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ABSTRACT

How alternative splicing (AS) is regulated in plants has
not yet been elucidated. Previously, we have shown
that the nuclear cap-binding protein complex (AtCBC)
is involved in AS in Arabidopsis thaliana. Here we
show that both subunits of AtCBC (AtCBP20 and
AtCBP80) interact with SERRATE (AtSE), a protein
involved in the microRNA biogenesis pathway.
Moreover, using a high-resolution reverse transcript-
ase-polymerase chain reaction AS system we have
found that AtSE influences AS in a similar way to the
cap-binding complex (CBC), preferentially affecting
selection of 5 splice site of first introns. The AtSE
protein acts in cooperation with AtCBC: many
changes observed in the mutant lacking the correct
SERRATE activity were common to those observed in
the cbp mutants. Interestingly, significant changes in
AS of some genes were also observed in other
mutants of plant microRNA biogenesis pathway,
hyl1-2 and dcl1-7, but a majority of them did not cor-
respond to the changes observed in the se-1 mutant.
Thus, the role of SERRATE in AS regulation is distinct
from that of HYL1 and DCL1, and is similar to the regu-
lation of AS in which CBC is involved.

INTRODUCTION

Alternative splicing (AS) is a widespread process that gen-
erates more than one spliced mRNA isoform from the
same gene. One of the major consequences of AS is to

increase protein diversity by the inclusion or exclusion of
peptide sequences or protein domains. The number of
genes that undergo AS is ~95% in human (1,2), and has
recently increased to >60% of intron-containing genes in
Arabidopsis thaliana (3,4). More than 75% of AS events
occur within the coding sequence of the genes, and can
generate proteins with new structures and biological func-
tions (5-8). However, a significant number of AS events in
coding regions generates premature termination codons,
which potentially target transcripts for degradation by the
nonsense-mediated decay (NMD) pathway. Thus, AS can
also modulate gene expression through the production of
mRNA isoforms, which are degraded by NMD (3,6,9-13).
In both plants and animals, ~20% of all AS events take
place within untranslated regions: 5 UTR (12-15%) or 3’
UTR (3-6%), which can affect transport and stability of
mRNAs, create new initiation codons or polyadenylation
sites, generate upstream open reading frames, trigger
NMD or shift the reading frame (13—15).

AS events include alternative 5 and 3’ splice site
selection, intron retention, exon skipping and mutually
exclusive exon splicing (5,16,17). In plants, intron reten-
tion is the most frequent alternative event (45-56%)
(6,11,14,18,19) but appears to have much less impact at
the transcript level (4). Alternative 3’ and 5 splice sites
account for ~22 and 10% of events, respectively, and
~4% have both 5 and 3’ alternatively spliced sites. Only
8% of alternative events in plants involve exon skipping,
in contrast to animals where exon skipping is the most
common form of AS (58% of events) (6,15,19,20). AS of
some genes in plants is evolutionarily conserved, suggest-
ing its important role in plant development (21). The best-
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characterized example is that of serine/arginine (SR)
protein splicing factor genes that undergo frequent AS.
Moreover, SR proteins can regulate the AS of their own
pre-mRNA, pre-mRNAs of other SR proteins and of
target genes (22-28). With the exception of SR proteins,
PTB and GRP7, little is known about proteins that
regulate AS in plants (22-34). Previously we have shown
that the plant nuclear cap-binding complex (CBC), con-
sisting of two subunits (CBP20 and CBP80), can influence
AS preferentially affecting AS of the first intron, and par-
ticularly at the 5 splice site (35).

It has been shown that inactivation of either the
AtCBPS80 or AtCBP20 genes leads to pleiotropic develop-
mental defects similar to the phenotype observed in
Arabidopsis mutants of SERRATE (AtSE) (36-39).
SERRATE is a zinc finger protein that is mostly localized
in nuclear Dicing-bodies (D-bodies), and plays a crucial
role in microRNA (miRNA) biogenesis in plants. AtSE
acts together with the endonuclease DICER-LIKE 1
(DCL1) and the double-stranded RNA-binding protein
HYLI, in efficient and accurate processing of primary
miRNAs (pri-miRNAs) to mature miRNAs (36,40-42).
However, in cbc mutants, reduced miRNA Ilevels and
increased pri-miRNA levels were also observed (43-45),
suggesting that both, AtSE and the CBC complex, have
a role in miRNA biogenesis. Similarly, in the se-/ mutant,
accumulation of some partially spliced pre-mRNAs was
also described, suggesting a role for AtSE in splicing of
mRNAs (43). Interestingly, the loss of either AtCBC or
AtSE activity often affected splicing of the first intron in a
transcript (35,43).

In this article, using Bimolecular Fluorescence
Complementation (BiFC), pull-down and co-immunopre-
cipitation experiments, we show that both subunits of
AtCBC, AtCBP20 and AtCBP80 interact with AtSE.
Moreover, we used the sensitive high-resolution reverse
transcriptase-polymerase chain reaction (RT-PCR) AS
panel (13,31,35,46) to analyze the effect of the se-/
mutation on the AS profiles of 285 Arabidopsis genes.
We have found that AtSE influences AS of a number of
genes often affecting selection of 5 splice site of first
introns, similar to AtCBC, suggesting that the CBC and
SERRATE cooperate in selection of alternative splice
sites. Additionally, using RNA immunoprecipitation
(RIP) we show that AtSE can directly bind selected
target RNAs, confirming its role as a splicing regulator.
We also found that changes observed in the se-/ mutant
did not correspond with the changes observed in
Arabidopsis mutants of other key proteins that interact
with AtSE, and are involved in plant miRNA biogenesis,
hyll-2 and dcll-7, suggesting that SERRATE has a
function in regulation of AS in plants, which is distinct
from its role in miRNA biogenesis.

