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Abstract

Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents 

provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. 

Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell–

matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid 

construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied 

generically and have yet to be extensively developed for specific cell types in 3D cultures. 

Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D 

culture development in vitro and tissue remodeling during wound healing after implantation 

into the host as well. Gaining better insight into ECM derived from either tissue or cells that 

regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant 

the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in 
vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as 

scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D 

tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM 

components modulate the wound-healing process are reviewed.
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Introduction

As a three-dimensional (3D) network in biology, extracellular matrix (ECM) provides a 

microenvironment to cells for homeostasis, ingrowth, tissue formation, and repair [1]. Each 

tissue or organ has its own ECM with a distinct composition, which is generated in the 

early stages of embryonic development and constantly remodeled to control 3D tissue 

homeostasis [2]. Tissue-specific ECM offers optimal cell–cell and cell–ECM interactions by 

mimicking native signaling events [3]. Cell–ECM interactions are crucial for modulating cell 

behaviors, functions, and fates [4]. During tissue repair, quantitative and qualitative changes 

occur in ECM compounds during 3D tissue remodeling, which is regulated by specific 

enzymes, including matrix metalloproteinases (MMPs) [5].

The principle of cell-based bioengineering aims to (1) develop in vitro 3D culture 

models, such as organoid formation; and (2) regenerate damaged tissues and organs 

with a combination of cells and ECM scaffolds. Previous studies have reported the 

use of various synthetic scaffolds mimicking the 3D ECM for tissue regeneration. For 

example, the pLOXL1-Lipo@PLCL-HA co-delivery system reportedly promotes pelvic-

floor repair in rabbits [6], and 3D electrospun short fibrous sponges are demonstrated to 

possess good 3D adhesion onto chronic diabetic wounds in rats [7]. However, clinical 

applications for biomaterials remain hampered probably because of the “inertness” of 

synthetic ECM scaffolds [8,9]. Conversely, natural ECM contains useful structural and 

biochemical information, providing sufficient bioactive cues to trigger cell functions needed 

for tissue regeneration [10,11]. Natural ECM scaffolds are generated from decellularized 

ECM (dECM), either from decellularized cells (C-ECM) or decellularized tissue-specific 

ECM (TS-ECM) [12].

Considering the numerous advantages of dECM for cell growth and differentiation because 

of the retention of biochemical cues, dECM products have become an attractive platform 

for several bioengineering applications [13]. Nowadays, dECM applications in pioneering 

scaffold-manufacturing techniques such as 3D cell printing and electrospinning also bring 

the field closer to clinical translation. 3D cell printing, also known as bioprinting, enables 

the recapitulation of the unique features of human tissues and organs through the design 

of bioink and polymerization techniques [14,15]. Bioink is a formulation of cellular 

components and biomaterials [14,16]. These biomaterials could satisfy the requirements 

to print cell-laden constructs; however, tissue- and organ-specific dECM-based bioinks can 

recapitulate a cell-supportive microenvironment niche in 3D cell-printed constructs [16]. 

The use of the bioprinting method for printing of cell-laden structures can reportedly 

provide an optimized microenvironment for 3D-structured tissue growth [17]. Thus, the 

new paradigm of dECM-based bioinks has been deemed as a powerful modern technology. 

Recently, electrospinning has attracted notable attention as another scaffold manufacturing 

technique. Electrospinning is a high-throughput technique that fabricates high-porosity 
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fibrous scaffolds with nano-/microsized ultrafine fibers, whose morphology and structure 

mimic those of natural ECM [13,18,19]. The retention of architecture in electrospinning is 

beneficial for cell growth and alignment, but the biomechanical components in dECM may 

play a great role in cell differentiation [13]. Moreover, dECM is often difficult to scale up 

to clinically desired shapes due to its physiochemical properties. Thus, the combination of 

dECM and electrospinning can reduce the limitations of dECM scaffolds and provide them 

with tunability.

Despite the broad use of ECM, its exact mechanisms for tissue repair remain elusive. This 

review discusses the characteristics and mechanisms of tissue- or cell-specific ECM, along 

with the preparation for 3D organoid models and preclinical applications of tissue repair. 

Furthermore, we address challenges in clinical application and future directions.

Physiologic roles of TS-ECM in organ formation

ECM remodeling is crucial to organ formation and development. Among various organs, 

the intestine is an example of how ECM regulates normal organ morphogenesis [5]. 

In anurans tadpoles, the basement membrane of the tubular intestine thickens during 

intestinal metamorphosis. When induced by thyroid hormone, ECM proteins (including 

collagen, laminin, and fibronectin) increase, thereby inhibiting epithelial cell apoptosis in 

tadpoles [20]. Similarly, ECM remodeling is observed to play a central role in intestinal 

morphogenesis in rat [21] and mouse [22] models. Alternatively, other organs such as the 

lungs and the mammary and submandibular glands develop by epithelial branching. The 

branching process establishes the structure of these organs, and this process involves the 

repetitive formation of epithelial clefts and buds. The formation invades adjacent embryonic 

ECM, and the ECM composition and distribution shift over time. Thus, ECM remodeling 

provides structural integrity and regulates multiple cellular processes, such as cell growth, 

cell motility, and cell shape [23]. Meanwhile, the dysregulation of ECM components, 

structure, stiffness, and abundance may contribute to pathological conditions and exacerbate 

disease progression. For example, heavy scar formation is associated with abnormal ECM 

deposition [24], whereas osteoarthritis is linked to excessive ECM degradation [25].

ECM composition

ECM displays a 3D macromolecular network providing both structural support and 

biomechanical signaling to mediate cell behaviors, such as adhesion, proliferation, 

migration, and differentiation [26–28]. ECM consists of collagens, fibronectin (FN), 

laminins, elastin, proteoglycans (PGs), glycosaminoglycans (GAGs), and several other 

glycoproteins [29].

