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Abstract: Hepatitis B “e” antigen (HBeAg) negative chronic hepatitis B (CHB), 40 years since discov-
ery in the Mediterranean area, has become the most prevalent form of HBV-induced liver disease
worldwide and a major health care burden caused by HBV infection. A great deal of knowledge
accumulated over the last decades provides consistent evidence on the bimodal dynamics of the
expression of structural and non-structural forms of the viral core proteins which associate with
different virologic and clinic–pathologic outcomes of HBV infection. In absence of serum HBeAg, the
presence and persistence of HBV replication causes and maintains virus-related liver injury. Thus, in
clinical practice it is mandatory to screen HBV carriers with HBeAg-negative infection for the early
diagnosis of HBeAg-negative CHB since antiviral therapy can cure HBV-induced liver disease when
started at early stages.
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1. Discovery

In the mid-1970s, intrahepatic hepatitis B core antigen (HBcAg) was the hallmark of
active hepatitis B virus (HBV) replication in carriers of hepatitis B surface antigen (HBsAg) [1].
The HBcAg-positive immunohistochemical staining of the nuclei of HBV infected hep-
atocytes was indirect evidence of 22 nm viral nucleocapsid particles (core), seen in the
electron microscope and associated with HBV-induced inflammatory liver disease [2].
Since its discovery in the serum, hepatitis B “e” antigen (HBeAg) was significantly asso-
ciated with intrahepatic detection of HBcAg [3,4]. However, a significant proportion of
HBeAg-negative/anti-HBe-positive carriers without intrahepatic HBcAg had evidence
of unexplained chronic hepatitis, as only a proportion of patients showed hepatitis delta
virus (HDV) coinfection [5]. The development of molecular diagnostic assays for detection
of serum HBV-DNA, firstly presented at the 1980 AASLD meeting in Chicago, allowed a
better understanding of their pathology [6]. Using this technique, our group found that
serum HBV-DNA was present in both HBeAg-positive and HBeAg-negative patients with
intrahepatic HBcAg [6]. Similar findings were confirmed worldwide after the diffusion of
molecular biology techniques for detection of serum HBV-DNA and HBeAg-negative/anti-
HBe-positive CHB was shown to prevail in the Mediterranean patients [7–10]. Serum
HBV-DNA levels were lower in HBeAg-negative than HBeAg-positive patients [11–14]. In
addition, a study from our group underlined a peculiar feature of the intrahepatic staining
of HBcAg in HBeAg-negative/anti-HBe-positive patients, namely, the concomitant nuclear
and cytoplasmic, rather than exclusively nuclear, localization [14]. According to the specific
features of HBV infection in anti-HBe-positive patients, their disease was proposed as
a distinct clinical entity from HBeAg-positive CHB [15]. Subsequently the study of its
virologic characteristics led to the identification of HBeAg defective HBV mutants and
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their pathogenetic role in HBeAg-negative/anti-HBe-positive CHB [16–19]. The first study
of the dynamic ratios between wild-type HBeAg-positive and HBeAg-negative variant
populations within the circulating viral quasispecies of HBeAg-positive carriers revealed
that precore G1896A HBeAg-minus HBV variants emerged at the time of hepatitis B exac-
erbations and were followed by the appearance of circulating antibodies against HBeAg
(anti-HBe) [20]. Furthermore, CHB associated with HBeAg-minus HBV infection was
characterized by transaminases (ALT) flares intervened with periods of complete ALT
normalization: ALT flares were preceded by major increases of viral load that remained
very low during the remission phases [20,21]. Altogether, these clinic–pathologic evidences
suggested that genetic heterogeneity of the HBV precore region might significantly influ-
ence the course and outcome of chronic hepatitis B. The hypothesis was that wild-type
HBV favors the induction of chronic infection secreting HBeAg, whereas HBeAg-defective
variants, surging after the establishment of chronic infection, selectively prevail, displacing
wild-type virus once HBeAg is recognized as immune target, since the lack of HBeAg ex-
pression provides a selective advantage to the virus during chronic inflammatory infection
(Figure 1). In the last 30 years, a great deal of studies in animals and humans confirmed
and further extended this seminal hypothesis.
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Figure 1. At the meeting on the Pathogenetic Implications of HBV Heterogeneity of 5–7 April 1991 in
Sestriere, Italy, our group proposed, in a cartoon, depicted as poster, a hypothetical theory to explain
the clinic–pathologic implications of the differential expression of HBeAg provided by wild-type
HBeAg-positive virus and HBeAg-defective variant. The 4 pictures on the left side of the cartoon
outline the induction of persistent HBV infection without liver injury favored by wild-type HBV
population. The 4 pictures on the right side represent, in sequence from top to bottom, the induction
of anti-HBV inflammatory response that leads to the selection of HBeAg-negative variants behaving
as immune escape mutants.