MATERIALS AND METHODS
Plant material and growth conditions

Arabidopsis thaliana wild type and mutant lines in the
Columbia (Col-0) ecotype were used for all analyses: the
homozygous T-DNA insertion lines hyll-2
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(SALK _064863) (47) and the point mutants se-/ (48)
and dcll-7 (49). Plants were grown in a growth chamber
(SANYO MLR-350H) under controlled environmental
parameters: humidity of 70%, temperature 22°C, 16h
light/8h  dark  photoperiod  regime at  150-
200 pmolm—2s~'. Rosette leaves were harvested 35 days
after sowing seeds, and frozen in liquid nitrogen. For
each experiment, at least three biological replicates were
harvested. Homozygous dcl/1-7 plants were identified using
PCR. Arabidopsis thaliana (L.) Heynh. ecotype Columbia
suspension-cultured T87 cells were grown in a growth
chamber (Gallenkamp) with continuous illumination
(100 pmolm~2s~") at 22°C, with rotary shaking at
120rpm in mJPL3 medium (50). The cultures were
renewed weekly; 5 days after passaging T87 cells were
used for protoplast preparation.

Preparation of constructs for protein—protein interaction
and subcellular localization studies

For co-localization, full-length (FL) AtCBP80, AtCBP20
and AtSE were amplified with gene-specific primers con-
taining Sall and BamHI, or Sall and EcoRI restriction
sites, and were then cloned into pSAT6-ECFP-CI or
pSAT4-EYFP-CI1 (51), resulting in pSAT6-ECFP:AtSE,
pSAT4-EYFP:AtCBP20 and pSAT4-EYFP:AtCBPS0.
For the BiFC analysis, PCR products were cloned into
pSAT4-cEYFP-C1-B, pSAT4A-cEYFP-N1, pSATI-
nEYFP-C1 or pSATIA-nEYFP-N1 (52), resulting in
pSAT1-nEYFP-AtCBP20, pSAT1A-CBP20-nEYFP,
pSAT4-cEYFP:AtCBP20, pSAT4A-AtCBP20:cEYFP,
pSATI-nEYFP:AtCBP80, pSATIA-AtCBP80:nEYFP,
PSATI-nEYFP:AtSE, pSATIA-AtSE:nEYFP, pSAT4-
cEYFP:AtSE and pSAT4A-AtSE:cEYFP. For negative
control experiments, free N-terminus of Enhanced Yellow
Fluorescent Protein (nEYFP) and C-terminus of Enhanced
Yellow Fluorescent Protein (cEYFP) fragments (from
pSATI-nEYFP-C1 and pSAT4-cEYFP-NI, respectively)
in combination with complementary plasmids containing
the protein sequences under study were used. To construct
multicassette BiFC vectors, the expression cassette from
PSAT6A-mRFP-N1 (52) was first cloned into the PI-Pspl
site of pPZP-RCS2 (53) to produce the pPZP-RCS2-mRFP
vector. Afterward, expression cassettes from previously
prepared pSAT vectors were transferred into the I-Scel
and Ascl sites of the pPZP-RCS2-mRFP vector to create
pPZP-RCS2-nEYFP-cYFP:AtCBP20-mRFP and pPZP-
RCS2-nEYFP:AtCBP80-cEYFP-mRFP. Sequences of
inserts were confirmed for each construct. Sequences of
primers used for construct preparation are listed in
Supplementary Table S1.

Protoplast transfection

The fusion constructs used for protein visualization and
BiFC analyses were introduced into A. thaliana proto-
plasts prepared from suspension-cultured T87 cells or
rosette leaves, as described previously (54-56).
Protoplasts were analyzed for fluorescence 20-35h after
transfection using an epifluorescence  microscope
AxioObserver Z1 (Zeiss).


s
alternative splicing
alternative splicing
,
which 
alternative splicing
alternative splicing
'
paper
,
,
alternative splicing
alternative splicing
alternative splicing
'
cap-binding complex
-
which 
alternative splicing
-
-
s
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
Supplemental 

1226 Nucleic Acids Research, 2014, Vol. 42, No. 2

Microscopy

Subcellular localization of fusion proteins was examined
with a fluorescence microscope AxioObserver Z1 (Zeiss)
equipped with a CCD camera AxioCam MRm (Zeiss)
using a 63x air objective lens, or a confocal laser
scanning microscope SP5 (Leica) using a 63x water ob-
jective lens. For the fluorescence microscope, specific
filters for ECFP (excitation 436/20nm, emission 480/
40nm) and Enhanced Cyan Fluorescent Protein (EYFP)
(excitation 500/20 nm, emission 535/30 nm) were used.
Excitation in the confocal was achieved with an Argon
laser at 514nm (EYFP), and with Helium-Neonium
laser at 543nm monomeric Red Fluorescent Protein
(mRFP). Fluorescence was observed using the emission
spectrum range of 523-560 nm (EYFP) and 571-635nm
(mRFP). Images were arranged using ADOBE
PHOTOSHOP (Adobe Systems).

Immunoprecipitation

Arabidopsis plants overexpressing AtSE:FLAG and
AtHYL1:FLAG proteins were prepared in the se-/
and hy/l-2 mutant background, respectively. AtSE and
AtHYLI1 protein-coding sequence was amplified using
AtSEfor, AtSErev, AtHYLfor and AtHYLrev primers
(Supplementary Table S1). The products were cloned
into the pEarlyGate202 plasmid, and transformed into
Agrobacterium  tumefaciens AGLI. Agrobacterium-
mediated floral dip transformation was used to introduce
the FLAG-SERRATE transgene into the se-/ mutant
genome, and the FLAG-HYLI transgene into the hy/l-2
mutant genome. Homozygous transgenic plants had a
restored wild-type phenotype and produced AtSE:FLAG
or AtHYL1:FLAG proteins as confirmed by western blot
(Figure 3A). After 35 days, leaves from control and trans-
genic plants were vacuum-infiltrated with 1% formalde-
hyde for 10min, quenched with 125mM glycine and
frozen in liquid nitrogen. The nuclear proteins were ex-
tracted as follows: the frozen material was resuspended in
Buffer I [0.4 M sucrose, 10 mM Tris—HCI, pH 8.0, 10 mM
MgCl,, 0.035% B-mercaptoethanol (B-ME), one protease
inhibitor tablet (Roche) per 50 ml of buffer], vortexed vig-
orously, filtered through Miracloth and centrifuged for
30min at 3000g at 4°C. The pellet was resuspended in
1 ml of Buffer IT [0.4M sucrose, 10mM Tris—HCI, pH
8.0, 10mM MgCl,, 0.035% B-ME, 1% Triton X-100,
protease inhibitor tablets (Roche)] and centrifuged for
10min at 12000g at 4°C; this step was repeated two to
three times until a white pellet was visible. After the last
centrifugation, the pellet was resuspended in 300 pl of
Buffer II and loaded onto 900l of Buffer IIT [1.7M
sucrose, 10mM Tris—=HCI, pH 8.0, 2mM MgCl,,
0.035% B-ME, 0.15% Triton X-100, protease inhibitor
tablets (Roche)]. After 1h of centrifugation at 16000g at
4°C the pellet containing nuclei was collected and resus-
pended in lysis buffer [10% sucrose, 100 mM Tris—HCI,
pH 7.5, 5mM EDTA, 5SmM EGTA, 300mM NacCl,
0.75% Triton X-100, 0.15% sodium dodecyl sulphate
(SDS), 1mM dithiothreitol (DTT), protease inhibitor
tablets (Roche)]. After 1h of shaking at 1000g at 4°C,
the sample was centrifuged for 15min at 14000g at 4°C,