In mammalian tissues, ECM is generally divided into two types based on location and 

composition: (1) the interstitial connective tissue matrix, which surrounds and supports 

most stromal cells, thereby providing structural scaffolding for tissues, such as skeletal, 

and smooth muscle tissues [5]; and (2) the basement membrane, which primarily supports 

the epithelium and separates it from the environmental stroma, such as tubular and hollow 

structure tissues [5,30]. Although the ratios of ECM composition and structure vary among 

different organs or tissues, common biomacromolecules have been extensively studied 
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(Table 1). The most dominant and abundant protein within tissue ECM is collagen [31]. 

Specifically, collagen type I functions in forming fibrils, collagen type II is rich in cartilage, 

and collagen type IV serves as a constituent part of the basement membrane [32]. Collagen 

types I and II are the main components of ECM. FN is a ubiquitous ECM glycoprotein that 

plays a critical role in attaching onto cells through binding between ligands and receptors. 

Thus, FN can provide molecules within the ECM with adhesion sites, such as collagens, 

integrins, proteoglycan, and heparan sulfate [29]. Laminins also serve as adhesive sites for 

ECM biomacromolecules and receptors located on the cell surface [29]. Elastin fibers are 

large ECM structures that undergo repeated stretching forces and thus provide recoil to 

tissues [33]. GAGs are usually covalently bonded to proteins to form PGs, which are vital 

molecules in tissue development and homeostasis [34]. Hyaluronan (HA) is a linear form of 

GAG containing repetitive disaccharide units of N-acetyl-D-glucosamine and D-glucuronic 

acid. As a major constituent of the pericellular matrix of many cell types, HA attaches onto 

its cellular receptors or binds to its own synthases, thereby influencing various cell functions 

[35].

The composition of ECM is constantly updated. Matrix-bound nanovesicles, a subgroup of 

extracellular vesicles, have been recently found within ECM. They are embedded within it 

and have a tissue-specific microRNA cargo and membrane lipid structure that can play a 

significant role in the regulation of inflammation and healing processes [40].

Role of ECM in inducing stem-cell fate

Accurately guiding stem cells to give rise to target cells is challenging due to the lack of 

defined inductors. As a natural niche, ECM provides a dynamic microenvironment for cell 

replication and differentiation when stem cells are activated [36]. The dynamic interaction 

in the microenvironment is also deemed as “dynamic reciprocity” [41]. With cell–ECM 

communication, ECM regulates stem-cell fate through structural support, biochemical 

composition, growth factors, and biomechanical factors [4] (Fig. 1) (Table 2).

First, ECM provides structural support for cells primarily because of the following: (1) the 

3D structure of ECM allows an interconnected porous structure, and (2) the cross-linked 

fibrillar network and other large molecules provide rich cell-adhesion points [42]. Structural 

support is essential for cell adhesion, growth, and differentiation [43]. In 2020, Satyam et 
al. [44] reported a cell-derived ECM platform that could support podocyte proliferation, 

differentiation, and maintenance of the native phenotype.

With regard to biochemical composition, cells interact with the biochemical composition 

of ECM through transmembrane receptors. Integrins are the predominant transmembrane 

receptors on the surface of cells, connecting ECM proteins to the cytoskeleton within 

cells. They play crucial roles in various cellular activities, such as adhesion, proliferation, 

migration, differentiation, and homing [45–49]. Various integrin types are associated with 

the interactions between the cells and ECM, such as integrin α6β1, integrin α9, integrin β1, 

and integrin αvβ3 [48]. In 2020, Lu et al. [50] reported that integrin β1 knockout inhibits 

induced pluripotent stem cells (iPSCs)’ adhesion and migration across activated endothelial 

monolayers. In 2021, Han et al. [51] demonstrated that anti-human integrin β1 antibody 
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could specifically target human iPSCs and differentiate into various lineages in a mouse 

model.

Furthermore, ECM proteins can bind and regulate growth-factor bioavailability, serving as 

a growth-factor reservoir. ECM proteins such as FN, collagens, and PGs alone or combined 

with heparin sulfate can connect to various growth factors, such as fibroblast growth factor 

(FGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) 

[52]. Compared with unbounded growth factors, binding with ECM can potentiate their 

bioactivity. The phenomenon has already been observed in HGF, bone morphogenic protein 

(BMP)-2 and −4, acidic FGF, and insulin like growth factor (IGF)-1 [42,53]. ECM can also 

serve as microanatomic compartments. For example, due to the restrictions of basement 

membrane, asymmetric sequestration of bioactive factors occurs [52]. Thus, decellularized 

ECM having specific interactions with growth factors may generate dynamic and functional 

niches. In 2019, Ullah et al. [54] reported that replenishing human kidney ECM with VEGF 

results in more efficient differentiation of human iPSCs into endothelial cells (ECs).

Biomechanical factors including physical and mechanical forces can modulate the 

topography and microstructure of ECM in the local stem-cell microenvironment. 

Biomechanical factor changes can lead to variations in stem-cell shape and geometry. 

The microstructure of substrates could reportedly affect ECM protein binding [55,56]. 

Additionally, ECM stiffness has been identified as an important element in determining 

stem-cell fate in terms of lineage commitment [57,58] and self-renewal capacity [59]. 

For mesenchymal stem cells (MSCs), increased substrate stiffness enhances the osteogenic 

differentiation of MSCs [60,61], whereas soft matrix is inclined to induce chondrogenesis 

and adipogenesis [3]. ECM elasticity is another factor. In 2018, Hirata et al. [62] reported 

that the cardiac differentiation of iPSCs prefers highly elastic substrates in vitro. In 2020, 

Muncie et al. [63] demonstrated that substrates recapitulating embryo elasticity could 

promote human embryonic stem cells (ESCs) selforganization.

