasound in the diagnosis of
PCa can further improve MRI/US-targeted biopsy and avoid
unnecessary system biopsy. The diagnostic value of
microultrasound still needs to be more comprehensively
analyzed with more clinical data.

The latest EAU guideline (2022) recommend to perform, if
possible, transperineal instead transrectal approach. In 200
patients with persistently elevated PSA, Pietro Pepe et al. found
that transperineal MRI/TRUS cognitive targeted biopsy had a
higher detection rate of csPCa in the anterior zone of prostate
compared with transrectal MRI/TRUS fusion targeted biopsy
(93.3 vs. 25%) (31). The transperineal approach provides
relatively easy access to the anterior region, thus it reduces the
patient’s risk of sepsis (32). In a study of 3000 patients with
suspected PCa, Pietro Pepe et al. found that the detection rate of
PCa by transperineal prostate biopsy was 38.3%, and 40.2% of the
patients underwent biopsy without sepsis, only urinary tract
infection and urinary retention (33). There are several studies
focusing on fusion targeted biopsy and cognitive targeted biopsy,
which one is more suitable for the detection of csPCa. In a study
of 200 patients with persistently elevated PSA, Pietro Pepe et al.
found that the sensitivity, specificity, positive predictive value,
negative predictive value, and diagnostic accuracy of transperineal
cognitive targeted biopsy in detection rate of csPCa were slightly
higher than those of transrectal fusion targeted biopsy (97.2% vs.
66.7%, 78.2% vs. 71.8%, 59% vs. 42.1%, 97.2% vs. 87.5%, 68.9% vs.
57.5%, respectively.) (31). However, several studies have
presented higher accuracy of MRI/TRUS fusion targeted biopsy
compared with cognitive targeted biopsy, because the latter is
operator-dependent (5, 34). In the past few years, mpMRI/TRUS
fusion-targeted biopsy has improved the diagnostic accuracy of
csPCa, especially in patients with repeat biopsies (35). More
researches are still needed to present their respective advantages
in diagnosing csPCa.
COMPUTER-ASSISTED DIAGNOSTIC
SYSTEM

In artificial neural network analysis/computerized-transrectal
ultrasound (ANNA/C-TRUS), the doctor performs routine
grayscale TRUS examinations on the patient before radical
prostatectomy (RP). The images are sent to the ANNA/C-
Frontiers in Oncology | www.frontiersin.org 3
TRUS server through an internet platform. The C-TRUS
system uses the ANNA algorithm to analyze the ultrasound
images, then colors suspicious areas and returns them to the user
terminal. This system is a convenient method for clinicians to
performed guided, targeted tumor biopsy (36).

Among 132 patients with elevated PSA or abnormal DRE, 66
cases of cancer were found through C-TRUS targeted biopsy
(37). Another study compared the tumor localization of the C-
TRUS system before surgery and the pathological results after RP
in 28 patients and found that the SE, SP, negative predictive value
(NPV), positive predictive value (PPV) and total accuracy of the
ANNA/C-TRUS system in detecting cancer were 83.1%, 63.9%,
68.4%, 80.1% and 76.2%, respectively (38). Moreover, the
ANNA/C-TRUS sys tem can be t t e r pred ic t tumor
differentiation than random systemic biopsy. In 164
preoperative patients undergoing RP, the SE of ANNA/C-
TRUS in predicting the RP Gleason classification of the index
lesions was 85% (39).When performing traditional TRUS, the
additional use of C-TRUS can assist in the detection and biopsy
of cancerous lesions. The combination of C-TRUS and MR can
increase the detection rate for high-risk PCa patients (40). The
use of ANNA/C-TRUS can improve the accuracy of PCa
diagnosis, but a larger multicenter study is still needed to
assess its clinical value.

Histoscanning (HS) is an ultrasound-based tissue
characterization technology that can be used for PCa detection
and localization. TRUS is used to first perform a full scan of the
prostate to obtain three-dimensional grayscale data. Then the
examiner uses HS software to color-code suspicious area and
determine the tumor volume. This technique has shown
encouraging results in the detection of csPCa.