and the supernatant containing nuclear protein lysate was
collected. For co-immunoprecipitation experiments, anti-
FLAG antibody-coupled magnetic beads (Sigma) were
gently rotated overnight at 4° with the nuclear protein
lysate, then washed four times with lysis buffer and
eluted by boiling in sample buffer (50 mM Tris—HCI, pH
6.8, 10% glycerol, 2% SDS, 10mM DTT, 0.1%
bromophenol blue). Immunocomplexes were separated
on 10% SDS-polyacrylamide gel electrophoresis
(PAGE), transferred to polyvinylidene difluoride
(PVDF) membrane (Millipore) and analyzed by western
blot using anti-AtCBP20, anti-AtCBPS80, anti-AtHYLI
(Agrisera AS09530, AS09531, AS06136) or anti-FLAG
(Sigma) antibodies.

Protein pull-down assay

AtSE FL coding sequence and core fragment (core,
residues 194-543) were amplified using AtSEFLfor and
AtSEFLrev, AtSEcorefor and AtSEcorerev primers, re-
spectively (Supplementary Table S1), and cloned into the
pMalcde plasmid. The plasmids were used for subsequent
transformation of Escherichia coli strain BL21(DE3)RIL.
Overexpression of FL and core fragment of SERRATE
fused with maltose binding protein (MBP) was performed
as follows: 2 h after induction by 0.4 mM isopropyl B-D-1-
thiogalactopyranoside (IPTG), cells were harvested and
sonicated (15 cycles of 30s ON and 30s OFF; Bioruptor
Plus, Diagenode) in MBP buffer [20mM Tris—-HCI, pH
7.4, 0.2mM NaCl, ImM EDTA, protease inhibitor
tablets (Roche)]. After sonication, lysates were centrifuged
for 15min at 14000g at 4°C, and the supernatants con-
taining protein extract were collected. The same protocol
was carried out for MBP-GFP production. To obtain
AtCBP20, AtCBP80 and the TPR domains of the SGT1
protein, in vitro translation in the presence of [*°S]-
methionine (HARTMANN ANALYTIC) was performed
using TNT T7 Coupled Wheat Germ Extract System
(Promega). For pull-down experiments, the MBP-AtSE
FL, MBP-AtSE core and MBP-GFP were bound to the
amylose resins (New England Biolabs), then washed three
times with MBP buffer and incubated with labeled
AtCBP20, AtCBP80 and TPR domains of SGTI in phos-
phate buffer (28mM NaH,PO,, 72mM Na,HPOy,,
250mM KCI and 0.5% Triton X-100) for 2h at 4°C.
Next, the resins were washed four times with phosphate
buffer, and protein complexes were eluted with 10 mM
maltose. The labeled proteins were separated on 14%
SDS-PAGE and detected with an image analyzer (FLA-
5000, FUJIFILM).

RNA immunoprecipitation

For RIP experiments, the nuclear protein extract was
immunoprecipitated as described above. After washing
of the beads, co-precipitated RNAs were eluted from IP
samples with TRIZOL (Invitrogen). cDNA synthesis was
carried out with an oligo (dT);s primer using Superscript
IIT reverse transcriptase (Invitrogen), according to the
manufacturer’s protocol. Amplification was carried out
in 10l reaction mix containing 5pul of Power SYBR
Green PCR Master Mix, 4 ul of 0.5uM primers mix and
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1 pl of template. The qPCR was performed for 40 cycles
under the following cycling conditions: 95°C for 10 min,
40 cycles of 95°C for 15s, 60°C for 1min (Applied
Biosystem 7900 HT thermocycler). Primers used for
qPCR are listed in Supplementary Table S1.

RNA isolation and high-resolution RT-PCR

Total RNA was isolated from 35-day-old rosette leaves
using the RNeasy Plant Mini Kit (Qiagen). RNA was ex-
tracted from three biological repeat samples for each line.
cDNA synthesis was carried out with an oligo (dT)s
primer using Superscript III reverse transcriptase
(Invitrogen), according to the manufacturer’s protocol.
The efficiency of cDNA synthesis was assessed by RT-
PCR amplification of the ACTI12 (At3g46520) cDNA
fragment. After first-strand ¢cDNA synthesis, 1 pl of the
cDNA template per reaction were used for each PCR
amplification  with  gene/AS-specific  oligonucleotide
primer pairs. Amplification was carried out in a 25ul
reaction mix containing 2.5ul 10x PCR buffer with
MgCl, (Roche), 4pul nucleotide mix (1.25uM of each
dNTP, Promega), 0.75ul of combined primers (100 uM
stock) and Tag DNA Polymerase (5U/ul, Roche). PCR
was performed for 24 cycles under the following condi-
tions: 94°C for 2min, 24 cycles of 94°C for 15s, 50°C
for 30s, 72°C for 1 min and completed with 10 min at
72°C. AS-specific primers were designed to amplify the
expected alternatively spliced mRNA isoforms that were
selected based on either published AS events or taken
from five different Arabidopsis/plant bioinformatics data-

bases: ASIP (http://www.plantgdb.org/ASIP/EnterDB.
php), TIGR (http://www.tigr.org/tdb/e2k1/ath1)),
RIKEN (http://rarge.gsc.riken.jp/a_splicing/index.pl),

ASTRA (http://alterna.cbrc.jp/) and TAIR 7.0 (http://
www.arabidopsis.org/index.jsp) (46). The size of RT-
PCR products ranged between 60 and 700 bp. To visualize
the RT-PCR products on an ABI3730 capillary
sequencing machine (Applied Biosystems), each forward
primer was labeled with 6-carboxyfluoresceine. Splicing
and statistical analysis were performed as described previ-
ously (35). To validate statistical significance of RIP
results, the #-Student’s test was used, and in the analyses
of AS comparisons, the hypergeometric test was used (31).
In both cases, P <0.05 was applied for the validation.