2. Pathogenesis

HBV is not directly cytopathic, and chronic infection results from virus persistence
because of a defective host’s immune response and inability to clear viral infection. A
concerted innate and adaptive immune response is thought to be responsible for the con-
trol of viral infection and the clearance of intrahepatic necro-inflammation in primary
HBV infection [22–24]. Humoral antibody response contributes to clearance of circulat-
ing virus particles, preventing viral spread, while cellular immune response silences the
transcriptional activity of cccDNA by both non-cytolytic pathways and direct infected cell
elimination. Anti-HBV T-cell response is vigorous, polyclonal, and multi-specific in acutely
infected patients who successfully clear the infection, whereas a weak immune response
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leads to chronic infection and persistent liver cell injury, eventually leading to cirrhosis and
hepatocellular carcinoma [22–24]. The stealth virus behavior that favors chronic infection
as well as inflammation that causes acute and chronic hepatitis B are both influenced by
the expression of proteins encoded by the precore/core region of the HBV genome [25].

The HBV nucleocapsid protein, core antigen (HBcAg), is a multifunctional protein
that plays key roles in both viral lifecycle and the relationship between the virus and
host’s immune system [26,27]. Within the nucleus of infected cells, HBcAg participates
in the epigenetic regulation of the viral genome, interacting with supercoiled HBV-DNA,
cccDNA, and host proteins and regulating the transcription of viral genes. Within the
cytoplasm, HBcAg self-assembles into icosahedral viral nucleocapsids containing the HBV
genome. HBcAg is strongly immunogenic, inducing antigen-specific T-cell responses
which are critical for the immune control of HBV infection; however the role played by
HBV nucleocapsid protein, particularly the secretory form, HBeAg, can change over time,
favoring either the HBV immune evasion or eventually leading to the immune control of
HBV infection.

HBeAg is a non-structural protein translated from precore mRNA that is processed
in the ER, secreted in the extracellular space, and circulated in the blood. HBeAg is not
required for viral replication or infection; nevertheless, it plays a key role in the viral–
host interplay and the establishment of chronic HBV infection [28,29]. The importance
of this non-structural protein is demonstrated by the fact that it is conserved in all ortho-
hepadnaviruses [30]. Since its discovery, HBeAg has been regarded primarily as an HBV
accessory protein and used in clinical practice as ancillary marker of active viral repli-
cation [31]. Subsequent studies in both animal models and humans provided consistent
evidence that HBeAg contributes to the establishment of viral persistence in the absence of
inflammatory liver disease in vertical, mother-to-child transmission because of the pivotal
role played by serum HBeAg, which crosses the human placenta [28,32,33]. The multi-
faceted immunomodulatory functions of HBeAg include the downregulation of TLR2,
NF-κB activation, and IL-18-mediated signal of IFNγ expression, promoting viral replica-
tion. The analysis of T-cell responses to HBe/HBcAg in cord blood of HBeAg-positive and
HBeAg-negative newborns reported no HBe/HBcAg-specific responses in T-cells derived
from HBeAg-positive cord blood [34,35]. Accordingly, HBeAg expressed as a transgene in
utero or 3 days after birth was shown to elicit T-cell tolerance to HBeAg and HBcAg [35,36].
Furthermore, maternal-derived HBeAg was shown to alter macrophage function in non-
transgenic offspring, where viral persistence requires both maternal-derived HBeAg and
the presence of HBeAg in the periphery [36].