Recently, we have developed 3D human cell-based systems to replace the use of 

two-dimensional (2D) cell culture or animals for studying renal cytotoxicity [64]. To 

induce human urine-derived stem cells into renal tubular epithelial cells in 3D organoid 

culture, decellularized porcine kidney ECM is used as a culture supplement. Their results 

demonstrated that the levels of renal injury markers (CYP2E1 and KIM-1) in 3D organoids 

significantly increase in response to nephrotoxic agents (acetone and cisplatin). This 3D 

culture system with human stem cells and kidney-tissue ECM offers an alternative approach 

to renal-cytotoxicity testing [64].

Preparation of dECM

Decellularization is a bioengineering technology used to isolate ECM scaffold from the 

cells inhabiting it. The ECM scaffold product possesses bioactive molecules from native 

tissue, which can be used for tissue regeneration and disease remodeling. The goal of ECM 

decellularization is to retain ECM compounds and structure and remove xenogeneic cell 

compounds, thereby avoiding immunoreaction. Thus, assessing changes quantitatively and 

qualitatively in ECM is critical. ECM can also be mediated by certain enzymes, which 
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are responsible for ECM degradation after implantation in vitro, such as MMPs. Currently, 

commercially used ECM scaffolds are applied in wide-ranging bioengineering applications 

and are typically divided into C-ECM and TS-ECM (Table 3).

Decellularization of cell-derived ECM

With various available treatments for decellularization, the careful monitoring of the 

combinations of physical, chemical, and enzymatic treatments is essential for the retention 

of the biochemical, biological, and biophysical properties of ECM [12]. Each of these 

methods may inflict damage to the structure and components of ECM, but no unified criteria 

exist for decellularization. Physical decellularization methods may be sufficiently harsh to 

alter ECM protein structures (e.g., collagen) and mechanical properties [67–70]. Chemical 

methods may break the connections between DNA and proteins, destroy the ultrastructure 

and growth factors, and denature ECM proteins [3,67,71–75]. Enzymes such as collagenase, 

lipase, trypsin, dispase, thermolysin, and nucleases [76,77] can remove cell residue or 

undesirable ECM components with high specificity. However, one limitation of enzymatic 

treatment is incomplete cell removal and impairment of recellularization [76]. Enzymatic 

treatments are insufficient for cell removal alone, so they are often combined with chemical 

detergents. Specific decellularization methods need to be optimized according to specific 

cell types, cell density, and ECM thickness [76]. Decellularization treatments are introduced 

systematically in the following section.

Decellularization of tissue-specific ECM

In TS-ECM, many decellularization methods are designed to remove all cellular components 

[78,79]. The ideal procedure is to lyse cells and then wash away the cellular compounds 

from the tissue while retaining the ECM components and bioactive molecules. Thus, 

TS-ECM products retain natural ECM properties to form bioengineered tissues. After 

decellularization, the xenogeneic ECM scaffold could be recellularized with stem or 

progenitor cells, which differentiate into the original cell types in the tissue. Given their 

diverse applications for tissue regeneration, decellularization techniques must be tailored 

and integrated to meet the requirements for specific tissues. Decellularization methods that 

have been investigated include physical, chemical, and enzymatic treatments. Although 

some are commonly used, the optimal combination for decellularization depends on the 

tissue’s origin, characteristics, and intended use [76]. As for perfusion and immersion 

decellularization techniques applied to organs or tissues, they are applicable for tissues with 

extensive vasculature.

Physical treatments—The most common physical methods used for decellularization 

are to lyse or break the cell membrane or remove cells from the tissue matrix 

through temperature changes, mechanical force, and non-thermal irreversible electroporation 

(NTIRE). The mechanism involved in temperature methods is rapid freeze and thaw. After 

cell lysis, liquefied chemicals are used to treat the tissue. The purpose of this step is 

to degrade and wash out undesirable components. Temperature methods retain the ECM 

physical structure and are most suitable for strong and thick tissues. Mechanical-shaking 

force is commonly applied to organs with natural planes of dissection, such as the urinary 

bladder and the small intestine [80]. NTIRE is another alternative to lyse cells by using 
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electrical pulses, which can disrupt the plasma membrane. However, NTIRE technology is 

suitable only for small tissues.

Interest in supercritical fluid technology to decellularize tissues is also growing. 

Supercritical carbon dioxide (scCO2) easily penetrates into biological tissues, thereby 

facilitating the removal of structural components of cellular membranes (lipids). The main 

advantages of this protocol are the significant reduction in processing time and the sterilizing 

effects. Nevertheless, the high pressure in a reactor can lead to the rupture of cells with 

subsequent removal of cellular fragments when the system is rapidly depressurized [81].

Prevalent chemical treatments—The appropriate chemical detergents are selected 

based on the tissue’s/organ’s thickness, ECM composition, and intended use. The prevalent 

chemical detergents used for decellularization include acids, bases, ionic detergents, and 

non-ionic detergents.

Acids and bases are used for solubilizing cellular cytoplasmic components and removing 

nucleic acids, including RNA and DNA. These chemicals can effectively disrupt both 

intracellular organelles, cell membranes, and some important molecules, including GAGs. 

Ionic detergents are used for effectively solubilizing plasma membranes and nuclear 

membranes by breaking protein–protein interactions [82]. Sodium dodecyl sulfate (SDS) is 

commonly used because it can effectively lyse cells while not damaging ECM significantly. 

Right after the cell membranes are lysed by SDS, the genetic contents are degraded by 

endonucleases and exonucleases. Non-ionic detergents disrupt lipid–lipid and lipid–protein 

interactions but leave protein–protein interactions intact. Triton X-100 is the most widely 

used non-ionic detergent [83].

Enzymatic treatments—Enzyme methods are used to destroy attachments between 

nucleic acid bonds. They interact with cells via adjacent proteins or other components of 

the cells. Collagenase, lipase, trypsin, dispase, thermolysin, and nuclease have been used to 

remove cells [76]. Serum has also been successfully used for decellularization due to the 

existence of nucleases [30].