RESULTS

SERRATE interacts with both subunits of AtCBC in the
cell nucleus

To analyze the subcellular localization of the A. thaliana
cap-binding protein complex, AtCBC, and the SERRATE
protein, AtSE, the two subunits of the nuclear CBC,
AtCBP20 and AtCBP80, were fused with enhanced
yellow fluorescent protein (EYFP), and AtSE was fused
with enhanced cyan fluorescent protein (ECFP) at the
N-termini for all proteins studied. The constructs were
transiently expressed in A. thaliana protoplasts. As
shown in Supplementary Figure Sl (top panel),
AtCBP20 co-localized with AtSE in the nucleus.
Co-localization between AtCBP80 and AtSE in the
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nucleus was also detected, but AtCBP80 was also
present in the cytoplasm of transfected protoplasts
(Supplementary Figure S1, bottom panel). The cytoplas-
mic localization of AtCBP80 can be explained by rela-
tively low level of endogenous AtCBP20 in transfected
protoplasts, as the AtCBP20 is necessary for import of
AtCBP80 from the cytoplasm to the nucleus, as shown
by us previously (55). Taken together, our results
indicated that both components of AtCBC co-localize
with AtSE in the cell nucleus.

Next, we used BiFC to directly study the physical inter-
action between the proteins of the nuclear CBC and AtSE
in living plant cells. FL AtCBP20, AtCBP80 and AtSE
were fused to complementary nonfluorescent regions of
EYFP (52), and used for protoplast co-transfection
(Supplementary Table S2). As a positive control for the
BiFC experiment, we used AtCBP20 and AtCBP80 fused
to complementary parts of EYFP, and observed a strong
nuclear BiFC signal (Supplementary Table S2) confirming
the interaction previously shown by Fluorescence
Resonance Energy Transfer (FRET) between the two
components of AtCBC (55). As a negative control, we
used plasmids containing EYFP fragments fused with N-
terminus or C-terminus of AtSE, AtCBP20 or AtCBP80
proteins in combination with free complementary EYFP
fragments (Figure 1, right panel; Supplementary Table
S2). However, in some protoplasts, a weak fluorescence
signal was detected all over the transfected protoplast.
These interactions were most likely nonspecific owing to
unusually high expression levels of recombinant proteins.

Strong fluorescence of reconstituted EYFP was
observed in protoplasts co-transfected with combinations
of BiFC vectors containing sequences of AtSE and
AtCBP80 or AtSE and AtCBP20 (Figure 1, left and
middle panels). In both cases, the fluorescence in most

AtCBP20:nEYFP
cEYFP:AtSE

nEYFP:AtCBP80
cEYFP:AtSE

nEYFP
cEYFP:AtSE

Figure 1. BiFC analysis of the interaction between AtCBC subunits
and AtSE. Arabidopsis thaliana protoplasts were co-transfected with
combinations of different plasmids encoding EYFP or cEYFP fused
to AtSE, AtCBP20 and AtCBP80 coding sequences. Insets represent
a magnified view of the representative nucleus for each interaction.
The lower panel shows transmission images of the transfected proto-
plasts in which fluorescence was observed (upper panel). Scale
bars = 20 pm.


:
ec
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
Supplemental 
:
x
,
:
ec
ec
,
http://www.plantgdb.org/ASIP/EnterDB.php
http://www.plantgdb.org/ASIP/EnterDB.php
http://www.tigr.org/tdb/e2k1/ath1/
http://rarge.gsc.riken.jp/a_splicing/index.pl
http://www.arabidopsis.org/index.jsp
http://www.arabidopsis.org/index.jsp
http://www.arabidopsis.org/index.jsp
bp 
In order 
alternative splicing
rabidopsis
cap-binding complex
Supplemental 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
Supplemental 
Bimolecular Fluorescence Complementation (
)
cap-binding complex
Full-length
-
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
,
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
Supplemental 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt894/-/DC1
due 

1228 Nucleic Acids Research, 2014, Vol. 42, No. 2

input

Q Q
¥ Q@ @
S S S
AtCBPS0 —> _——
-
AtCBP20 — —_—
TPRSGT1 —> e e
1 2 3 4 5 6 71

8 9 10 11 12 13 14 15

Figure 2. The interaction between FL AtSE or its core fragment (residues 194-543; AtSE core), and AtCBP20 and/or AtCBP80. AtSE FL, AtSE
core and GFP proteins were overexpressed in bacteria in fusion with MBP; AtCBP20, AtCBP80 and TPRSGT]1 (used as a negative control) were
synthesized in the presence of [*>S]-methionine (an asterisk in the protein name abbreviation means that the protein was labeled). The complexes were
selected on amylose beads, separated on 14% SDS-PAGE and detected by exposure to an image analyzer. Inputs represent one-twentieth of the

samples used in the experiment.