Epidemiologic evidence pointed out that in the absence of prophylaxis, perinatal
transmission of HBV is frequent when the mothers are HBeAg-positive (70–90% within
3 months), but significantly less frequent in HBeAg-negative mothers with lower viral loads
(<10%) [37]. These evidence agree with previous clinical observations that acute fulminant
hepatitis B occurs in newborns to HBeAg-negative, but not in those born to HBeAg-positive,
mothers. Furthermore, HBV viral strains with consistent prevalence of mutations in precore
and core promoter regions of the viral genome (HBeAg defective variants) were isolated
from fulminant hepatitis B cases at any age [38–41]. Accordingly, primary infections with
HBeAg-defective variants in both adults and neonates rarely become chronic, and their
presence is associated with an increased risk of severe acute hepatitis [42–44]. The evidence
that acute and even fulminant hepatitis B and viral clearance can occur in neonates infected
with HBeAg-defective variants argues against the hypothesis that an immature immune
system and liver microenvironment of newborns are responsible for chronic HBV infection
without liver inflammation in children born from HBeAg-positive mothers. In actuality,
HBV exposure in utero was demonstrated to induce complex changes in the newborn’s
immune system, including an advanced immune maturation state or “trained immunity”
with pronounced Th1 profile, but associated with the absence of HBV-specific T-cell re-
sponses [45]. By contrast, in young patients, it was shown that the immune profile of T-cell
was not of tolerance, but characterized by an HBV-specific immune profile less compro-
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mised than that observed in older patients [46]. Thus, the old concept of immune tolerance
versus immune activation/elimination HBV infection phases was more properly changed
in that of not-inflammatory vs. inflammatory chronic HBV infection [47]. Nevertheless, age
can only partially explain some of the epidemiologic and clinic–pathological reports [48],
and there is compelling evidence in vitro and in vivo in both animal models and humans
that the inflammatory switch of HBV infection parallels the dynamics of HBeAg expres-
sion prompted by significant variations of the wild-type/HBV-defective HBV ratio within
the infecting viral quasispecies. The impact of HBeAg expression on virus persistence
was confirmed in the animal model where the infection of neonatal woodchucks with
wild-type woodchuck hepatitis virus (WHV) expressing WHeAg elicited chronic infection,
whereas infection with a WHeAg-negative virus caused acute self-limited hepatitis in the
newborns [49].

The relevance of HBeAg secretion in the natural history of HBV infection is also
supported by the evidence that its production is modulated at both transcriptional and
translational levels. Interestingly, all HBV genotypes that may differentially support the
G1896A switch, creating a translational stop codon on the leader protein of HBeAg, may
produce variants able to modulate HBeAg production, such as basic core promoter mutants
or other mutants in the ATG of precore sequence, which are more frequently observed in
genotype A, B, and C [50,51]. The G1896A mutation prevails in HBV genotype D because
it confers a higher base-pairing stability of the stem loop of the encapsidation signal of
the pregenomic RNA of this genotype. Such an advantage does not occur in genotypes A
and H and to a lesser extent in genotypes B, C, and E [52–54], that, however, carry other
mutations responsible for the lack of HBeAg production.

In spite of a higher replicative fitness shown in vitro by HBeAg-defective HBV variants,
serum HBV-DNA levels are lower in HBeAg-negative than HBeAg-positive CHB [55]. This
impairment in virion productivity is not thought to be related to precore and basic core pro-
moter (BCP) mutants, but to result from the virus/host’s immune system interplay [56–60].
The different replication fitness conferred by the different BCP/precore mutations accord-
ing to infecting viral genotypes may explain the different natural history and epidemiology
of HBV infection in geographical areas with different HBV genotype prevalence [61,62].
Accordingly, the longer-lasting HBeAg-positive infection in young females, before HBV
vaccine implementation, was more frequent in areas with non-D HBV genotype endemicity,
causing higher mother-to-child HBV transmission rate, persistent HBeAg-positive infection
in newborns, and higher HBV endemicity in the same geographical areas.