Collagenase is appropriate for producing ECM scaffolds only when unbroken collagen 

structures are not required. Lipase is applicable when generating decellularized skin 

scaffolds. The function of lipase acids in the decellularization of skin dermis is degreasing 

and breaking the bonds among lipidized cells. Trypsin, a kind of serine protease, is also a 

common enzymatic agent for decellularization. Dispase is effective in separating undesired 

cells from ECM scaffold for its use in preventing cell aggregation. However, enzymes such 

as dispase and thermolysin are ineffective for removing cells inside tissues; they are more 

effective in combination with mechanical abrasion for complete cell removal [84]. Nucleases 

including DNase and RNase are often used for the cleavage of nucleic acids. Thus, nucleases 

are usually used to remove nucleic acids after cell lysis with physical pressure and chemical 

detergents [85].

Serum is commonly used in cell-culture systems because it contains many essential 

components that are beneficial for cell growth and propagation. The most extensively used 
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serum is fetal bovine serum (FBS). Serum also contains serum nucleases, which can degrade 

the DNA and RNA remaining after cell lysis. Utilizing serum in decellularization methods 

has two extraordinary advantages: (1) retaining bioactive molecules in ECM compared with 

other reagents for decellularization [86]; and (2) degrading the DNA and RNA remaining 

after cell lysis, which can potentially induce immune responses [86–88].

In summary, the optimal decellularization approach is to minimize the loss of major 

bioactive matrix components and the xenogeneic immune responses simultaneously [30,80]. 

Single or combined decellularization methods are applied to achieve optimal efficiency 

according to the features of specific tissues and organs.

Handling of decellularized scaffolds—Decellularization yields multiple kinds of 

decellularized scaffolds, which can be further recellularized for in vitro and in vivo studies. 

Decellularized scaffolds are deemed the final products if the original ECM architecture 

is well retained [89]. Furthermore, decellularized C-ECM could be used in either its 

original format, or it can be fragmented, ground, or solubilized. Either 2D ECM sheets 

or complicated 3D structures comprising 3D scaffolds can be produced from these formats 

[12]. In other cases, post-processing techniques are needed to produce various products 

and thus meet research and clinical requirements, including the lyophilization, milling, and 

digestion of ECM, resulting in an injectable hydrogel [90]. It can be further cross-linked 

with genipin or glutaraldehyde to enhance the integrity [91].

Applications of dECM

Considering the desired functions of ECM in mediating cellular behaviors, dECM is 

extensively used as a coating agent in 2D or 3D scaffolds [110]. Its utility in tissue 

regeneration and stem-cell lineage induction has now been widely examined among different 

tissues and organs. Based on the ECM source, we discuss the applications of C-ECM and 

TS-ECM separately.

Cell-derived ECM

C-ECM is commonly used as a coating on biomaterial surfaces, but more sophisticated 

approaches exist. For example, the synthesis products of C-ECM can serve as 2D substrates 

for engineering tissues de novo or facilitating wound healing and regeneration [111]. 

According to different applications, C-ECM can be used as a biomaterial to regenerate 

tissues or promote cell-lineage commitment [111].

Compared with TS-ECM, an ideal scaffold material in tissue engineering, C-ECM is 

normally considered an in vitro niche, in which primary cells and MSCs can be rejuvenated 

to maintain their proliferation and differentiation capacity [112–114]. For instance, C-ECM 

has been demonstrated to refresh tissue-specific stem cells such as synovium-derived stem 

cells (SDSCs) [115–122], bone marrow-derived MSCs (BMSCs) [123–125], umbilical cord-

derived MSCs (UCMSCs) [126,127], infrapatellar fat pad-derived stem cells (IPFSCs) [128–

130], ESCs [131], periodontal ligament stem cells [132], and neural progenitor cells [133]. 

C-ECM also refreshes primary cells such as chondrocytes [134,135], nucleus pulposus cells 

[136,137], and hepatic cells [138] in proliferation and redifferentiation capacities (Table 
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4). This rejuvenation effect of C-ECM primarily occurs thorough anti-inflammation and 

antioxidation [121,122,126,135,139], which can reverse senescent stem cells and primary 

cells [127].

To explore the underlying mechanisms, adult human SDSCs are grown on C-ECM deposited 

by adult stem cells with varied chondrogenic capacity, including SDSCs (strong), adipose-

derived stem cells (ADSCs; weak), and urine-derived stem cells (USCs; none), as well as 

C-ECM deposited by dermal fibroblasts (a non-stem-cell control) [119]. Despite the fact that 

expansion on C-ECM yields a large quantity of adult SDSCs with higher chondrogenic 

capacity than those on tissue-culture plastic (TCP), expansion on C-ECM deposited 

by SDSCs (with stronger chondrogenic capacity) yields SDSCs with less chondrogenic 

potential than those from other C-ECM groups. Intriguingly, SDSCs grown on C-ECM 

deposited by USCs display the highest expression of chondrogenic marker genes, aggrecan 

and type II collagen, which may be associated with the highest expression of basement 

membrane proteins. Furthermore, one basement membrane component, FN, has been 

evaluated in a recent study for its effect on the proliferation and differentiation capacity 

of stem cells by using CRISPR/CAS9-generated FN-knockout (FN1-KO) in human IPFSCs 

[129]. Wang et al. [129] found that FN1-KO promotes the proliferative capacity of human 

IPFSCs; however, this capacity is reversed during expansion on C-ECM generated by FN1-

KO IPFSCs. The importance of FN in chondrogenic and adipogenic differentiation is also 

indicated in the FN1-KO IPFSCs and FN– matrix microenvironment.

Another interesting study is to assess the influence of C-ECM expansion and 

immortalization on stem-cell proliferation and differentiation [130]. Wang et al. [130] found 

that human IPFSCs transduced with SV40 large T antigen (SV40LT) yields an increase in 

proliferation and adipogenic capacity but a decrease in chondrogenic potential. Interestingly, 

expansion on C-ECM generated by SV40LT transduced cells yields human IPFSCs with 

enhanced proliferation and chondrogenic potential but decreased adipogenic capacity. This 

outcome has been demonstrated to be highly relevant to the expression and distribution of 

basement membrane proteins.