cell nuclei was not homogenous, and several brighter spots
were observed in the nucleoplasm of 90% nuclei of cells
co-transfected with AtCBP20 and AtSE, and in 70% of
the nuclei transfected with plasmids coding AtCBP80 and
AtSE (Supplementary Figure S2 and Supplementary
Table S2). The observation that AtSE binds both
AtCBP20 and AtCBPS80 are in contrast to the results
recently published by Wang et al. (2013) (57), which did
not detect an interaction between AtSE and the larger
subunit of CBC either in BiFC or in pull-down experi-
ments. Although we showed the interaction between
AtSE and both AtCBC subunits (above), this interaction
was not seen in all conformations of plasmids used in
BiFC (see Supplementary Table S2). For example, the
AtSE fused at the C terminus with the C-terminal
fragment of EYFP did not give a signal when co-trans-
fected with AtCBP80 fused with N-terminal fragment
of EYFP. Therefore, we confirmed our observation with
independent methods: protein pull-downs and co-
immunoprecipitation. For the protein pull-down assays
(Figure 2), we analyzed the interactions between [*°S]-
methionine-labeled AtCBP20, AtCBP80 and the TPR
domains of the SGTI1 protein with full length (FL) or
the core domain of AtSE fused with the MBP. No inter-
actions were observed when negative controls (TPR
domains of the SGT1 or MBP-fused GFP) were added

to the sample (Figure 2, lane 5-7, 14, 15). However, we
detected a signal confirming the interaction with AtSE
when AtCBP20 and/or AtCBPS80 were added to the
sample either separately or together (Figure 2, lane 8—11
and 12, 13, respectively). Both CBP subunits bind to the
FL AtSE protein as well as to the AtSE core; the core
fragment of AtSE acts as a protein-binding platform
(58). Interestingly, the binding of the AtCBP20 with
AtSE seems to be stronger than AtCBP80 with AtSE,
and the strongest interaction was observed when
AtCBP20 and AtCBP80 interact with AtSE in a
complex (Figure 2, line 12, 13). The stronger signal
shown by AtCBP20 may be the result of a higher efficiency
pull-down, as a result of better folding of the smaller
subunit of AtCBC.

As mentioned above, Wang et al. (2013) (57) did not
observe the interaction between AtSE and atCBP80 in
pull-down experiments. However, as they have not
shown that the recombinant AtCBP80 protein is able to
bind AtCBP20, we suggest their negative result might
come from incorrectly folded AtCBP80 protein used in
their analyses.

We also performed a co-immunoprecipitation
experiment with the nuclear protein lysate extracted
from plants overexpressing either AtSE:FLAG or
AtHYL1:FLAG proteins (Figure 3B). The latter was
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Figure 3. The interaction between AtSE and AtCBC. (A) Western blot analysis using anti-FLAG and anti-AtHYL! antibodies confirmed the
presence of AtSE:FLAG (left panel) and AtHYL1:FLAG (right panel) in two different lines of transformed se-/ (L1 and L2) and hy/l-2 (L1
and L2) mutant plants, respectively. (B) AtCB20 (top panel) and AtCBP80 (bottom panel) were detected by western in complexes co-immunopre-
cipitated with anti-FLAG antibodies from transgenic plants expressing AtSE:FLAG, but not from plants expressing AtHYL1:FLAG. Transgenic
lines L1 and L2 were used in the case of plants expressing AtSE:FLAG and AtHYLI1:FLAG, respectively. The position of the closest protein marker
is indicated on the left; an asterisk marks an unidentified protein cross-reacting with anti-FLAG antibodies.

used as a negative control: according to our previous ob-
servation, the AtHYLI1 protein does not interact directly
with AtCBP20 and AtCBP80 (55). Western blot analyses
with anti-AtCBP80 and anti-AtCBP20 antibodies revealed
the presence of both proteins in the fraction co-
immunoprecipitated with SERRATE but not with
HYLI1 (Figure 3B), confirming the AtCBC/AtSE inter-
action in plant cells. Similar to the pull-down experiments,
in the western blot performed after co-immunopre-
cipitation, we did observe stronger signal from AtCBP20
then AtCBPS80, although both CBC subunits were
detected in the immunoprecipitates analyzed (Figure 3B,
bottom panel). Taken together, the BiFC analyses per-
formed in protoplasts as well as pull-down and
immunoprecipitation experiments indicated that in A.
thaliana both AtCBC subunits form a complex with
AtSE. Moreover, the AtCBC/AtSE complex seems to be
localized exclusively in the nucleus where it is dispersed
within the nucleoplasm or accumulated in several distinct
subnuclear regions.

AS is affected in the Arabidopsis se-/ mutant

The subunits of the A. thaliana nuclear cap-binding
protein complex, AtCBP20 and AtCBP80, as well as the
SERRATE protein are involved in both miRNA biogen-
esis and pre-mRNA splicing (36,40—-45). We have recently

shown that the nuclear cap-binding protein complex
(AtCBC) is also directly involved in AS of some
Arabidopsis genes, and in most cases the AtCBC influ-
ences 5 splice site selection of first introns (35). As the
AtSE participates in pre-mRNA splicing and interacts
with  AtCBC (Figures 1-3), we asked whether
SERRATE is also involved in the regulation of AS in
plants. To answer this question, we used the high-reso-
lution RT-PCR AS panel (46) containing a set of
primers designed to examine 302 AS events in 285
Arabidopsis genes. These genes encode mainly transcrip-
tion factors, splicing factors and stress-related proteins
(for the full list see 35). The panel included a range of
different types of AS events: alternative 5 or 3’ splice
site selection, alternative position (5 and 3’ splice sites
altered in the same splicing event), exon skipping and
intron retention. Splicing profiles were determined for
wild-type Col-0 and the se-/ mutant, and the ratio of
the alternatively spliced products for each gene was
compared. Means and standard errors were calculated
for three separate independent experiments.

Significant changes (>3%; P <0.10) in the ratios of AS
isoforms in the se-/ mutant, in comparison with the wild-
type plant, were found in 78 AS events (in 67 genes)
(Table 1). To identify whether introns or AS events in
particular positions in the transcripts were influenced pref-
erentially by the AtSE protein, we compared the genes
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with significantly changed AS profiles in the se-/ mutant
to all analyzed genes from the high-resolution RT-PCR
AS panel. In se-1, the changes involved mainly AS events
located within internal introns (42 events, 54%) and first
introns (29 events, 37%), with only seven cases of an AS
event located within the last introns (7 events, 9%)
(Figure 4A). Similarly, of the 302 AS events on the
panel, 108 (36%) events were in the first intron, 135
(45%) events were in internal introns and 59 (19%)
events were in the last intron (Figure 4A). In the se-/
mutant, the significantly changed AS events included
mostly changes in alternative 3’ or 5 splice sites (29 and
23 events, 37 and 29%, respectively), but also included
intron retention (14 events, 18%) and exon skipping (8
events, 10%) (Figure 4B). In contrast, alternative 3" and
S’ splice sites among all of the AS events/genes on the RT-
PCR panel accounted for 46 and 24% of the total, respect-
ively (Figure 4B). This reflects the fact that AS in plants
occurs more frequently at alternative acceptor sites (3’
splice sites) than in 5" donor sites (22 versus 10%) (6,15).
Thus, in the se-/ mutant, there was an increased number
of genes with significant changes at alternative 5 splice
sites than in the overall AS events analyzed. When we
looked at the distribution of different AS events within
first and internal introns, we found that in the se-/
mutant AS within first introns was mostly affected at the
5 splice site (45%), while AS within internal introns was
mostly affected at the 3’ splice site (43%) (Figure 4C).
Thus, AtSE preferentially influences AS of the first
intron of a pre-mRNA at alternative 5 splice sites.