In a study of 32 preoperative patients with RP, the SE, SP,
PPV, and NPV of HS in detecting PCa were 93.5%, 79.5%,
67.35%, and 96.5%, respectively (41). HS can assist in diagnosing
patients through prostate biopsy diagnosis. It has a higher
detection rate for cancer lesions with a volume of ≥0.50 mL
(42) and a diameter of ≥0.1cm (43). In 43 patients, the cancer
detection rate of transrectal ultrasound biopsy with a standard
12-core system guided by prostate tissue scanning targeting
(PHS-TT) was 46.5%, and the length of the PHS-TT cores was
significantly higher than that of the systematic cores (55.4% vs.
37.5%, p <0.05) (44). PHS-TT can be used as an effective tool for
the clinical guidance of prostate biopsy in real time.

In a study of 14 preoperative prostate HS in patients with RP,
there was a significant correlation between tumor diameter and
final pathology (r=0.95, p<0.001) (45). Simmons et al. observed a
good correlation between tumor volume and final pathology
(r=0.7) in a study of 27 patients, and the SE and SP of PHS in
localizing of lesions ≥ 0.2 mL within a sextant were 90% and 72%,
respectively (46). However, some studies arrived at different
conclusions. A study of 148 PCa patients indicated that there
was no significant correlation between the tumor volume
measured by PHS and obtained in the final pathology (r =
-0.0083, p = 0.9) (47). Javed S et al. also showed that the
tumor volume measured by PHS was not correlated with the
pathological volume after RP (r = -0.096) (48).
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HS-targeted biopsy of the prostate is gradually being applied
in clinical practice, but it still cannot replace the important role
of systematic biopsy in detecting PCa. Compared with those of
TRUS-guided prostate biopsy and transperineal template
prostate biopsy (TTB), the overall cancer detection rates of
PHS-targeted biopsy and TRUS-guided systemic biopsy are
38.1% and 62.5%, respectively (48). The total cancer detection
rates of PHS-targeted biopsy and standard TTB were 13.4% and
54.4%, respectively (48). The SE and SP of PHS in the posterior
gland were 100% and 13%, respectively, and those in the anterior
gland were 6% and 82%, respectively (48). Therefore, it is
currently not recommended to use HS to reliably identify and
characterize PCa. The potential of PHS in assisting in the
detection of PCa is considerable, and a larger patient
population is still needed to further verify its clinical value.
COLOR DOPPLER/POWER DOPPLER

Several studies have reported the added value of Doppler
technology over grayscale ultrasound (GSU) (9, 49, 50). Color
Doppler ultrasound (CDU) and power Doppler ultrasound
(PDU) can be used to detect invisible lesions on the GSU by
revealing abnormal blood vessels in the tissue. CDU describes the
speed and direction of blood flow by detecting the frequency
changes when the signal is reflected by red blood cells (51). If the
lesion is located in the peripheral zone of the prostate with
nodular or clustered hypoechogencity, CDU manifests an
intralesional vascular hyperplasia. Then, the lesion is likely to
be malignant. Conventional CDU can improve the PCa detection
rate (51).

PDU is another method of displaying blood flow in color, but
it is more sensitive to perfusion than CDU. However, PDU
cannot describe the direction of blood flow. PDU can detect low-
velocity blood flow in blood vessels with an inner diameter as
small as 1 mm. Okihara et al. used PDU to examine 107 men
with high serum PSA levels. The results showed that the SE, SP,
PPV and NPV of PDU in detecting of lesions were 98%, 78%,
59% and 99%, respectively (52). Sauvain et al. found that the SE
and SP of PDU in detecting low-risk PCa in 243 patients were
45% and 74%, respectively (53). Eisenberg et al. compared GSU
and PDU with 620 RP postoperative specimens and reported
that adding PDU to GSU increased the SP from 47% to 74%,
although the SE was reduced from 58% to 47% (15).

Both CDU and PDU can help identify vascular tissue, and the
latter is more sensitive, but neither is sufficient to detect early
PCa. Tumor growth and progression within the prostate are
usually accompanied by angiogenesis, which may significantly
increase the microvessel density (MVD) in the lesions. An
increase in MVD is associated with a higher tumor grade and
a worse prognosis (51). The limited resolution of Doppler
ultrasound can detect blood vessels in the millimeter range,
while the angiogenesis of malignant tumors can generate blood
vessels as small as 10-50 microns in diameter (51). Therefore, the
Doppler technique may be effective only in detecting increased
blood flow in large vessels that are found in larger, advanced,
Frontiers in Oncology | www.frontiersin.org 4
high Gleason-grade tumors. Another potential disadvantage of
Doppler and other blood flow-based ultrasound techniques is
that the left-side lying position often used by patients may result
in an asymmetrical distribution of blood flow in the prostate
tissue. Harper et al. found that CDU and PDU showed a
significant difference in blood flow in tissues (P<0.002) that are
beneficial to the left side of the prostate instead of the right
side (54).
ELASTOGRAPHY

Ultrasound elastography (UE) can reveal stiff lesions that are not
visible on traditional TRUS (17, 55). The main methods for the
UE diagnosis of PCa include transrectal real-time tissue
elastography (TRTE) and shear-wave elastography (SWE). The
index for evaluation with TRTE is the ratio of the stress on the
material to the structural deformation caused by the stress, and
the index for evaluation with SWE is expressed as the shear wave
velocity and Young’s modulus.