Tissue-specific ECM

Despite similar ECM composition among different tissues and organs, subtle differences 

in function, ratio, architecture, and stiffness of ECM can affect cellular interactions in 

determining cell fate [147]. Unlike C-ECM, which can refresh tissue-specific and non-

tissue-specific stem/progenitor cells and primary cells, TS-ECM tends to function as a 

tissue-specific scaffold for stem/progenitor cells and primary cells in most cases [26]. 

Even without specific differentiation media, stem or progenitor cells still possess specific 

cell-lineage differentiation capacity based on particular interactions between cells and ECM 

[148]. Thus, compared with regular TCPs or natural scaffold such as collagens, TS-ECM is 

superior in maintaining [149] and guiding [150] stem-cell differentiation.

Depending on their application, TS-ECM products are generally divided by different organs 

(bone, articular cartilage, skeletal muscle, skin, and urinary bladder), different systems 

(musculoskeletal system, urinary system, and digestive system), or different germ layers 

(endoderm, mesoderm, and ectoderm). To address differences and its superiority to C-ECM, 
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we classify TS-ECM products into four categories, namely, cell-culture supplements, cell 

sheets, tubular structures, and 3D structures according to different TS-ECM characteristics 

and applications (Table 5).

TS-ECM as supplements for in vitro 3D culture constructs—In vitro models aim 

to mimic the composition, ratio, and function of native tissues as closely as possible [151]. 

TS-ECM compounds could play a vital role in developing a proper in vitro cell-culture 

system. Compared with universal ECM such as collagen, TS-ECM can provide desirable 

cell–substrate interactions [147]. These interactions benefit cell proliferation and cellular 

functions, such as the differentiation capacity of stem or progenitor cells. Here, we focus 

on two post-processing products of TS-ECM for cell culture in vitro: powder and hydrogel. 

3D matrix hydrogels often feature a soft, tissue-like stiffness and mimic the ECM that is 

naturally present in tissues. Using 3D ECM for cell-culture models presents several benefits 

as it enhances cell attachment and enables proper carrying of gases, nutrients, peptides, and 

proteins to the targeted cells, which promotes cell survival, proliferation, migration, and 

differentiation.

Tissue-like 3D cultures provide a promising tool to study the pathological changes to in vitro 
microenvironments. Pathogens such as viruses face varying conditions in vivo; however, 

suitable 3D tissue environments that impact pathogen spread need to be established. Recent 

studies [152] have developed tissue-like 3D cultures combining quantification of virus 

replication with imaging to study single-cell and cell-population dynamics. Investigators 

have analyzed human immunodeficiency virus-1 (HIV-1) spread between primary human 

CD4 T-lymphocytes using collagen as a tissue-like 3D model through computation 

technology. This study demonstrates that 3D environmental constructs restrict infection via 

cell-free virions but promote cell-associated HIV-1 transmission. Experimental validation 

identifies cell motility and density as essential determinants of the efficacy and mode of 

HIV-1 spread in 3D culture. 3D tissue constructs represent an adaptable method for the 

quantitative time-resolved analyses of HIV replication, spread, and interactions under in 
vitro 3D conditions [152].

The separation of ECM from tissues followed by decellularization and other processes 

(e.g., milling, pulverizing, lyophilizing, and freezing) are typical steps for producing ECM 

powder. TS-ECM powder derived from skin, muscle, and liver can be used as coating 

substrates for promoting targeted cell proliferation and maintaining the cell phenotype of the 

three cell types [147]. TS-ECM hydrogel is made using solubilized enzymatic procedures 

[153], which retain the full biochemical complexity of native tissue. Recent efforts have 

focused on recapitulating a wide variety of physiochemical cues of native ECM [154]. 

Our studies have demonstrated that synthetic skeletal muscle ECM (mECM) hydrogel, 

a combination of mECM, HA-based hydrogel, and heparin (HA-Hep), significantly 

improves the proliferation and differentiation of skeletal muscle precursor cells (MPCs) 

[30,87,88,155,156]. Additionally, TS-ECM from skin [155], liver [155,157,158], and kidney 

[64,159] efficiently induces tissue-specific stem cells to differentiate into dermal cells, 

hepatocytes, and renal cells, respectively, in 2D or 3D cultures.
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TS-ECM based biomaterials in the bioengineering field have developed from simply coating 

cell-culture substrates to native ECM-mimicking scaffold design, aiming at recapitulating 

the exact dynamics, composition, and structure of native ECM [160]. Based on the 

different morphologies and topographical structures of TS-ECM, the applications can be 

further divided as cell-sheet tissue regeneration, tubular organ regeneration, and 3D tissue 

regeneration.

TS-ECM as cell sheet for tissue regeneration—Xenogeneic TS-ECM scaffolds, 

conveniently obtained using low-cost procedures, are typically fabricated as single-planar 

ECM sheets used for 2D tissue regeneration, such as skin (dermis) [161–163], cornea 

[164,165], and urethra mucosa [166,167]. Decellularized small intestinal submucosa (SIS) 

(Fig. 2) [168], bladder submucosa, and dermal matrix show promising results as inductive 

substrates for repairing full-thickness burns and postburn scar contractures [161,163,169]. 

Furthermore, decellularized porcine corneas using high hydrostatic pressurization show 

excellent optical properties without prompting an immune reaction when implanted into 

rabbit corneas [170].

TS-ECM for tubular organ regeneration—TS-ECM materials can be made into 

tubular scaffolds, which confer certain potential advantages, such as improved function 

or performance. Tubular TS-ECM can be used to regenerate blood vessels [171–178], 

esophagus [179–184], bladder [185–187], urethra [188,189], ureter [190], urinary conduit 

[191], bowel [192], and vagina [193].