To confirm the regulatory role of AtSE in AS of
Arabidopsis gene transcripts, we checked whether AtSE
can directly bind selected target transcripts. Using the
transgenic plants overexpressing the FLAG-tagged AtSE
protein, we performed immunoprecipitation using anti-
FLAG antibodies followed by subsequent isolation of
bound RNAs and reverse transcription. qPCR was per-
formed on six arbitrarily chosen genes whose AS profile
was changed in the se-/ mutant (Supplementary Table S1).
The results revealed that AtSE co-immunoprecipitates
four of six transcripts analysed, suggesting that
SERRATE can directly bind those mRNAs (Figure 5).
No binding was observed in the case of one intron-less
mRNA (At5gl16370) used in this experiment as a
negative control. Thus, the role of SERRATE as a regu-
lator of AS of selected gene transcripts in A. thaliana was
confirmed.

AtSE and AtCBC cooperate in regulation of AS of some
genes

The preference of the AtSE protein in affecting AS at
alternative 5 splice sites within first introns resembles
our previous observations of the c¢bp20, cbp80(abhl)
and ¢hp20/80 double mutants (35). As AtCBP20 and
AtCBP80 both interact with AtSE, we asked whether the
AS profiles observed in the se-/ mutant were similar to
those observed previously in the ¢hp mutants. Of the 67
genes with significant changes in AS profile in the se-/
mutant, 22 also had significant changes in AS in the chp
mutants (35) (Table 1).
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Figure 4. Distribution of the AS events presented for the total AS
events (302 events/285 genes, gray bars), and those that changed in
the se-I mutant (78 events/67 genes, black bars). (A) Distribution of
the position of the alternatively spliced introns (first intron, internal
intron, last intron); (B) Distribution of the alternatively spliced
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exon skipping (ES), intron retention (IR), alternative 3’ and 5 splice
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number of alternatively spliced events. Statistical significance was
tested using the hypergeometric test; an asterisk marks significant
changes (P < 0.05).
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Figure 5. Interactions of AtSE with selected mRNA targets detected by RIP. Immunoprecipitation followed by RNA isolation and RT-qPCR
confirmed in vivo interactions of AtSE:FLAG with candidate gene transcripts whose AS profile was changed in the se-/ mutant; intron-less mRNA
was used as a negative control (At5gl6370). The level of transcripts co-precipitated from transgenic plant expressing AtSE:FLAG (IP+) or wild type
plants (mock) using anti-FLAG antibodies were normalized to the inputs. Means = SD are presented based on three biological replicates; statistical
significance was tested using the 7-Student’s test; an asterisk marks significant changes (P <0.05).

Of the 22 AS events, which were affected in both the se-
1 and cbp mutants, 19 showed the same direction of AS
changes (Table 1). The majority of these genes showed
significant AS changes in the se-/ and the double chp20/
cbp80 mutant (18 genes), and 12 of these showed signifi-
cant differences in the se-/ and all three chp mutants
(Table 1). Two genes (primer pair 102: Atlg27370, and
225: At3g53570) showed the same direction of AS
splicing in the se-/ mutant, the double c¢bp20/cbp80
mutant and ¢bp80(abhl) or cbp20, respectively. One
gene (305; Atlg01060) showed the same direction in the
se-1 and ¢bp80(abhl) mutants. It is important to note that
in the ¢bp80(abhl) mutant the level of AtCBP20 is ex-
tremely low, and is therefore to all extents and purposes
similar to the double ¢bp20/cbp80 mutant (55).
Furthermore, among the 19 genes with common changes
in the se-1 and c¢hbp mutants, the AS events were located for
the most part within the first intron (12 of 19) (Table 1,
boxed). Of these 12, six of the AS events were alternative
5’ splice sites (Table 1, shaded gray). Thus, almost a third
(19/67) and a fifth (19/101) (35) of the significantly
changed AS events in the se-/ and chbp mutants, respect-
ively, were common, and showed a similar behavior in AS,
suggesting that both AtSE and AtCBP80/CBC are
required for AS of the genes studied. As we showed pre-
viously for AtCBC, we did not observe any preference for
selection of either cap-proximal or cap-distal alternative 5’
splice sites within the first introns. On the other hand, we
did observe some influence on intron retention AS events
(Table 1 and Figure 4B and C). However, we did not
detect in our panel any significant influence on the levels
of unspliced transcripts that might reflect an effect on
general splicing efficiency in the se-/ mutant.

In addition, 45 genes (54 AS events) showed significant
changes in AS profiles in the se-/ mutant exclusively.
For these genes, we did not observe any enrichment of
AS events within first introns (16 events in first introns
versus 38 events in internal and last introns) (Table 1).
Thus, neither AtCBC nor AtSE seems to influence the
general efficiency of splicing, but both factors participate
in AS of some genes. The interaction between AtCBP80
and AtSE along with the preferential effects on the first
intron and alternative 5" splice site suggests that at least
for some transcripts there is mutual cooperation of AtSE
with the nuclear CBC in determining splice site choice.
However, these factors also affect the AS of different
subsets of genes and therefore can act independently in
AS regulation.