During chronic HBV infection, the reduced production of HBeAg is associated with
major changes of intrahepatic HBcAg expression from only nuclear to both nuclear and
cytoplasmatic that parallel the activation of anti-HBV immune response [14,19]. Acute
fulminant HBeAg-negative hepatitis B was associated with an overwhelming B cell re-
sponse, specific for HBcAg [63,64], and in HBeAg-positive immune activation or HBV
clearance phases, HBe/HBcAgs were primary targets of the T-cell response [65–67]. Plas-
macytoid dendritic cells pulsed with HBe/HBcAg-peptides stimulate T-cells derived from
HBeAg-negative, but not HBeAg-positive, chronic patients [68]. Accordingly, in about one
third of cases, the disease pattern of HBeAg-negative CHB is characterized by hepatitis
exacerbations intervened by phases of complete normalization of serum transaminases
which witness repeated, but ineffective, attempts at immune control of HBV replication [21].
The long-lasting ineffective immune elimination pattern induces the selection of HBeAg
defective strains that become prevalent in the later phase of CHB natural history [69].
Thus, secretory HBeAg is tolerogenic, and cytosolic HBcAg is immunogenic and targets for
HBe/HBcAg-specific CTLs once HBeAg-specific tolerance subsides (Figure 2).
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Figure 2. The dynamic change of the protein expression coded by the precore/core HBV-DNA region
from the secretory HBeAg to the cytosolic HBcAg pattern conditions the interplay between HBV
replication and the host’s immune response. The G1896A mutation inducing a stop codon that
blocks the production of the precore leader sequence necessary for HBeAg secretion provides a major
functional switch modulating the dynamics of HBeAg expression associated with HBV-induced liver
inflammation during chronic HBV infection.

3. Natural Course and Antiviral Therapy

Chronic HBV infection can be classified into five phases: (I) HBeAg-positive chronic
infection, (II) HBeAg-positive chronic hepatitis B, (III) HBeAg-negative chronic infection,
(IV) HBeAg-negative chronic hepatitis B, and (V) HBsAg-negative phase or occult HBV
infection [70]. The natural history of chronic HBV infection is characterized by the sequen-
tial succession of these phases, and both their duration and phase to phase transition are
modulated by the interplay between the virus and the antiviral host’s immune response.
HBeAg-positive infection without virus-induced liver injury follows the induction of virus
persistence and lasts till antiviral immune activation is triggered and the virus antiviral
immune activation starts, leading to HBeAg-positive hepatitis B that can be short-lived with
HBeAg to anti-HBe seroconversion and clearance of HBV replication, or last as HBeAg-
positive CHB. The outcome of HBeAg to anti-HBe seroconversion is dual, depending
upon the ability of the immune system to control HBV replication, and it can exit into
HBeAg-negative infection without HBV-related liver disease or in HBeAg-negative CHB.
The association of HBeAg-negative mutants with acute and mostly severe hepatitis B cases
or hepatitis exacerbations in chronic HBsAg carriers and during HBeAg/anti-HBe sero-
conversion phases indicated a selective advantage for HBeAg-negative variants in such
conditions. The introduction of precise and reproducible quantitative assays for the analysis
of wild-type and HBeAg-minus HBV ratios in clinical specimens allowed study of the
relations between the dynamics of HBV precore heterogeneity and the course of hepatitis
B infection [69]. Accordingly, the relative dynamics of wild-type and HBeAg-defective
HBV populations in children before and after HBeAg to anti-HBe seroconversion favor the
hypothesis that the latter are selected after triggering of inflammatory liver disease [71,72],
possibly because of their ability to escape the immune response once its activation has
occurred and HBeAg immune tolerance is lost [73–75].

The selection of HBeAg-negative HBV during childhood is associated with the out-
come of HBV infection in adults (Figure 3).
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Figure 3. The HBeAg defective precore HBV variants are selected during HBeAg/anti-HBe serocon-
version phase in children with poor immune control of HBV replication, leading to HBeAg-negative
chronic hepatitis B (CHB) during adulthood in the case of defective immune control, while in the case
of an effective HBV immune control, the outcome is HBeAg-negative infection without HBV-related
liver disease (inactive carriers: IC).

A prospective study of precore HBV mutant dynamics and virological/clinical out-
comes in 80 consecutive children (70 HBeAg-positive (87.5%), and 10 (12.5%) HBeAg-
negative/anti-HBe-positive), mostly genotype-D-infected (91.2%), showed that the G1896A
mutation appeared earlier and was selected during the HBeAg/anti-HBe seroconversion
phase [72]. After HBeAg to anti-HBe seroconversion, eight children (14.6%) developed
HBeAg-negative CHB, whereas 41 (74.5%) acquired an HBeAg-negative chronic infection
and 6 (10.9%) lost serum HBsAg. In all children who were unable to clear HBV replica-
tion, HBeAg-minus HBV becomes prevalent in the circulating quasispecies, leading to
HBeAg-negative CHB [72,73]. About 40% of them had additional mutations in the BCP
region (G1764A), affecting HBeAg production at the transcriptional level [72]. On the
contrary, the G1896A and BCP mutations were detectable only in 33 and 15% of carriers
with HBeAg-negative infection, and 16% and none of those who cleared HBsAg during the
follow-up, respectively. These findings, and the evidence in the adults that after HBeAg
to anti-HBe seroconversion, a dominant G1896A precore mutant population was more
frequent in patients with CHB (44.4%) than in HBeAg-negative infection carriers (19.6%),
suggest that the faster and stronger the immune control of HBV replication is, the lower the
selection of HBeAg defective variants [72–75]. Furthermore, the evidence that in HBeAg-
negative infection carriers with dominant precore mutant population serum HBV-DNA
levels were significantly higher than in those with dominant wild-type virus both in Cau-
casian and Asian patients [74,75] supports the hypothesis that the G1896A precore HBV
variant behaves as a CTL escape mutant (Figure 1).