Transrectal Real-Time Tissue
Elastography
In TRTE, the rectal probe cyclically compresses the suspicious
prostate tissue and monitors the degree of elastic strain. The
speckle comparison caused by each cycle of compression and
decompression will generate a color-coded map, which is then
overlaid on the grayscale image of the prostate. Note that the
tissue deformation is homogeneous over the imaging plane, and
the region of interest (ROI) should cover the entire gland and
surrounding tissues to obtain a qualified and reproducible
elastogram. Finally, the operator compares the tissue strain
ratios of the two ROIs, with one considered “normal” and one
considered “abnormal”, on the elastogram. On the elastic chart of
the TRTE examination, low strain is highlighted by color coding
in blue, and the corresponding high strain soft tissue is coded in
red. Blue hypoechoic lesions of the prostate are suspected of
malignancy. Normally, the stiffness of the glands in the prostate
increases with age. PCa tissue is harder than normal prostate
tissue due to increased cellular density, microvascularization and
stromal reaction combined with collagen deposition in the
surrounding prostate parenchyma (56). Thus, the organization
of PCa tumors often involves partial or no obvious compression
during TRTE inspection. The detection rate of prostate anterior
parenchyma is lower than that in the posterior areas, and that of
the base of the prostate is also lower than that of the apical
regions in TRTE examination (55, 56).

Most studies on prostate elastography have used TRTE. A
meta-analysis of 6 studies by Salomon G et al. showed that for
TRTE targeted biopsy for PCa detection, the SE and SP per
patient were 62% and 79%, respectively, and the SE and SP per
core were 34% and 93%, respectively (57). Zhang B et al.
compared TRTE with histopathological results after RP in a
meta-analysis of 508 patients, and the pooled SE and SP of TRTE
in diagnosing PCa were 0.72 and 0.76, respectively (58).
Miyanaga et al. analyzed 29 patients with PCa before RP. The
June 2022 | Volume 12 | Article 905087
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results showed that the SE of TRTE, GSU, and DRE in
diagnosing PCa were 93%, 59%, and 55%, respectively (59).

Aigner et al. reported that in 94 patients, the SE, SP, PPV, and
NPV of TRTE targeted biopsy were 74.0%, 60.0%, 39.0%, and
93.0%, respectively. Furthermore, TRTE-targeted biopsy was
better than systemic biopsy, and the detection rate of PCa was
4.7 times higher (60). A comparative study of TRTE targeted
guided needle biopsy and systemic biopsy by Brock et al. showed
that TRTE had a higher positive rate for prostate needle biopsy
than TRUS, but TRTE targeted guided needle biopsy was still
unable to replace systemic needle biopsy (55). Therefore, we
believe that TRTE-guided targeted biopsy can complement
traditional systematic biopsy.

A study of 33 patients showed that the PCa detection rate
of TRTE is basically equivalent to that of MRI. The SE and NPV
of TRTE were 84.6% and 86.7%, respectively, while those of
mpMRI were 84.6% and 83.3%, respectively (61). Pelzer et al.
found that the SE and SP of TRTE in diagnosing PCa in 46
patients were 44.1–58.9% and 83.0–74.8%, respectively, while
those of MRI were 36.7–43.1% and 85.9–79.8%, respectively (62).
TRTE has advantages in the apical and middle parts of the
prostate, while MRI has advantages in the gland base and TZ.
The combination of the two detection methods can increase the
total PCa detection rate (62). A study involving 41 patients
showed that lesions on ventral prostate sectors were easier to
detect by MRI, while TRTE more easily detected lesions in dorsal
and apical sectors. The combination of MRI-TRTE significantly
increased the area under the mpMRI curve from 0.65 to 0.75
(63). Brock et al. found that the SE and SP of the combined MRI/
TRTE in detecting PCa were 77.8% and 77.3%, respectively (64).