SIS is one of the best established and most widely applied biomaterials [194]. Since it was 

reported for the first time in 1966 as a vascular substitute for replacing part of the aorta or 

vena cava in dog models [171–173], extensive research has been performed in the field. SIS-

based scaffolds show good graft patency in small-diameter grafts [195]. However, they are 

observed to have a deficiency in forming intima, thickening media, and dilating grafts with 

large diameter [174,175]. Subsequently, decellularized vessels are demonstrated as another 

vascular scaffold. In 2000, acellular aorta scaffold seeded with human myofibroblasts and 

ECs showed great success following implantation in a rat model [176]. In 2008, the 

decellularization and recellularization of a whole heart was shown as a functional solid 

organ for the first time [196]. Large- and small-diameter vascular substitutes are produced 

from this process, after which the vascular tree could be recapitulated by relining vascular 

cells [177]. A recent study has reported that the integration of pericardial dECM and 

poly(propylene fumarate) has robust mechanical properties, adequate re-endothelialization, 

and tissuegrowth capacity in vivo [178].

Research on esophageal-tissue engineering has undergone rapid development in recent 

years. In 2000, Badylak et al. [179] successfully repaired esophageal defects in a dog model 

using acellular porcine SIS or urinary bladder submucosa. In 2011, Badylak et al. [180] first 

reported that xenogeneic ECM derived from porcine SIS promotes functional esophageal 

mucosa reconstruction for patients with endoscopic resection. In the same year, Clough et 
al. [181] reported that acellular porcine SIS matrix successfully repairs traumatic cervical 

esophageal perforation. In 2014, Syed et al. [182] reported that SIS could be consistently 

and reliably made into tubular scaffolds with good mechanical properties for esophageal-
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tissue engineering. In 2018, Luc et al. [183] reported a short biologic scaffold comprising 

decellularized esophageal matrix in a pig model, mimicking native esophagus in in vitro and 

in vivo characteristics. In 2019, a clinical-grade acellular matrix study reported an esophagus 

decellularization process, retaining native esophageal ECM structural, biochemical, and 

biomechanical properties without cytotoxicity, thereby meeting clinical-grade criteria and 

showing promise for clinical use [184].

Urinary-tissue regeneration is anatomically divided into urinary bladder, urethra, ureter, 

and urinary-conduit regeneration. Application of SIS for urinary-bladder reconstruction 

is extensively investigated. In 1995, Kropp et al. [186] reported that SIS could promote 

bladder regeneration in a rat model. In 2005, Zhang et al. [168] confirmed the result 

that SIS is a promising graft for regenerating the urinary bladder in a dog model (Fig. 

3). Nowadays, natural porous polymer scaffolds are produced for bladder-bioengineering 

applications. In 2020, Zhang et al. [187] reported that SIS cross-linked with procyanidins 

could rapidly promote in situ tissue regrowth and regeneration of the bladder. As for urethral 

regeneration, since Kropp et al. [188] reported that SIS grafts for urethroplasty promote 

rabbit urethral regeneration in 1998, research on urethra regeneration has grown remarkably. 

To date, compared with synthetic scaffolds, tubular scaffolds derived from decellularized 

tissues can undergo subsequent remodeling with no inflammatory response in vivo. Matrix 

can be derived from SIS, dermal matrix, corpus spongiosum matrix (CSM), or bladder 

submucosa matrix (BSM). Among these matrices, acellular CSM and BSM seem to be 

the most appropriate scaffolds for urethra bioengineering because they possess molecular 

composition and mechanical and structural characteristics similar to those of native low 

urinary tract tissue [189]. Similarly, tubular scaffolds applied in ureteral regeneration are 

produced from decellularized native-tissue specimens such as SIS, amniotic membrane, 

ureter, blood vessels, or bladder tissue [190]. As for constructing artificial urinary conduits, 

the regeneration of the urinary conduit is studied primarily in animal models, and only 

one registered clinical trial has examined the clinical use of artificial urinary-conduit 

construction (unpublished data) [191].

Similar to urinary-conduit regeneration, research on bowel and vagina regeneration is also 

primarily performed in animals, such as rat [192] and porcine models [193]. However, 

graft shrinkage and scar-tissue formation are often observed after in vivo implantation. 

Apparently, keeping the lumen open with physical support is critical for tubular or hollow 

organ-tissue regeneration. For cell-seeded tissue, a promptly established blood network is 

required for the survival of implanted cells in the host [185]. Clearly, maintaining cell 

viability within ECM and preventing graft contraction after implantation require further 

investigation.

TS-ECM for multicellular-organism regeneration in vivo—Multicellular-organism 

regeneration requires a 3D framework to provide structural integrity and denote functional 

tissue boundaries, thereby delineating specific microenvironments [197]. Accordingly, 

the decellularization of whole tissues and organs provides scaffolds with tissue-specific 

3D microarchitecture, serving as templates for whole-organ engineering [160]. The 

basic strategy for transplantable human-organ generation involves the venous perfusion 

decellularization of human or animal organs. The resulting product is a 3D framework with 
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intact vasculature. Subsequently, the 3D scaffold is maintained in a bioreactor system to 

mimic the physiologic conditions of specific organs, such as electrical conduction, pressure 

gradients, pH, temperature, and oxygen concentration [198]. Next, the recellularization of 

3D ECM scaffold proceeds by seeding appropriate cell types in a concentration that matches 

that for native cell distribution. The achievement of successful perfusion decellularization 

was first demonstrated on a whole rat heart in 2008 [198], followed by the liver, kidney, and 

lungs [199].

Several studies have reported the decellularization of liver tissue from animals [199–201]. 

The 3D ECM framework obtained from liver tissue has been proven to retain excellent 

functionality of multiple liver-cell types to grow in vitro [202,203]. In 2011, Baptista et al. 
decellularized a whole cadaveric liver organ by perfusing detergent through the native-liver 

vascular network, fabricating a natural ECM scaffold for liver regeneration in vitro [201]. 

