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Abstract: Protein kinases are important enzymes involved in the regulation of various cellular
processes. To function properly, each protein kinase phosphorylates only a limited number of proteins
among the thousands present in the cell. This provides a rapid and dynamic regulatory mechanism
that controls biological functions of the proteins. Despite the importance of protein kinases, most of
their substrates remain unknown. Recently, the advances in the fields of protein engineering, chemical
genetics, and mass spectrometry have boosted studies on identification of bona fide substrates of
protein kinases. Among the various methods in protein kinase specific substrate identification,
genetically engineered protein kinases and quantitative phosphoproteomics have become promising
tools. Herein, we review the current advances in the field of chemical genetics in analog-sensitive
protein kinase mutants and highlight selected strategies for identifying protein kinase substrates and
studying the dynamic nature of protein phosphorylation.

Keywords: protein kinase; phosphorylation; chemical genetics; conditional ATP analog-sensitive
mutants; mass spectrometry; phosphoproteomics

1. Introduction

Protein phosphorylation represents the most abundant type of posttranslational modification
that acts as a molecular switch or rheostat for protein functions [1–5]. It has become widely accepted
that a balance between phosphorylation and dephosphorylation, sustained by protein kinases and
phosphatases, provides a dynamic regulatory mechanism to modulate protein behaviors and activities
across signaling pathways [6,7]. The importance of the tight regulation of protein phosphorylation
is supported by the studies showing that up to 23% of intracellular adenosine-triphosphate (ATP)
may be utilized by protein kinases for phosphorylating their targets [4,8]. Interestingly, recent studies
have revealed that the function of protein kinases is not limited only to phosphorylation, but that
they also have roles independent of their enzymatic activities. Protein kinases might participate in
the regulation of the activity of other enzymes [9–12], in the modulation of transcription processes
through interactions with transcription factors [13–15], or function as molecular scaffolds that harmonize
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interactions between various components of signaling pathways [16–18]. Similarly, pseudokinases,
which are members of the protein kinase superfamily but are their catalytically defective counterparts,
function primarily through noncatalytic mechanisms. They have been shown to act as allosteric
modulators of conventional protein kinases or other enzymes and proteins, thus regulating various
biological processes [19–21]. Therefore, it is not surprising that a loss of control over protein kinases or
pseudokinases has severe pathological consequences and leads to the development of various diseases,
including cancers and some metabolic disorders [22–29]. Despite the central role of protein kinases in
the regulation of cellular processes and their potential as therapeutic targets, only a limited fraction of
protein kinases have been functionally annotated. Thus, studies on kinase–substrate relationships and
the identification of protein kinase targets have become critically important for the better understanding
of the regulatory functions of protein kinases.

2. Protein Kinases

Protein kinases belong to the great family of kinases and are responsible for the mechanism of
phosphorylation. They post-translationally modify proteins by catalyzing the transfer of phosphate
from ATP preferentially to the hydroxyl group of serine (Ser), threonine (Thr), or tyrosine (Tyr)
residues [30]. Despite the fact that most of the effort in studying protein phosphorylation has
been focused on Ser, Thr, and Tyr phosphorylation, the biological importance of other amino acids’
phosphorylation, termed as “non-canonical” phosphorylation, including histidine (His), aspartic acid
(Asp), glutamic acid (Glu), arginine (Arg), cysteine (Cys), and lysine (Lys), has become evident [31–33].
The importance of protein phosphorylation for the regulation of biological processes is further
supported by the study showing that more than two thirds of the proteome is phosphorylated. This
stresses the important role of protein kinases in the regulation of cellular processes [34].