Among the limitations of TRTE are that it performs a
semiquantitative analysis of tissue elasticity; it cannot provide
uniform compression for the whole gland; it has a low detection
rate for small and low-grade prostates (65); and insufficient
image acquisition and low reproducibility of the operation
when the probe slips off the prostate, as shown for 32% of
patients (66). Real-time balloon inflatable elastography (RBIE)
has been adopted by clinics as a new technology for
supplementing TRTE. It uses a pistol syringe connected to the
balloon on the rectal probe to apply force to the prostate through
inflation and deflation instead of manual compression. RBIE can
more sensitively detect tumors with higher Gleason scores and
hard-to-reach tumors in the prostate area. RBIE provides stable
elastic motion images and improves the ability of TRTE to detect
prostate cancer (67).

Shear–Wave Elastography
In recent years, SWE has been primarily used for the diagnosis of
thyroid, breast and liver diseases. SWE evaluates the hardness of
the tissue by measuring the propagation speed of a shear wave
delivered to the tissue. It is a quantitative technique that
standardizes the detection of prostate cancer. The SWE
measurements have excellent in-observer repeatability (ICC =
0.876) (68). However, SWE is plane-dependent, and the hardness
of the sagittal image of the prostate is higher than that of the axial
image (69); the shear waves attenuate significantly in larger
Frontiers in Oncology | www.frontiersin.org 5
glands; and for larger prostates, it is difficult to perform SWE
without prepressurization.

What distinguishes SWE from TRTE is that the former avoids
putting pressure on the rectal wall. The color rendering mode of
SWE is opposite that of TRTE; low strain is highlighted in red,
and soft tissues are shown in blue. Red hypoechoic areas are
suspicious of malignant lesions. In young men without prostate
hyperplasia, the area around and in the center of the prostate is
uniformly displayed in blue, and the stiffness value ranges from
15 to 25 kPa. As prostate hyperplasia develops, the central area of
the prostate becomes an uneven red with stiffness values ranging
from 30 to 180 kPa, while the surrounding area still maintains a
more uniform blue color (70). While attempting not to compress
the prostate during SWE examination, the prostate is scanned
from base to apex to obtain the original elastic image containing
each plane. Then, the operator calculates the elasticity measure
(mean, min and max) of each ROI, as well as the ratio between
the quantitative box (Q-box) placed in the suspicious prostate
area and the adjacent normal surrounding area.

SWE is a commonly used ultrasound imaging method for
PCa diagnosis in the clinic and shows good diagnostic value. In a
prospective study of 53 patients, a Young’s modulus value of 37
kPa was used as the cutoff value between benign and malignant
prostate tissues. The SE, SP, PPV and NPV of SWE in detecting
PCa were 96.2%, 96.2%, 69.4% and 99.6%, respectively (71). The
meta-analysis results of Sang et al. showed that the pooled SE and
SP of SWE in diagnosing PCa were 0.844 and 0.860, respectively
(72). Boehm K et al. used 50 kPa as the Young’s modulus
threshold for benign and malignant prostate tissues, and the
SE and SP of SWE in detecting PCa were 80.9% and 69.1%,
respectively (70). At present, the results of some studies using
SWE show that the critical value for distinguishing benign and
malignant lesions is in the range of 35 to 43.9 kPa (71, 73, 74).

The increase in PCa tissue stiffness is related to the GS (75)
and disease severity (76). The average Young’s modulus of
prostate cores with a Gleason score of 7 (163 ± 63 kPa) was
higher than that of prostate cores with a Gleason score of 6 (95 ±
28.5 kPa; P = 0.007) (77). Woo et al. reported that Young’s
modulus was significantly correlated with the Gleason score (r =
0.343, P = 0.002) (r = 0.898, P <0.0001) (73, 78, 79). Similarly,
there is a correlation between the strain index (SD) and the
Gleason score. The mean elastic strain index SD (3.26~1.77) of
malignant focal lesions was found to be significantly higher than
that of benign focal lesions (2.16~1.52; P<0.008), and the strain
index was moderately linearly correlated with the Gleason score
(r=0.441; P=0.013) (55). This finding may be attributed to the
higher cell density and stiffness associated with higher grades of
prostate cancer.