In 2015, Mazza et al. [204] decellularized a whole human liver and successfully assessed 

in vivo quality and biocompatibility. Later, in 2017, Verstegen et al. [205] conducted a 

clinical series performing the decellularization process in whole liver. They generated a mild 

nondestructive decellularization protocol by using perfusion through the hepatic artery and 

the portal vein [205]. This protocol removes cellular DNA and RNA completely and is 

effective for generating constructs from whole human liver. These constructs contain ECM 

components, and the architecture of the liver is maintained. Above all, the utilization of 

artificial hepatic scaffold for liver bioengineering is gaining remarkable success. However, 

recellularization can be further improved using innovations of more desired bioreactors to 

better replicate native liver.

The goal of bioengineered lungs is to rehabilitate the architecture and functionality of 

the two seeding routes, the vasculature and the airway [199]. In vivo gas exchange is 

the primary outcome for evaluating the efficiency of artificial lungs. Initially in 2010, 

Petersen et al. [85] demonstrated the feasibility of recellularized artificial lungs based on 

a rat-transplantation model. In 2011, recellularized lungs transplanted orthotopically in rats 

partially restored respiratory function [206,207]. In porcine models in 2017, transplanted 

artificial lungs promoted gas exchange [208]. However, insufficient vascular barrier function 

and increased thrombogenicity resulted in graft failure [208]. Functional lung regeneration 

still has a long way to go even though remarkable achievements have been made. To 

build higher-level function, optimizing the recellularization and maturation of the grafts is 

necessary. Moreover, experiments based on large animal models need to be performed for 

preclinical trials before translation to human trials.

The two primary functions of kidneys are to maintain fluid balance and filter harmful 

substances, which are vital for human physiologic function. For patients with endstage 

renal diseases, kidney transplant is deemed the firstline treatment [209]. In the kidneys, 

various successful decellularization and recellularization strategies have been developed. For 

example, rat kidneys could produce dilute urine after recellularization and culture under 

perfusion [210]. However, although a piece of tissue like the structure of renal components 

is reconstructed in vitro, the function of renal tissue with a nephron structure has not 

yet been determined in vivo [211]. Moreover, the current techniques still have distinct 

limitations in precise cell arrangement, reconstruction of an entire vascular system, and 
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a continuous urinary-collection system. These limitations impede obtaining complete and 

functional wholekidney organs. Additional studies need to be conducted prior to clinical 

applications.

Mechanisms for 3D tissue regeneration—Signaling pathways play crucial roles in 

substantial cellular functions (cell survival, self-renewal, attachment, proliferation, and 

differentiation) and tissue regeneration. Understanding the underlying signaling pathways 

is vital for 3D tissue regenerative repair. Key signaling pathways are involved in tissue 

regeneration in different systems (Table 6). These signaling pathways regulate stem-cell 

differentiation and 3D tissue regeneration in a complex cross-talk manner.

Recently, the Hippo signaling pathway YAP/TAZ has been shown to play a pivotal role 

in regulating 3D tissue regeneration as a new signaling pathway [273]. The core of 

the Hippo pathway is defined as a serine/threonine kinase cascade, comprising mammal 

Ste20-like kinase 1 (MST1) and MST2, Salvador 1 (SAV1), MOB1A, and MOB1B, 

large tumor suppressor kinase 1 (LATS1) and LATS2, the transcriptional co-activators Yes-

associated protein (YAP), and transcriptional co-activator with PDZ binding motif (TAZ) 

[274]. The Hippo pathway is regulated by external changes of stem-cell niche factors, 

such as mechanical stress and cell–ECM interaction [274]. The effects of these upstream 

signals are mediated by receptors embedded in the cytoplasm membrane, such as integrin 

complex (Fig. 4). After the cells sense the signals, the Hippo pathway is regulated by 

an intracellular network, rather than through dedicated receptors. Thus, following injury, 

the Hippo pathway can act as a universal pathway to regulate stem-cell behaviors for 

initiating tissue regeneration [273]. The Hippo pathway regulates stem-cell attachment, 

proliferation, self-renewal, and differentiation, such as ESCs [275], iPSCs [276,277], and 

MSCs [278], which are important for tissue regeneration. To date, it is reported to be 

involved in the regeneration of multiple organs, such as intestine [279], liver [280], skin 

[281], heart [241,282], and nervous system [283]. However, the downstream effects are 

closely associated with tumor development [284], thereby increasing the challenge in 

targeting the Hippo pathway for tissue regeneration.

Challenges and future directions

Tissue-derived ECM is an elemental part of the body’s tissues, so it is critical to mimic its 

properties to develop 3D organoid models in vitro for drug screening, cell therapy, or disease 

modeling. Hydrogels such as collagen and matrigel are universal products extensively 

used as substrates for 3D cell cultures. However, the need for more special gels requires 

the development of various tissue gels. As the porosity, permeability, and mechanical 

characteristics of different gels vary, the natural origin of the ECM of specific tissues or 

organs needs to be recapitulated when these ECM gels are designed. TS-ECM compounds 

also need to be further characterized, controlled, and standardized to prevent variability in 

either C-ECM or TS-ECM.