The enzymatic function of protein kinases is mediated by highly conserved protein kinase
domains. In spite of the given structural conservation of these domains, protein kinases exhibit
wide diversity in their ability to recognize their substrates. In general, protein kinase substrate
recognition depends on the interplay between protein kinases and their regulatory proteins. Such
collaboration leads to the activation or deactivation of protein kinases, to changes in their localization,
or to the phosphorylation or autophosphorylation of protein kinase activation loop residues [35–37].
In addition, the ability of protein kinases to target their unique substrates relies on differences in their
catalytic clefts that mediate the recognition of distinct phosphorylation site consensus sequences [38].
Furthermore, the non-catalytic proteins and adaptor or scaffold proteins were shown to play important
roles in protein kinase substrate recognition and, in some cases, might even override the catalytic site
specificity [39,40]. Recently, several excellent reviews have discussed in detail the mechanisms that
cells employ to control protein kinase activities, including the substrate specificities, and recounted
how protein kinases function to shape various cellular signaling networks [40–42]. Importantly,
the phosphorylation of proteins by protein kinases also regulates protein functions by controlling their
conformations. Phosphorylation can be used to balance protein–protein interactions, thus regulating
protein binding and coordinating different signaling pathways. If phosphorylation occurs at or near
a protein binding interface, it may directly affect the stability of the protein complex. At the same time,
the phosphorylation of a site outside a protein binding interface may cause long-range conformational
changes through allosteric mechanisms and alter the binding of the protein partners [43]. Similarly,
the recognition of phosphorylated amino acid residues by special phospho-Ser/Thr or Tyr binding
domains may release the proteins from autoinhibition and result in their activation [44].

While the function of protein kinase non-catalytic domains and the binding partners of protein
kinases are well characterized, the importance of the catalytic site interactions of protein kinases still
stays indistinct. This might be attributed to the unique architecture of protein kinase catalytic domains.
It has been shown that protein kinase catalytic domains consist of two subdomains, mostly β-stranded
N-lobe and a larger α-helical C-lobe, which are joined by a peptide strand with the cleft [45]. This
peptide strand has an indispensable role for protein kinases. It has been shown that ATP binds in
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the cleft between the N- and C-terminal lobes of the protein kinase catalytic domain, where the adenine
group of ATP is sandwiched between hydrophobic residues, and makes contact via hydrogen bonds to
the hinge region [46].

While the function of the ATP-binding front pocket has been clearly defined in both catalysis and
ATP binding [47,48], the role of hydrophobic back pockets remained a mystery until finding that it
might directly participate in the regulation of the protein kinase catalytic function through controlling
the access of ATP. Furthermore, it has been shown that the access of ATP to the protein kinase catalytic
site is tightly controlled by two specific residues: a conserved lysine residue and a specific amino acid
residue, named a “gatekeeper” residue. The “gatekeeper” residue has been shown to contribute to the
hydrophobic spine of the kinase domain and to play an important role in promoting the protein kinase
enzymatic activity [49–51].

Following studies utilizing the conserved lysine residue of protein kinases to modify the catalytic
activity of protein kinases revealed that the replacement of the conserved lysine residue by other
amino acids leads to catalytically inactive protein kinase-dead mutants [20,52–55]. This approach has
been successfully employed to generate several non-essential protein kinase mutants. These mutants
together with their deletion mutants helped to reveal the biological functions of some non-essential
protein kinases [56,57]. The protein kinases whose activities are indispensable for cell division, and
as such are considered as essential, resisted such substitutions. Therefore, analysis of biological
functions of essential protein kinases stayed fully dependent on synthesis of specific protein kinase
inhibitors or on isolation of their viable conditional mutants. Regardless of the power of chemical
synthesis, most of the synthesized protein kinase inhibitors lack sufficient specificities. Additionally,
conditions which are used to inhibit the activity of isolated protein kinase mutants (e.g., higher
temperature for the inactivation of temperature-sensitive protein kinase mutants), usually lead to
deviated changes in the phosphoproteome. This masks the exact functions of the analyzed protein
kinases. Furthermore, continuous perturbation in protein kinase activity makes bona fide substrate
identification highly unreliable. Unarguably, the permanent loss of particular protein kinase activity
forces cells to substitute the limited phosphorylation of affected proteins by other protein kinases, thus
hampering the identification of protein kinase substrates.