HBeAg-negative CHB is a progressive liver disease that evolves into cirrhosis with
3–10% yearly rates, and spontaneous remissions are infrequent (<2%) [21]. The outcome is
worsened by persistent viral replication, higher serum HBV-DNA levels, and the unremit-
ting inflammatory disease profile (Figure 4) and once cirrhosis has developed by hepatitis
exacerbations [21]. Standard interferon-alfa (IFN-α) was the first treatment option, and
the same treatment schedules used for HBeAg-positive CHB (5–10 MU every other day
for 16–24 weeks) were associated with high relapse rates (70–90%) in spite of about 70%
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treatment response [21,76]. Nevertheless, IFN-α reduced, by 2.5-folds, disease progression,
and disease remission was more frequently observed in treated patients (14.6%) as com-
pared to untreated (1.6%) [21]. Longer treatment courses (12–24 months) showed higher
sustained response rate (22–30%) and 32–67% HBsAg loss in responders within 4–7 years
post-treatment [76]. Serum HBsAg kinetics represents a useful guide for pegylated-IFN-α
(peg-IFN-α) therapy, predicting the on-treatment response, as HBsAg decline from baseline
correlates with 3 years post-treatment HBsAg loss and 10 IU/mL HBsAg levels at the
end of treatment. This is associated with 52% HBsAg clearance probability at 3 years
post-treatment follow-up, compared to only 2% in patients with higher levels [77]. HBV
genotypes significantly influenced both baseline HBsAg levels and during-treatment HB-
sAg kinetics: the greatest differences between responders and non-responders were seen
between weeks 12 and 24 in genotype A and baseline and week 12 in genotypes B and
D infected patients, respectively [78]. During treatment, HBsAg and HBV-DNA declines
proved useful to guide therapy at the single patient level with an early identification of non-
responders [77–79]. Accordingly, the lack of any serum HBsAg decline combined with less
than 2 log IU/mL serum HBV-DNA reduction after 12 weeks of peg-IFN-α identifies HBV
genotype D non-responders with high accuracy and 100% negative predictive value [79].

Most of the HBeAg-negative CHB patients are currently treated with nucleos(t)ide
analogs (NAs) that effectively inhibit HBV replication in most of the patients, who achieved
undetectable serum HBV-DNA in >90% after 3 years of treatment, but serum HBsAg was
cleared only in a minority of them (1%/year) [76]. Given the current lack of strong pre-
dictors of sustained virological response and the possibility of severe and life-threatening
hepatitis B reactivations after NAs discontinuation, current EASL Clinical Practice Guide-
lines suggest stopping NAs treatment only in patients without cirrhosis, with at least
3 years of sustained virological suppression who can be followed with frequent and timely
ALT and serum HBV-DNA testing for at least the first year after NAs withdrawal [70].

Thus, a functional cure of HBV infection (the clearance of both serum HBsAg and
HDV-DNA) is achieved with the currently available antiviral treatments (peg-interferon-α
and NA) in a limited number of patients with HBeAg-negative CHB, even if the continuous
suppression of viral replication by NA halts liver disease progression, lowering the HCC
risk and improving survival. A series of new antiviral drugs are currently under investi-
gation in CHB patients, and in the near future, a personalized approach will exploit the
potential of different drug combinations.