For tissue repair in the body, ECM plays an important role in wound healing. As a complex 

physiologic reaction in response to trauma, would healing involves cellular and ECM events, 

biochemical reactions, growth factors, and cytokines. The goal for wound healing is scar-
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free restoration with less tissue shrinkage. Various possibilities have rendered ECM-based 

scaffolding technologies a turning point in regenerative medicine. To date, animal models 

have demonstrated that delayed collagen-deposition paired ECM remodeling is one of the 

traits for scarless wound healing [285]. However, some challenges exist for preclinical 

animal models, such as low reproducibility, ethical problems, and poor translation to 

humans. Moreover, the most prominent challenge is the inconsistency between healthy ECM 

scaffolds and the dysfunctional matrix that is the result of injuries. Dysfunctional matrix 

includes decreased or excessive ECM compounds [286], often accompanied with a change 

in soluble factors, such as transforming growth factor β [287] and cross-linking enzymes 

[288]. A proteomic study has also revealed that the composition of normal and pathological 

ECM exhibits a completely different profile [286]. Considering this finding, whether 

ECM scaffolds can provide the correct cues to regulate cell behaviors on pathological 

tissues is still unclear. To close the gap in knowledge, pathological ECM remodeling and 

genetically engineered ECM scaffolds offer two alternatives by improving the function and 

biocompatibility of ECM.

ECM remodeling is a healing process that offers promising therapeutic opportunities 

for many diseases [5]. Implanted ECM scaffold with a bioactive molecular and porous 

microstructure can enhance wound healing. For example, the immobilization of signaling 

molecules on the porous surface of scaffolds can promote cell proliferation, differentiation, 

and cell–matrix adhesion [289,290]. Selecting a specific enzyme to enhance tissue 

remodeling is important. One study has shown that curcumin treatment could accelerate 

wound healing by suppressing MMP-9 in a mouse model [291]. Moreover, attempts to 

genetically engineer ECM have achieved preliminary success in animal models. ECM sheets 

and hydrogels generated from porcine, which is alpha-gal deficient (with reduced immune 

rejection), show that 3D-generated transected anterior cruciate ligament can form in a goat 

model [292]. As TS-ECMs of different tissues share a common set of proteins, the role 

of individual ECM components in the unique functions of tissues and the healing process 

still needs further investigation. A robust and extensive proteomic analysis of TS-ECM 

components is critical to illustrate the tissue regeneration process induced by TS-ECM. In 

summary, a pro-regenerative matrix combined with the ECM remodeling of pathological 

tissues may bring us one step closer to scar-free tissue regeneration. TS-ECM in tissue repair 

could bring us closer to scarless wound healing.

In conclusion, mimicking the microenvironment of original tissues, TS-ECM and C-ECM 

possess remarkable promise for developing in vitro 3D culture systems and cell-based 

therapy. Tissue bioengineering in organoid constructions or 3D culture models offers a novel 

platform to study diseases and test new drugs. dECM products also provide therapeutic 

alternatives for the repair of injured or pathological tissues during tissue reconstruction. 

Compared with C-ECM, emerging evidence suggests that TS-ECM as a scaffold needs to 

be improved due to its unique biochemical, biological, and biophysical properties. This 

review highlights the physiologic roles of ECM in 3D organoid formation and tissue repair 

and presents the currently recognized applications of C-ECM and TS-ECM in modulating 

cellular construction development and organ-healing processes following tissue injury. To 

date, TS-ECM products have advanced to several formats such as powder, hydrogel, 
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cell sheet, and decellularized tissue and organ for in vitro 3D structure culture models. 

Inevitably, tissue repair for wound healing will be refined in future applications.

The past few decades have witnessed substantial progress in TS-ECM or C-ECM 

developments. However, major hurdles remain in understanding the accurate and specific 

key ECM proteins and the ratio of these molecules for cell proliferation and targeted cell 

differentiation for 3D organoid culture and tissue repair. Thus, further basic research and 

preclinical testing are necessary before clinical translation.
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Fig. 1. 
Role and composition of stem-cell niche. The stem-cell niches retain the stemness of adult 

stem cells in a quiescent state. When tissue is injured, the surrounding microenvironment 

actively signals stem cells to promote either self-renewal or differentiation to form new 

tissues. The niches include cell–matrix, cell–protein, protein–matrix, cell–cell interactions, 

hypoxia, and metabolism. Among these niche factors, cell–matrix interactions play a 

key role in prompting cell adhesion, migration, proliferation, and differentiation for 

tissue regeneration. The matrix regulates stem-cell behavior through structural supports, 

biochemical signaling, growth factor induction, and biomechanical regulation during tissue 

repair.
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Fig. 2. 
Cell-seeded decellularized small intestine submucosa scaffolds. (A) Masson trichrome 

staining of canine bone marrow stromal stem cells (red) seeded on SIS scaffolds (blue). 

(B) Immunohistochemistry staining of α-smooth muscle actin of bone marrow stromal 

cells (Brown). The photomicrograph of cell-seeded SIS scaffolds is adapted from BJU 
International [168] with permission.
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Fig. 3. 
Bone marrow stromal cells-seeded decellularized extracellular matrix promoted in vivo 
bladder tissue regeneration. Both autologous bone marrow stromal cells-seeded (A) 

and bladder cells-seeded SIS scaffolds (B) expressed α-smooth muscle actin 10 weeks 

after transplantation in a canine model following partial cystectomy, assessed by 

immunohistochemistry staining. The images are adapted from BJU International [168] with 

permission.
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Fig. 4. 
Hippo signaling pathway YAP/TAZ for regulating cell behaviors and tissue regeneration. 

The Hippo pathway is regulated by an intracellular network relaying a multitude of 

external inputs. Mechanical stress and cell-extracellular matrix (ECM) adhesion changes can 

regulate the Hippo pathway through integrin signaling. Activation of the Hippo pathway 

is associated with the phosphorylation of the core Hippo pathway kinases, including 

mammal Ste20-like kinase 1 (MST1) and MST2, Salvador 1 (SAV1), MOB1A and MOB1B, 

large tumor suppressor kinase 1 (LATS1) and LATS2, the transcriptional co-activators Yes-

associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), 

which leads to proteasomal degradation. Conversely, when the Hippo kinase cascade is 

not activated, unphosphorylated YAP/TAZ binding with TEAD transcription factor can 

activate specific genes, regulating ECM remodeling, cellular behaviors (cell attachment, 

proliferation, migration, and differentiation) and tissue regeneration.
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