Rui et al. reported a new 11-point scoring system based on
SWE and other clinical parameters (TRUS, DRE, and free PSA/
total PSA ratio), and the results showed that when scoring based
on SWE and clinical parameters, the AUC of the system (0.911)
was higher than that of SWE alone (0.842) or of clinical
parameters (0.868) alone (80). Recently, research has been
conducted on the efficacy of 3D SWE in detecting prostate
cancer. When the critical value of tissue elasticity of 41 kPa
June 2022 | Volume 12 | Article 905087

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Multiparametric Ultrasound in PCa Diagnosis
was combined with the PI-RADS score, the SE, SP, PPV and
NPV of cancer detection were 70%, 98%, 91% and 92%,
respectively (79). In the future, 3D SWE may have the
potential to improve the detection of major prostate cancer.

Acoustic Radiation Force Pulse Imaging
Acoustic radiation force pulse imaging (ARFI), another mode of
UE, shows promise in the diagnosis and treatment of PCa. In
ARFI, a short-term high-intensity focused ultrasound beam is
transmitted to the prostate tissue to displace it. Zhai et al.
successfully distinguished benign hyperplastic nodules,
calcifications and cancerous lesions in the prostate using ARFI
imaging (81). Wang et al. noted that a high-intensity ultrasound
pulse can separate prostate cancer tissue from normal tissue, a
potential noninvasive prostate cancer resection technique that
and has therapeutic value (82).
CONTRAST−ENHANCED ULTRASOUND

A large number of microvessels are generated inside PCa tumors,
which provide the necessary nutrients for tumor proliferation,
metastasis and invasion. The density of microvessels in a PCa
tumor is significantly higher than that of normal prostate tissue.
In contrast-enhanced ultrasound (CEUS), an intravenous
injection of ultrasound contrast agent (UCA) with a diameter
close to red blood cells is made to observe the blood perfusion of
the lesion and adjacent tissues in real time. CEUS can detect
blood flow signals in microvessels with a diameter of 1–10 mm
(83). The main component of the UCA is microbubbles (MBs),
the incidence of allergic reactions is much lower than that of
iodine contrast agents (84), and there is no nephrotoxicity. After
intravenous injection of the UCA, one ROI is delineated in the
suspicious area, and another is drawn in the enhanced normal
parenchyma as a reference. The signal intensity change of the
contrast agent in the prostate ROI area is plotted over time,
which is called the time intensity curve (TIC). PCa tissue shows
higher peak enhancement, and a shorter rise time and peak time
than normal parenchyma (85).

In a prospective study of 65 patients with elevated PSA, Zhao
et al. found that the SE and SP of CEUS in diagnosing PCa were
79.3% and 86.1%, respectively (86). In a meta-analysis of 16
studies with a total of 2624 patients, Li et al. found that the SE,
SP, and DOR of CEUS imaging in detecting prostate cancer were
0.70, 0.74 and 9.09, respectively (87). Sedelaar et al. performed
three-dimensional contrast-enhanced Doppler ultrasound (3D
CE-PDU) on 7 patients with PCa confirmed by biopsy and found
that the MVD on the “enhanced” side was 1.93 times that on the
“unenhanced” side (88). Using 3D CE-PDU, 86% of cancer foci
were found in 70 patients with PCa who planned to undergo RP
(89). 3D CE-PDU has the ability to visualize lesions with
high MVD.

CEUS-guided prostate targeted biopsy is widely used in
clinical PCa detection. In a study of 1,776 men, Mitterberger
et al. found that the PCa detection rate of CEUS–targeted biopsy
was significantly higher than that of systematic biopsy (10.8% vs.
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5.1%) (90). In a study involving 690 patients, Strazdina et al.
found that CEUS–guided targeted biopsy had good SE in the
detection of PCa with high Gleason scores (6 or higher) (91).
Some studies have shown that targeted needle biopsy guided by
CE-TRUS can not only improve the diagnostic SE of PCa but
also increase the positive rate of needle biopsy (92–94). However,
several studies have instead shown that there is no significant
difference in the detection rate of PCa between the CEUS guided
targeted puncture method and the systematic puncture method
(95). CEUS is a promising tool for detecting PCa, but it still
cannot completely replace systematic biopsy under
existing circumstances.

Compared with other ultrasound modes, CEUS shows good
diagnostic value in the diagnosis of PCa. Among 115 men with a
serum PSA level greater than 4.0 ng/ml, a study showed that the
SE, SP and accuracy of CEUS in diagnosing PCa were 65%, 83%
and 73%, respectively, which were higher than those of TRUS
and PDU (96). However, Taverna et al. reported that CEUS did
not significantly increase the detection rate of PCa over PDU or
GSU (18). Some recent studies used CEUS in combination with
other ultrasound modes to detect PCa. Halpern et al. and
Matsumoto et al. found that the total SE of CEUS and GSU in
the diagnosis of PCa in 12 and 50 prostate cancer patients was
42% and 40%, respectively (97, 98). The combination of multiple
ultrasound modes can significantly improve the ability to detect
PCa clinically.