3. Analog-Sensitive Kinase Technology

To overcome the above-mentioned limitations, Shokat and colleagues have developed a sophisticated
chemical genetics approach known as a “bump-and-hole” or “analog-sensitive” strategy that allows
for the rapid, reversible, and highly specific inhibition of catalytic activity of the engineered protein
kinases. Generally, in this bump-and-hole approach, a protein–protein or protein–ligand interface is
altered in a way such that the engineered interface remains biochemically competent but orthogonal
to the wild type. Altering either a steric or electrostatic component of non-covalent interactions at
the protein–ligand interface allows the designed cofactor or inhibitor to bind only with the engineered
protein through paired interactions but not with the native counterpart. Achieving orthogonality
through steric or shape complementarity makes the bump-and-hole strategy one of the most powerful
allele-specific chemical genetics strategies [58,59].

The analog-sensitive kinase strategy (Figure 1) is based on the finding that protein kinases with
small “gatekeeper” residues, such as Src-family kinases, allow the binding of molecules with large bulky
groups, such as the C3-tolyl ring of PP1 (1-(Tert-Butyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine).
This means that any protein kinase might become sensitive to this type of inhibitor, if the native
large “gatekeeper” residue is substituted with smaller amino acids [49,60–64]. Combining the specific
space-creating mutations in the ATP-binding pocket (hole) designed by amino acid substitutions of
the conserved large hydrophobic “gatekeeper” residues of protein kinase (e.g., methionine (Met),
leucine (Leu), phenylalanine (Phe), or Thr) with amino acid residues bearing smaller side chains
(e.g., glycine (Gly) or alanine (Ala)) and the specificity of the bulky orthogonal ATP-competitive
inhibitors to complement the shape of the designed mutant ATP pockets (bearing complementary
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bump), they established the approach referred to as analog-sensitive kinase technology or a strategy
for the generation of the analog-sensitive (as) protein kinase mutants [65].
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Figure 1. Analog-sensitive kinase technology. (A) Structures of orthogonal inhibitors or orthogonal
ATP analogs designed to inhibit analog-sensitive (as) protein kinase mutants. (B) A schematic diagram
of the analog-sensitive protein kinase technology illustrates the specific binding of bulky orthogonal
ATP analog or orthogonal inhibitor to mutant as protein kinases. 1-NM-PP1: 4-Amino-1-tert-butyl-3-(1′-
naphthylmethyl)pyrazolo[3,4-d]pyrimidine; 1-NA-PP1: 4-Amino-1-tert-butyl-3-(1′-naphthyl)pyrazolo
[3,4-d]pyrimidine.

Contrary to the conserved Lys residue (Lys72 equivalent), which is involved in the binding of ATP
through its α- and β-phosphates, whose substitution results in catalytically inactive protein kinase-dead
mutants [1,52,66], the “gatekeeper” residues have been shown to be easily interchangeable. It has been
demonstrated that potent and specific protein kinase inhibitors can be readily identified by testing
various as protein kinase mutants for a panel of PP1 derivatives with enlarged C3 substituents [67,68].
Importantly, the mutagenesis of “gatekeeper” residues only slightly modifies the ATP binding, with
indiscernible effects on protein kinase activities. Thus, analog-sensitive kinase technology might be
applicable for nearly all protein kinases for which “gatekeeper” residue is defined [69]. The biological
significance of “gatekeeper” residues for protein kinase activities is also supported by studies showing
that these residues are often mutated in protein kinases resistant to clinically relevant protein kinase
inhibitors [46,70–73]. In such protein kinases, the point mutations of the “gatekeeper” residues lead to
perturbations in the hydrophobic pocket located at the back of the ATP binding site. As an example,
the loss of affinity of BCR-ABL kinase to the inhibitor is a result of a steric clash between the inhibitor
and the mutated “gatekeeper” residue [74], while in the case of the EGFR the “gatekeeper” mutation
elicits a significant increase in the affinity of mutant protein kinases for ATP, thus reducing the affinity
for the kinase inhibitor [75]. The importance of “gatekeeper” residues is further supported by studies
showing that the identification of functional “gatekeeper” residues and the creation of conditional
as protein kinase mutants represent a powerful tool for unravelling the complexity of protein kinase
functions [49,76–81].
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Constructing Conditional Analog-Sensitive Protein Kinase Mutants