AS is also affected by other proteins involved in plant
miRNA biogenesis

AtSE along with CBPs affect AS of a subset of genes pu-
tatively reflecting the interaction between SE and the cap
binding complex (Figures 1-3), and recruitment of other
splicing factors. Why and how SERRATE, which is
mainly involved in miRNA biogenesis, affects AS of
other genes independently is unknown. We therefore
examined AS in mutants of other miRNA processing
pathway factors that are known to interact with SE:
HYLI1 and DCLI. The hyll-2 mutant is a T-DNA inser-
tion mutant with no production of the HYLI protein (47),
and dcll-7 has a point mutation in the DCLI gene
encoding the endonuclease directly involved in miRNA
biogenesis; the dc/l-7 mutant was used in the studies
since the T-DNA inactivation of the DCLI gene is lethal
(49). To address the question of whether mutations in
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DCLI and HYLI genes affected AS, and whether the
effects resembled those of the se-/ mutant, we again
used the high-resolution RT-PCR panel to analyze AS
events in hyll-2 and dcl/l-7 mutants.

Of the 285 analyzed genes, we found significant changes
in the ratios of AS isoforms in 122 genes in the se-1, hyll-2
and dcl/l-7 mutants, in comparison with wild type plants
(Table 2). Of these 122 genes, 33 were observed exclusively
in the se-/ mutant, and 32 and 14 genes showed significant
AS changes only in the dc/I-7 or hyll-2 mutant, respect-
ively. Interestingly, nine genes showed significant changes
in AS in all three miRNA biogenesis mutants tested, while
nine genes had changes in the hy/l-2 and dc/l-7 mutants,
12 in the hyll-2 and se-I mutants and 13 in the se-/ and
dcll-7 mutants (Figure 6A and Table 2).

Of the 33 genes affected only in the se-/ mutant, 17 AS
events were located within the first intron, and eight of
them affected alternative 5" splice sites (Figure 6B and
C). Moreover, 13 of the 33 genes with significant AS
changes observed in the se-/ mutant also occurred in the
c¢bp mutants, confirming our previous conclusion that the
nuclear CBC and the SERRATE protein cooperate in se-
lection of 5 splice sites of some pre-mRNA first introns
(Table 2, shaded gray, Figure 7). In the other miRNA
biogenesis mutants we did not observe an enrichment of
AS changes in introns located closest to the cap. This is
illustrated by analyzing the 122 genes with AS changes in
either se-1, dcll-7 or hyll-2. Although 48 of these genes
had significant AS changes in the first intron (Figure 6B
and Table 2), only 14 affected selection of alternative 5’
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splice sites (Figure 6C and Table 2). Twelve of these
involved the se-/ mutant with eight only in the se-/
mutant, and two common to the se-I and dcllI-7
mutants. Thus, the predominant effect of AS on alterna-
tive 5 splice site selection at the first intron seen in the chp
and se-/ mutants is not observed for the AS events
affected in dc/l-7 or hyll-2. As a result, SE and CBC,
which interact and associate with the cap structure, have
clearly distinct effects on AS from DCL1 and HYLI.

DISCUSSION
AtSE is a novel factor involved in AS regulation

Previously we have shown that the plant nuclear CBC,
consisting of two subunits, AtCBP20 and AtCBP80, influ-
ences AS, preferentially affecting AS of the first intron at
the 5 splice site (35), and this has since been also
demonstrated in human cells (59). Here, we introduce
another plant AS factor, SERRATE (AtSE), that acts in
a similar way to CBC, mostly affecting selection of alter-
native 5 splice sites within the intron that is the closest to
the cap structure. The role of AtSE as a plant splicing
factor was suggested previously when some unspliced
intron-retaining pre-mRNAs were observed in A.
thaliana se-1, cbp80(abhl) and c¢bp20 mutants by micro-
array analysis (43). Significantly, in the few identified
cases, splicing of the first intron seemed to be most sensi-
tive to loss of either AtCBC or AtSE activity, suggesting
that both CBC and AtSE influence splicing of plant pre-
mRNAs in a similar manner (43). In this study, we have

hyl1

Total (122)

First intron (48)

dcl1 hyl1

First intron 5’ss (14)

Figure 6. Distribution of AS events with significant changes in AS profiles in the se-1, hyll-2 and dcll-7 mutants (A) in total, (B) within first introns,

(C) within first introns at the 5" splice sites.
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Figure 7. Distribution of AS events with significant changes in AS profiles in se-1, hyll-2, dcll-7 compared with the all chp mutants (A) in total;

(B) within first introns; (C) within first introns at the 5 splice sites.
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Table 2. Continued

P<0.1

dcll-7

P<0.1

hyll-2

P<0.1

AS type Wild type - se-1
Col0

Intron

Annotation

Gene ID

Primer
pair

0.030

0.78 £ 0.02
0.22 + 0.02
0.77 £ 0.03
0.15 +0.05

0.71 £ 0.02
0.29 + 0.02
0.44 +£0.12
0.48 +0.13

IR

5 (last)

RNA recognition motif (RRM)-containing protein

At3g13224

373

0.023

0.093

AltP

4 (last)

Dessication-responsive protein (RD29A)

At5g52310

328

0.086

(COR78);response to cold, osmotic, salinity,

dessication, ABA stimulus

Significant changes in AS isoform abundance in the se-1, hyll-2, dcll-7 mutants, which are also observed in chp mutants (32) are shadowed by gray. The table contains only isoforms that changed

significantly (>3%; P <0.1).
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shown that AtSE affects AS, and that in many cases
(28%) the changes of AS observed in the se-/ mutant
were similar to the changes observed previously in the
¢bp mutants. This suggests that for at least some genes,
AS can be regulated coordinately by the nuclear CBC and
AtSE. Such coordination could reflect a direct interaction
between AtCBC and AtSE; we have shown here that both
components of AtCBC co-localize with AtSE in the
nucleus, and interestingly, both AtCBC subunits,
AtCBP20 and AtCBPS8O0, interact with AtSE in vitro and
in planta. A similar interaction has been seen in human
where the nuclear CBC interacts with the human
SERRATE homolog—Ars2 (Arsenic Resistance Protein
2). In this case, immunoprecipitation of FLAG-Ars2 con-
firmed that Ars2 co-precipitates both the 80 and 20 kDa
subunits of the human CBC (60). Additionally, AtSE was
also identified in nuclear speckles in which SR splicing
factors were enriched (61), and Ars2 was identified as a
component of RNA-protein complexes enriched for
spliceosomes (60), again potentially reflecting a role in
splicing/AS.