Contrast-enhanced ultrasound diffusion imaging (CUDI) is a
very promising new technique for prostate cancer imaging
developed in recent years. It analyzes the time evolution of the
UCA concentration in the neovasculature of cancer foci to
generate quantitative maps of perfusion parameters to better
characterize microvascular structure. Jung et al. measured
ultrasound contrast perfusion quantitative parameters in 20
PCa patients, including the early irrigation rate (EIR), mean
transit time (MTT) and rise time (RT). The results showed that
the SE, SP, NPV and PPV of PCa were 88%, 100%, 60% and 90%,
respectively (99). This preliminary study shows that the
quantitative analysis of CEUS perfusion parameters can help
visualize the microvascular blood circulation and preoperative
location of prostate cancer. In a study of 82 patients, Francesco
M. Drudi et al. found that the sensitivity of mpMRI and
quantitative analysis of contrast-enhanced ultrasound (CEUS)
for detecting PCa were 91.3% and 40%, respectively, and the
specificity were 66.7% and 97.2%, respectively (100). CUDI has
also been studied in three dimensions. In a study using 3D CUDI
to detect the PCa tumors in 43 patients, perfusion parameters
were significantly different between benign and malignant
tissues, including correlation (r) and wash-in time (WIT). The
SE and SP of r in detecting PCa were 94% and 50%, and those of
WIT were 53% and 81% (101).

Ultrasound molecular imaging is a new direction in the field
of the early diagnosis of tumors. Due to the size limitation of
MBs, CEUS is limited to the vasculature where MBs accumulate
in the tumor. Only particles with a diameter of less than 700 nm
can penetrate the tumor blood vessel wall and enter the tumor
interstitium (102). Prostate-specific membrane antigen (PSMA)
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is a type II glycoprotein that is mainly distributed in prostate
epithelial cells. It is highly expressed in prostate intraepithelial
neoplasia, hormone-dependent or hormone-independent
prostate cancer, and metastatic cancer (103) but expressed at
low levels in normal prostate epithelial cells. This feature makes
it one of the most important biomarkers in the diagnosis and
treatment of PCa. Therefore, some studies focused on the
construction of targeted nanobubbles (NBs) with a diameter of
less than 700 nm to achieve specific ultrasound-enhanced
imaging of prostate cancer cells (102–104). At present, PSMA-
targeting, indocyanine green (ICG)-loaded nanobubbles (NBs)
(102) and PSMA single-chain variable fragment (scFv)–loaded
NBs have been reported (104). These new targeted NBs have
been proven to be excellent US contrast agents that extend the
signal enhancement time and have stronger penetrating ability
and higher specificity (105, 106). If the NBs are loaded with
drugs, targeted therapy of PCa can also be achieved.
MRI/US FUSION IMAGING

When a lesion is detected on MRI, MRI/US fusion can be helpful
(Figure 1). A number of studies have demonstrated that MRI/US
fusion technology-guided biopsy improves the detection rate of
PCa. Brock et al. found that using MRI/TRUS fusion targeted
biopsy in 121 men, the SE and SP in the detection of PCa were
77.8% and 77.3%, respectively, and the detection rate per core for
combined targeted biopsy (14.7%) was higher than the detection
rate per core of system biopsy (6.5%, p <0.001) (107). In a
retrospective study of 135 patients, MRI combined with 3D
TRUS targeted needle biopsy was performed before RP, and the
SE of the detection of prostate index tumors was 95% (108).
Siddiqui MM et al. compared 1003 patients with MRI/US
combined with prostate targeted biopsy and standard biopsy. The
Frontiers in Oncology | www.frontiersin.org 7
results showed that the accuracy of targeted biopsy was 30% higher
than that of standard biopsy in diagnosing high-risk cancers (109).
Tewes S et al. reported the SE, SP, and NPV of MRI/TRUS
combined-guided targeted biopsy in detecting prostate lesions
with PI-RADS scores ≥ 4 were 85%, 82% and 92%, respectively
(110). US and MRI have advantages in the diagnosis of PCa, and
when combined, the detection of PCa is obviously improved.
MPUS

Transrectal multimodal ultrasound refers to a combination of
GSU, CDU, PDU, TRTE, and CEUS. GSU shows the anatomical
location of the prostate lesion (Figure 2A). Doppler ultrasound
shows the blood flow in the larger hyperplastic vessels in the
lesion (Figure 2B). Elastography shows the hardness of the
lesion tissue to infer properties about its nature (Figure 2C).
CEUS shows new microvessels in the lesion (Figure 2D).
Clinically, the combination of different ultrasound modes can
improve the detection rate of PCa. At present, there are few
studies on the combination of ultrasound modes.