In general, the substitution of a gatekeeper residue in close proximity to the N-6-position of ATP, either
by Gly (further referred as as1 mutation) or Ala (further referred as as2 mutation), allows the orthogonal
ATP analogs or the orthogonal inhibitors with bulky substituents (Figure 1a) to be accommodated in an
enlarged space of the active site of engineered as protein kinases (Figure 1b) [49,69,82].

The as1 mutation provides the largest expansion of the ATP-binding pocket, thus maximizing
the difference in sensitivity between the as1 protein kinase mutant and wild-type protein kinases.
However, in cases when the as1 protein kinase mutant suffers compromised activity, the as2 mutation
can be employed to increase the activity of mutant protein kinase while maintaining its sensitivity to
the orthogonal ATP analogs or the orthogonal inhibitors. In most cases, the space-creating mutation
of the “gatekeeper” residue is functionally silent and does not interfere with the function of protein
kinase [68]. Sometimes the substitution of the “gatekeeper” residue might lead to a loss of protein
kinase activity, or the protein kinase mutant is not suited for sensing to the orthogonal ATP analogs or
the orthogonal inhibitors. Then, compensatory mutations which rescue the activity of hypomorphic
as1 or as2 protein kinases and further adapt the ATP binding pocket, making it more accessible to
orthogonal ATP analogs or orthogonal inhibitors, are necessary (Table 1) [82–94].

Table 1. Summary of each type of analog-sensitizing substitution identifiable in particular protein
kinase subdomains that can be employed to create analog-sensitive (as) protein kinase mutants. The
canonical sensitizing mutations convert a conserved bulky “gatekeeper” residue into either Gly (as1
protein kinase mutant) or Ala (as2 protein kinase mutant).

“Gatekeeper”
Mutation

Conserved Amino Acid/Motif Suited
for Analog-Sensitizing Substitution

Analog-Sensitizing
Substitution

Protein Kinase
Mutant

Gly - - as1
Ala as2

Gly
−1 of DFG (subdomain VII)