Besides the AS changes common to both the se-/ and
cbp mutants, AtSE influenced AS of other genes.
Previously, unspliced or pre-mRNAs with retained
introns were observed for the se-/ and chp mutants (43).
While this might suggest a general effect on splicing effi-
ciency, it more likely reflects the resolution of microarrays,
and we show that loss of AtCBC and AtSE does not affect
splicing/AS of all introns but rather both factors prefer-
entially participate in the selection of the 5 splice site of
the first intron.

Involvement of AtSE and AtCBC in miRNA biogenesis

The main function of AtSE in plants is in the miRNA
biogenesis pathway (36,40,41). Owing to its significant
role in this process, a null mutation of the SE gene is
lethal (40), and nonlethal mutants (e.g. se-1) lead to pleio-
tropic developmental defects with increased cauline leaf
number, serrated leaf morphology and hypersensitivity
to abscisic acid (ABA) (36,37). A similar but less severe
phenotype is observed in Arabidopsis mutants of CBP20
and/or CBP80(ABH1) (37-39), suggesting that the role of
both CBC subunits in plant miRNA biogenesis (43-45) is
not as critical as that of AtSE, since the lack of both CBC
subunits has only limited effects on the mutant phenotype
(35,62-64). The CBC is thought to bind the capped pri-
miRNA transcripts, and facilitate the loading of the
miRNA processing machinery onto pri-miRNAs, analo-
gous to its role in recruiting the splicing commitment
complex onto pre-mRNAs (43-45). AtSE is thought to
connect the CBC and miRNA processing machinery as
it binds both AtCBC (Figures 1-3) and DCL1 or HYLI
as has been previously demonstrated (41,65).
AtCBPSO(ABH1) and AtSE also work together in
splicing-mediated suppression of RNA silencing in
Arabidopsis (66,67) again demonstrating the collabor-
ation between these two proteins in RNA processing
pathways. In human cells, Ars2 (the human homologue
of SERRATE) and CBP80 co-precipitate with Drosha,
and the depletion of CBP20 and CBP80, and of Ars2,
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results in similar defects in miRNA formation and
miRNA-mediated silencing (60). In Drosophila, Ars2 and
CBC are also required for miRNA function, Ars2
and Dicer-2 interact and Ars2 is involved in processing
of dsRNAs into siRNA by Dicer-2 (68). As this pro-
cess occurs in the cytoplasm, it suggests that the
activity of Ars2 is not restricted only to the nucleus (68).
Taken together, in several species, the SERRATE
homologues appear to function as a bridging factor
that co-transcriptionally binds CBC that is associated
with the 5" end of a pri-miRNA transcript, and recruits
miRNA processing components to the substrate, hence
increasing both the efficiency and precision of miRNA
processing.

AS in the mutants of miRNA biogenesis

The se-/ mutant affected AS of a number of genes
including a subset also affected by the CBC. The effect
of AtSE on splicing can be explained by its interaction
with the CBC on pre-mRNAs or, if it links the CBC to
splicing factors/spliceosomal proteins, it is possible that it
can also interact with such proteins independently of the
cap to influence splicing. There are a number of other
potential mechanisms by which AS could be affected in
the se-I mutant through indirect effects of disruption of
the plant miRNA biogenesis pathway. For example, a
miRNA could target and degrade specific alternatively
spliced transcript isoforms as has already been reported
(69), and reduced production of the miRNA would affect
the relative levels of isoforms. Alternatively, AS can affect
the production of intronic miRNAs (70). We therefore
also examined AS in the Ay/l-2 and dcll-7 mutants in
addition to se-/. Surprisingly, all three mutants showed
altered AS in a number of genes, although only nine
genes had similar changes in AS profile common to all
three mutants. These may reflect changes due to disrup-
tion of miRNAs, but so far only two of the genes are
known targets of miRNAs. However, if plant miRNAs
have a wider target range or off target effects than cur-
rently known, this might explain the impact on AS. The
three mutants also affected AS of some genes uniquely.
HYLI1 is crucial for processing of only a subset of pre-
miRNAs (47,71), which may explain the specific effect on
particular genes. Disrupted interactions in the SE-HYL1-
DCLI1 complex may also affect miRNA biogenesis. For
example, the hy/l-2 mutant is a null T-DNA insertion
mutant of HYLI1 (71) but an amino acid substitution in
the ATPase/DExH-box RNA helicase domain of DCLI
confers restoration of miRNA expression in the hy/l-2
mutant background, implying that HYL] may not be
even required for miRNA processing (72). The interaction
with HYL1 triggers structural rearrangements of DCLI
that activates its RNase III domain normally repressed
by the helicase domain, similarly to human Dicer that is
autoinhibited by its helicase domain, but can be activated
by interaction with TRBP2 (73,74). Thus, in the hyll-2
mutant, the activity of DCLI1 can be altered potentially
affecting levels of some miRNAs. AtDCLI1 is also
involved in production of some siRNAs, which could
also affect AS transcript isoform levels via degradation

of targets or through methylation of DNA causing
altered rates of transcription and subsequent changes in
splice site selection (75). The effects of the se-1, hyll-2 and
dcll-7 mutants on AS may also be due to altered transcript
levels of genes encoding proteins involved in transcription,
splicing or transport. Recently, HYL1 was shown to
interact by its double-stranded RNA-binding (DRB)
domain with other secondary structured RNAs, like trans-
posons, recognizing structured RNA fragments, especially
those with imperfect stem-and-loop structures (76). This
raises the further possibility that HYLI can also bind to
regions of pre-mRNAs that form secondary structures,
which could influence the recognition of acceptor or
donor sites by splicing factors, resulting in alteration of
constitutive splicing. On the other hand, in the absence of
HYLI1, DCLI1 can associate with other DRB proteins, and
is also capable of cleaving RNA hairpin structures,
although in such cases the DCL1 endonuclease predomin-
antly processes the substrate incorrectly (77). This could
lead to production of incorrect small RNA molecules that
could erroneously target other mRNAs/alternative
isoforms for cleavage.

In summary, we observed changes in AS of transcripts
in mutants of the miRNA biogenesis pathway, and while
some of those affected in se-1 can be explained owing to its
interaction with the CBC, the reasons for the AS effects
of the hyll and dc/l mutants are not clear, and system-
atic experiments are needed to address this intriguing
question.
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Supplementary Data are available at NAR Online.
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