Nelson et al. used GSU, PDU, and TRTE for the targeted biopsy
of prostate lesions in 137 patients. The results showed that in 106
positive sextant sites, the positive rates of GSU, CDU, TRTE, and
combined ultrasound modes were 16%, 29%, 25%, and 46%,
respectively, indicating that combined ultrasound methods with
different modes can improve the detection rate of PCa (17). Xie et al.
conducted transrectal GSU, PDU and their combination with a
third mode (DCE-US) to detect PCa in 150 patients. The results
showed that the sensitivities of the combined mode (GSU+PDU),
GSU, PDU and DCE-US, were 73%, 51%, 48%, and 63%,
respectively (111). In a retrospective study involving 133 men
with elevated serum levels of PSA (≥1. 25 ng/mL), the PCa
detection rate of CEUS and TRTE combined targeted biopsy was
FIGURE 1 | Diagnosis of PCa using mpUS—case 1. A 68-year-old patient has a total serum PSA of 10.4ng/ml. The T2-weighted sequence of MRI (A, arrow)
shows a slightly low signal shadow in the peripheral zone of the prostate, suggesting PCa in the diagnosis. The lesion showed a slightly hypoechoic area on the B-
mode (B, arrow), and it’s not clearly demarcated from the seminal vesicle gland. CDU shows an abnormally increased blood flow in the lesion (C, arrow). TRTE
shows that the slightly hypoechoic area of the prostate’s peripheral zone is highly stiff (D, arrow). CEUS shows early high enhancement within the lesion (E, arrow).
TRUS-guided systematic biopsy confirmed that the peripheral zone of the prostate was a Gleason 4 + 4 PCa.
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59.4% (112). Brock et al. performed TRTE and CEUS examinations
on 100 patients before RP. Compared with pathological biopsy, the
examinations showed a SE and SP in detecting PCa by TRTE of 49%
and 74%, respectively. Compared with the combination of TRTE
and CEUS, the false positive value of TRTE alone was reduced from
34.9% to 10.3%, and the PPV of cancer detection was increased
from 65% to 90% (64). Among 153 prostate nodules, the SE,
accuracy and NPV of the combination of TRTE and CEUS in
diagnosing PCa were 92.1%, 86.2%, and 84.6%, respectively.
Multiple ultrasound imaging modes combined with targeted-
guided prostate biopsy can not only increase the detection rate of
malignant lesions but also reduce the number of tissue punctures.

Mp-US and mp-MRI provide complementary information in
the diagnosis of PCa. Zhang et al. performed mp-US and mp-MRI
examinations on 88 patients. The results showed that the SE, NPV,
accuracy, and AUC in detecting PCa with mp-US were higher than
that mp-MRI (97.4% vs. 94.7%, 96.9% vs. 92.3%, 87.2% vs. 76.9%,
0.874 vs. 0.774, respectively) (113). In 167 patients with primary
prostate biopsy, Pat F. Fulgham et al. found that mpUS-targeted
biopsy was superior to mpMRI/TRUS fusion-targeted biopsy in
terms of the positive rate of PCa and the ability to detect low-
malignancy PCa (114). Mp-US has higher diagnostic performance
than mp-MRI in diagnosing local PCa.
CONCLUSION