Ala as3
Ala Ala as4
Gly Gly as6

Gly Lys +1 (subdomain II) Val/Ile as5

Gly Leu (subdomain IV) Val as7

Gly HRDLKxxN +2 (subdomain VIb) Phe as8
Ala Phe as9

Generally, the restoration of the disordered catalytic activity of as protein kinase mutants is
realized by mutating the specific amino acid residue immediately adjacent to the catalytic Lys (K +1) in
subdomain II of protein kinase to the branched aliphatic amino acid, such as valine (Val) or isoleucine
(Ile). This approach was successfully applied to create the GRK2-as5 protein kinase mutant with a full
functionality and analog sensitivity, as compared with wild-type GRK2 protein kinase or catalytically
inactive GRK2-as1 protein kinase mutant [83]. A similar approach was applied to restore the protein
kinase activity of both Cdc5-as and MEKK1-as protein kinase mutants to near wild-type level [84].
Moreover, the mutation of amino acid residue at −1 of the DFG motif in subdomain VII of protein
kinase to Ala can further enhance the sensitivity conferred by the canonical as1 and as2 mutations
generating as3 and as4 protein kinase mutants. If, in the sequence of −1 of the DFG motif, the amino
acid is other than Gly or Ala, the introduction of Ala at this position may greatly enhance the sensitivity
of protein kinase mutant to the inhibitor. In relation to this, it was shown that amino acid at −1 position
of the DFG motif plays an important role in the PP1 binding to the Src family tyrosine kinase Hck [85].
Similarly, the substitution of Thr710 in the budding yeast PAK Cla4p-as2 protein kinase mutant to
Ala or the substitution of Cys175 in the budding yeast Prk1-as1 protein kinase mutant to Ala greatly
enhances the sensitivity of the Cla4-as4 or Prk1-as3 protein kinase mutants, respectively [86,87]. Similar
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substitutions were also used to create as mutants of Cdc7 and JNK protein kinases. While Cdc7-as
protein kinase mutant resembled Cdc7-ts protein kinase mutant at the restrictive temperature, the
JNK-as protein kinase mutant was able to accommodate [γ-32P]-N-6-phenethyl ATP without affecting
the protein kinase substrate recognition [88,89]. Additionally, the substitution of amino acid residue at
−1 position of the DFG motif (Thr244) in the as1 background to Gly increases the sensitivity of Ipl1-as6
protein kinase mutant to 1-NA-PP1 [84,90,91]. The analog-sensitizing amino acid residues are also
positioned in protein kinase subdomains IV and VIb. Recently, it was found that the substitution of
Leu to Val in the protein kinase subdomain IV of Aurora A, Aurora B, and Alk7 leads to the creation
of their as7 protein kinase mutants, which are sensitive to both orthogonal ATP analogues as well
as to orthogonal inhibitors [89,90,92]. Subsequently, it was shown that additional mutations at the
bottom of the ATP-binding pocket, represented by the substitution of Met to Phe residue at position +2
relative to the HRDLKxxN motif in the subdomain VIb of protein kinase, further sensitize the plo1-as8,
orb5-as8, orb6-as9, and wee1-as8 protein kinase mutants to orthogonal inhibitors [93,94]. Importantly,
protein kinases which are intolerant to analog-sensitive kinase technology might be subjected to a
chemical-genetic approach based on a Cys-gatekeeper mutation and non-covalent, type II mode of
kinase inhibition that targets the inactive “DFG-out” kinase conformation [95]. Recently, several elegant
studies employed analog-sensitive mutants of CDKL5 and some other CDKs to better characterize the
function of these protein kinases. The studies suggested that the identified substrates of CDKL5 kinase
might be important biomarkers in the diagnosis and treatment of CDKL5 disorders. Additionally, the
CDK12 and CDK13 have been identified as fundamental regulators of the global PolII processivity and
transcription elongation [96–100].

In the case that suggested amino acids substitutions do not lead to the restoration of the disordered
catalytic activity of mutant as protein kinases and difficulties persist, the functionality of the as protein
kinase mutants might be improved by performing error-prone PCR, which induces additional mutations
to the protein kinase subdomains, potentially suppressing problematic hypomorphic phenotypes. This
strategy was successfully used to eliminate the undesirable hypomorphic phenotype of the cdc2-as1
protein kinase mutant. The suppressor Lys79Glu mutation in cdc2-asM17 rescued all the phenotypic
defects of cdc2-as1, but the in vitro kinase assay revealed that Cdc2-asM17 is in fact less active than
Cdc2-wt in the absence of an inhibitor. Although it had a lower activity, the cdc2-asM17 mutant helped
to reveal an important role of Cdc2/Cdk1 in SAC maintenance, and suggested the dispensability of
Cdc2/Cdk1 for the localization of shugoshin in meiosis [79].

Despite the fact that the chemical genetic strategy has become a powerful tool to probe protein
kinase targets and that more than 150 various conditional as protein kinase mutants have been created
so far, there are also some limitations of this approach. The most critical limitation is the genetic
manipulation of ATP binding pocket, which might lead to slightly attenuated catalytic activities of
the mutant protein kinases and potentially lower the affinity for ATP of the created as protein kinase
mutants. Additionally, some difficulties are also associated with the intracellular delivery of bulky
ATP analogues and the higher catalytic efficiency of as protein kinase mutants when the bulky ATP
analogue is used [101]. However, the possibility of the rapid and reversible inactivation of as protein
kinase mutants in a dose-dependent manner clearly surpasses these limits. The conserved nature of the
above-mentioned “critical” residues in the particular protein kinase subdomains renders the chemical
genetic strategy the most powerful tool in designing the protein kinase mutants. Most importantly,
conditional as protein kinase mutants might allow us to reveal mostly unexplored and hidden functions
of thus-far uncharacterized protein kinases.