4. Diagnosis

In clinical practice, it is mandatory to distinguish HBeAg-negative infection from
HBeAg-negative CHB, because the former is characterized by persistently low replicative
levels of HBV in the absence of HBV-induced liver disease and shows an overall survival
comparable to HBV non-infected individuals [70]. HBeAg-negative CHB is associated
with median serum HBV-DNA levels above 20,000 IU/mL, but the fluctuating pattern
of viremia makes the diagnostic HBV-DNA testing at a single time point inadequate for
a stringent early differential diagnosis of HBeAg-negative CHB from HBeAg-negative
infection, particularly because at least one third of patients with HBeAg-negative CHB
show, as previously discussed, a viraemia pattern characterized by major fluctuations, with
temporary declines of HBV-DNA below the threshold of 2000–20,000 IU/mL. During such
phases of low replication, transaminases also normalize, leading to a profile similar to that
of HBeAg-negative infection (Figure 4) [21]. Therefore, a prolonged period (at least 1 year)
of every 3 months of testing of HBV-DNA is required and recommended by International
Guidelines for an accurate differential diagnosis between the two conditions [70].
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Figure 4. The natural course of HBeAg-negative CHB is characterized by different ALT patterns: hep-
atitis reactivations (mostly asymptomatic) intervened by long-lasting periods where the transaminase
levels are normal, persistent mild to moderate ALT elevation, or persistent mild ALT elevation with
superimposed occasional hepatitis exacerbation with highly elevated ALT (>500 IU/dL) [56].

Alternatively, the single point combined testing of both quantitative HBV-DNA and HB-
sAg consistently improves the diagnostic performance in the identification of HBeAg-negative
infection carrier in the case of HBsAg ≤ 1000 IU/mL and HBV-DNA ≤ 2000 IU/mL [80].
However, this holds true mainly for genotype-D-infected individuals, because of the major
influence of HBV genotypes on HBsAg serum levels [78]. Recently it was shown that hep-
atitis B core-related antigen (HBcrAg) levels may accurately differentiate HBeAg-negative
infection from CHB: in a cohort of 1582 European HBeAg-negative carriers, the threshold
of 3.14 log U/ml showed an AUROC of 0.968 (% CI 0.958–0.977) with 91 sensitivity, 93%
specificity, and 92.4% diagnostic accuracy in the identification of HBeAg-negative CHB,
independently of HBV genotype [81]. The question remains about the long-term outcome
of HBeAg-negative carriers with viremia > 2000 IU/mL, but persistently ≤ 20,000 IU/mL
with normal serum transaminases. An accurate prospective study of 153 HBeAg-negative
HBsAg-carriers with HBV-DNA ≤ 20,000 IU/mL with an overall follow-up of 5 years
showed that viraemia persistently ≤ 20,000 IU/mL predicts a benign clinical outcome:
associated with transition to HBeAg-negative infection in 43% of cases, whereas only 13.1%
of them showed progression to HBeAg-negative CHB, usually during the first year of
follow-up [82]. Thus, highly stringent criteria, including the combined quantification of
serum HBV-DNA, HBsAg, and possibly HBcrAg, should be used to screen HBV carriers
with HBeAg-negative infection to diagnose CHB at its early stages when current antiviral
therapy can provide a complete cure halting disease progression before advanced liver
fibrosis develops [76].

5. Conclusions

HBeAg-negative CHB emergence, persistence, and outcome stem from the dynam-
ics of HBeAg production and expression, which are modulated by naturally occurring
precore/BCP mutants whose replicative fitness vary between HBV genotypes. HBeAg-
negative variants provide selective advantages over wild-type HBeAg-positive HBV be-
having as escape mutants during the spontaneous attempts of antiviral immune clearance.
Upon antiviral immune activation, the majority (about 60%) of HBsAg-positive individ-
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uals with HBV-induced inflammatory liver disease spontaneously achieve an effective
control of viral replication with clearance of intrahepatic inflammation and transition to
an indolent HBeAg-negative infection phase; some of them eventually clear circulating
HBsAg. Nevertheless, even after HBsAg loss, HBV persists within some hepatocytes in
the form of viral mini-chromosome, supercoiled covalently closed HBV-DNA (cccDNA),
which eventually triggers the reactivation of viral replication in case of impaired immune
competence. The more rapid and effective the immune control of HBV replication after the
triggering of immune activation phase, the lower the chance for selection of precore HBV
mutants which are associated with both origin and persistence of HBeAg-negative CHB in
patients with inadequate immune control of HBV infection. Further studies are needed to
understand the fine mechanisms of anti-HBV immune activation that triggers HBV-specific
liver inflammation that leads to the selection of HBeAg defective mutants during chronic
HBV-induced inflammatory liver disease.
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