Due to the poor prognosis of metastatic PCa, early detection of PCa
is the most effective strategy to reducemorbidity andmortality. MRI
experts from the European Society of Urogenital Radiology (ESUR)
developed the PI-RADS scoring system for prostate mpMRI and
used Likert-type scales to score the corresponding lesions. At
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present, mpMRI is still used as the main imaging method for
diagnosing PCa in clinical practice, and no multiparameter
ultrasound image scoring system has been developed. Ultrasound
is also very important in the imaging diagnosis of PCa, due to its low
cost, ease of use, real-time functionality, lack of radiation, and the
continuing development of more advanced ultrasound techniques.
Polymeric NBs targeting PSMA as a new UCA can increase the
diagnostic potential of CEUS and may become a popular research
topic for targeted ultrasoundmolecular imaging of PCa. In addition,
NBs can be used as drug carriers for PCa-targeted therapy.
Ultrasound molecular imaging has become an emerging research
field in tumor imaging diagnosis. Our future work will focus on
accumulating more patient data, integrating the diagnostic
characteristics of PCa under different ultrasound modes, and
constructing a complete ultrasound examination scoring system
through optimized algorithms. The development of this advanced
mpUS scoring system will have important clinical application value
in improving PCa diagnosis and follow-up.
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FIGURE 2 | Diagnosis of PCa using mpUS—case 2. A 76-year-old patient has a total PSA of 14.3ng/ml. Multiparameter US starts from conventional transrectal
ultrasound, and the lesion is a hypoechoic nodule at the junction of the inner and outer glands in the prostate’s left lobe (A, arrow). The lesion appears on the CDU
as a rich blood flow of the arterial spectrum (B, arrow). The operator uses the endocavitary transducer to alternately compress and decompress the lesion, which
appears mostly blue on the TRTE (C, arrow). Hypoechoic nodule appears on CEUS as hypervascular nodule with enhanced “fast forward and fast exit” (D, arrow).
Histopathology shows that the prostate lesions were clinically significant with a Gleason 4 + 3 PCa.
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Elastography of the Prostate: State of the Art. Diagn Intervent Imaging
(2013) 94(5):551–60. doi: 10.1016/j.diii.2013.01.017

75. Ahn BM, Kim J, Ian L, Rha KH, Kim HJ. Mechanical Property
Characterization of Prostate Cancer Using a Minimally Motorized
Indenter in an Ex Vivo Indentation Experiment. Urology (2010) 76
(4):1007–11. doi: 10.1016/j.urology.2010.02.025

76. CarsonWC, Gerling GJ, Krupski TL, Kowalik CG, Harper JC, Moskaluk CA,
et al. Material Characterization of Ex Vivo Prostate Tissue via Spherical
Indentation in the Clinic. Med Eng Phys (2011) 33(3):302–9. doi: 10.1016/
j.medengphy.2010.10.013

77. Ahmad S, Rui C, Varghese T, Bidaut L, Nabi G. Transrectal Quantitative
Shear Wave Elastography in the Detection and Characterisation of Prostate
Cancer. Surg Endoscopy (2013) 27(9):3280–7. doi: 10.1007/s00464-013-
2906-7

78. Correas JM, Tissier AM, Khairoune A, Vassiliu V, Méjean A, Hélénon O,
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GLOSSARY

PCa Prostate cancer
DRE Digital rectal examination
PSA Prostate specific antigen
TRUS Transrectal ultrasound
SE Sensitivity
SP Specificity
MRI Magnetic resonance imaging
US Ultrasound
mp-MRI Multiparameter MRI
T2WI T2- weighted imaging
DWI Diffusion weighted imaging
DCE-MRI Dynamic contrast-enhanced MRI
mp-US multiparametric ultrasound
EAU European Urology Association
3D-TUS Transrectal three-dimensional ultrasound
DOR Diagnostic odds ratio
AUC Area under curve
csPCa Clinically significant prostate cancer
ANNA/C-
TRUS

Artificial neural network analysis/computerized-transrectal
ultrasound

RP Radical prostatectomy
NPV Negative predictive value
PPV Positive predictive value
HS Histoscanning
PHS-TT Prostate tissue scanning targeting
TTB Transperineal template prostate biopsy
GSU Grayscale ultrasound
CDU Color Doppler ultrasound
PDU Power Doppler ultrasound
MVD Microvessel density
UE Ultrasound elastography
TRTE Transrectal real-time tissue elastography
SWE Shear-wave elastography
ROI Region of interest
RBIE Real-time balloon inflatable elastography
SD Strain index
ARFI Acoustic radiation force pulse imaging
CEUS Contrast-enhanced ultrasound
UCA Ultrasound contrast agent
MBs Microbubbles
TIC Time intensity curve
3DCE-PDU Three-dimensional contrast-enhanced Doppler ultrasound
CUDI Contrast-enhanced ultrasound diffusion imaging
EIR Early irrigation rate
MTT Mean transit time
RT Rise time
WIT Wash-in time
PSMA Prostate-specific membrane antigen
NBs Nanobubbles
ICG Indocyanine green
scFv Single-chain variable fragment
ESUR European Society of Urogenital Radiology
Frontiers in Onco
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