4. Strategies for the Identification of the Protein Kinase Targets and Studying the Dynamics of
Protein Phosphorylation

In spite of the significance of protein kinases for the regulation of protein functions, still about
80% of protein kinases do not have annotated substrates. Evenly, more than 95% of identified
phosphorylation sites have no known protein kinase or biological function [102]. Therefore, it is
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plausible that the mass spectrometry-based identification of bona fide protein kinase substrates will
bring light to the mechanisms involved in the dynamic regulation of cellular processes.

In the past few decades, the advancement in mass spectrometry techniques has enabled us to
extend global proteomic studies into the identification and characterization of the biological role
of various posttranslational modifications, including protein phosphorylation [103–106]. Currently,
several thousand phosphosites might be routinely identified within a single sample. Despite the
great robustness, phosphoproteomics is significantly limited by the variability and substoichiometric
abundance of phosphoproteins. As such, the detection of phosphorylation by mass spectrometry must
include—except for the common steps of regular proteomics (such as protein extraction and enzymatic
digestion)—additional steps stabilizing the phosphosites and ensuring the enrichment of the sample
with phosphoproteins or phosphopeptides (Figure 2).
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Figure 2. The workflow of MS-based quantitative phosphoproteomics. Both label-free and labelled
samples might be subjected to protein extraction and enzymatic digestion by multiple proteases.
The peptides can either be subjected to fractionation prior to the enrichment of phosphopeptides or
directly subjected to phosphopeptide enrichment and fractionation applied after the phosphopeptide
enrichment. Phosphopeptides are analyzed by LC-MS/MS. Mass spectrometry datasets are processed
with software to generate the identification list and assign and quantitate the phosphorylation sites.

To stabilize and preserve the native level of phosphosites, strong denaturants, such as urea and
protease and phosphatase inhibitors, are commonly applied during protein extraction. Since the
abundance of phosphorylated proteins is estimated to be one to two orders of magnitude lower than
that of non-phosphorylated proteins, the enrichment step must be included. Currently, there are various
approaches for phosphopeptide enrichment, which include strategies such as immunoprecipitation with
highly selective antibodies; immobilized metal affinity chromatography (IMAC); metal oxide affinity
chromatography (MOAC) with enhancers—e.g., titanium oxide (TiO2) or zirconium oxide (ZrO2); and
more [107]. Despite the fact that these techniques are being extensively applied for phosphopeptide
enrichments, they have some caveats which must be considered before sample processing. For example,
IMAC, which favors multiply phosphorylated peptides, has a low tolerance towards buffers or salts in
biological samples, and its unspecific binding towards acidic peptides might compromise its specificity.
Similarly, the limits of MOAC, which, on the other hand, favors mono-phosphorylated peptides,
are also related to its lower specificity due to its potential binding to acidic peptides. To overcome
the limits, these approaches were integrated into a single workflow known as sequential elution
from IMAC (SIMAC). Recently, polymer-based metal-ion affinity capture (PolyMAC) has emerged
as a novel strategy for capturing phosphorylated peptides. It is based on water-soluble, globular
dendrimers multifunctionalized with metal ions (such as Ti4+ and Fe3+). PolyMAC displayed incredible
reproducibility and selectivity and high recovery rates of phosphopeptides even from complex protein
mixtures [108].

Given the high amount of nonphosphorylated peptides and the large dynamic range of the
phosphoproteome, separation procedures either prior to or after phosphopeptide enrichment must
be included to enhance the identification of phosphopeptides. These strategies are represented by
strong cation exchange (SCX) chromatography, hydrophilic interaction liquid chromatography (HILIC),
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and electrostatic repulsion hydrophilic interaction chromatography (ERLIC) [33,104,109,110]. As
massive amounts of data are produced during phosphoproteomics analysis, various computational
tools ranging from comparative statistics through to more sophisticated bioinformatics assessment
have been developed collaterally to identify and quantitate phosphopeptides [111–113]. The choice of
computational tools depends on whether the analyzed samples are labelled or label-free. Labelled
quantitative phosphoproteomics, which enables the multiplexing of labelled samples, requires
more experimental effort, but the data analysis is quite simple. On the other hand, label-free
phosphoproteomics, which allows an unlimited number of analyzed samples to be compared, suffers
from increased data variability and the overall instrument and computational time.

The pivotal study that deciphered the dynamic nature of the phosphoproteome coupled a labelling
technique known as stable isotope labelling by amino acids in cell culture (SILAC) with global
mass-spectrometry analysis (MS). This study showed that the phosphorylation status of the proteins
varies over time [30]. Following works in various biological contexts further expanded the view of the
dynamic nature of protein phosphorylation and disclosed that protein kinases actually form highly
interconnected networks [114–116]. This established the phosphoproteome as an intricately entangled
network with phenomenal complexity. The concept of the phosphoproteome being tightly controlled
by protein kinases and phosphatases has become fundamental for understanding the complexity of
protein phosphorylation [106,117].

In general, the approaches to identify protein kinase targets are divided into two categories: the
direct identification of protein kinase substrates and the indirect phosphoproteomics-based strategy.
Both approaches have their advantages and limitations. While the direct techniques for identifying the
protein kinase targets search for their interacting partners by employing in vitro peptide or protein
arrays on either cell lysates or permeabilized cells, the indirect techniques employ live cells.

4.1. Direct Strategies for Identification of the Protein Kinase Targets

The basic approach to screen protein kinase substrates is to directly characterize the protein
kinase interactomes. The strategy is based on the prediction that protein kinase–substrate pairs can be
co-purified when interacting. However, the interactions of protein kinases with their substrates are
transient and once the proteins are phosphorylated, the interactions are lost. Additionally, protein
kinase interactomes are distorted by high false positive identifications. Compared to real protein kinase
substrates, there are numerous proteins interacting with protein kinases physiologically, including the
components of protein complexes or the adaptor proteins. Thus, the identification of protein kinase
substrates through the isolation of protein kinase interactomes has its limits [118,119]. Despite this,
several studies demonstrated that bona fide protein kinase substrates might be successfully identified
through the affinity isolation of protein kinase interactomes [120–122].

Another direct method to determine protein kinase substrates is the in vitro kinase assay in which
the purified protein kinase is incubated with its predicted substrates in the presence of ATP [123]. The
approach is functional with almost all protein kinases regardless of the substrates, as long as the protein
kinases are in their active forms. However, the in vitro kinase assay has several limitations. First is
that phosphorylation in vitro may differ from what takes place in vivo, and there is necessity to use
higher concentration of purified protein kinase to overcome its usually decreased activity compared
to in vivo. Second, the use of protein kinases outside the cells often leads to a loss of specificity.
Third, the purification of an active protein kinase is sometimes challenging, as many protein kinases
require adaptors or scaffold proteins to regulate their activity and substrate specificity. Finally, the
in vitro kinase assay has a low throughput and is quite laborious, since each protein kinase is assayed
with one potential substrate at a time. Importantly, similar as for the above discussed direct protein
kinase-substrate identification, the identified phosphorylations found in vitro must be validated by
in vivo studies [124]. Thus, the identification of protein kinase substrates and characterization of protein
kinase functions require more robust strategies. Recently, several advanced high-throughput strategies
for the direct identification of protein kinase substrates have been developed. These approaches,
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represented by protein microarrays, kinase-interacting substrate screening (KISS), heavy ATP kinase
assay combined with quantitative mass spectrometry (HAKA-MS), or the analogue-sensitive kinase
approach (ASKA), allowed us, despite many false positive identifications, to screen and track down
some novel biologically relevant substrates of protein kinases [8,65,101,125–128].

4.2. Indirect Strategies for Identification of the Protein Kinase Targets

Contrary to the approaches for the direct identification of protein kinase substrates, indirect
phosphoproteomics-based techniques allow us to study protein kinases and their substrates in their
native in vivo environment. It should be noted that each of these methods identifies both direct and
indirect protein kinase targets. Most importantly, the indirect phosphoproteomics-based approaches
allow to explore the dynamic nature of protein phosphorylations (Table 2).

Table 2. Summary of the basic characteristics of selected indirect phosphoproteomics-based techniques
developed to identify protein kinase targets and characterize the dynamics of protein phosphorylation.

Technique Labelling Advantages Limitations

Phosphatase inhibitor
and kinase inhibitor
substrate screening

(PIKISS) n.a.
in vitro

Specific enrichment of relevant
phosphorylated proteins.

Inhibitor might elicit
off-target effects.

Up to 4 samples can be
compared.Kinase-oriented

substrate screening
(KIOSS)

Stable isotope labelling
with amino acids in cell

culture followed by
quantitative

phosphoproteomics
(SILAC-MS)

in vivo
ex vivo

High accuracy.
Allows us to study the dynamics of

phosphorylation.
Global-scale identification of protein

kinase targets.

Inhibitor might induce
off-target effects.

Up to 5 samples can be
compared.

Label-free quantitative
phosphoproteomics

(LFQ)
n.a.

Allows us to study the dynamics of
phosphorylation.

Global-scale identification of protein
kinase targets.

Unlimited number of samples can be
compared.

Inhibitor might elicit
off-target effects.

Increased data variability.
Increased instrument

and computational time.

Note: n.a.—not applicable.

The foundational indirect in vivo phosphoproteomics-based approach, known as phosphate
inhibitor and kinase inhibitor substrate screening (PIKISS), has been originally developed to
validate the candidate substrate groups identified by direct KISS approach [126]. The PIKISS
technique employs the treatment of cells with phosphatase inhibitors combined with kinase-specific
inhibitors [129]. While the phosphatase inhibitor treatment of cells enhances the phosphorylation
levels of proteins, including those phosphorylated under specific conditions, such as requisite priming
phosphorylation, the treatment of cells with specific protein kinase inhibitors allows the detection
of phosphorylation by inhibited protein kinase. Additionally, the sensitivity of PIKISS might
be further enhanced by the phosphopeptide enrichment step using proteins or domains with an
affinity to physiologically regulated phosphoproteins. For example, 14-3-3 proteins are well-known
for their ability to interact with a variety of cellular proteins containing phosphorylated Ser/Thr
residues [130,131]. Alternatively, more traditional biochemical methods involving immunoaffinity
purification are also in use for the enrichment of phosphoproteins or phosphopeptides. Additionally,
the antibody-based capture methods using highly selective antibodies might be adopted to investigate
diverse components of signaling cascades [132,133]. Proteins and domains with an affinity for
phosphoproteins might be also used to enrich the samples for components of signal transduction
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cascades [131,134,135]. Recently improved PIKISS, renamed kinase-oriented substrate screening
(KIOSS), utilized phosphoprotein-binding modules, such as 14-3-3 proteins, the pin1-WW domain
or the Chk2-FHA domain as biological filters to identify substrate candidates for PKA, PKC, MAPK,
and Rho-kinase. The KIOSS technique was successfully implemented to analyze the phosphorylation
downstream of D1R, NMDAR, adenosine A2a receptor, PKA, PKC, MAPK, and Rho-kinase [136].
As such, the principles of the KIOSS strategy might become applicable to any conditional as protein
kinase mutant for which specific protein kinase inhibitors are available.

Other tools to identify protein kinase substrates are based on the comparative quantitative
phosphoproteomics of intact cells treated with a specific protein kinase inhibitor. The principle of these
approaches resides in the accurate quantification of the identified phosphopeptides after the treatment
of cells with a specific protein kinase inhibitor. This can be done by the calculation of the ratios of
peptides and phosphopeptides between conditions, or by the absolute calculation of phosphopeptides
within conditions [137]. To get the most precise quantification of changes in phosphorylation, the cells
are allowed to metabolically incorporate isotope-labelled amino acids using stable isotope labelling
with amino acids in cell culture (SILAC). A mixture of “heavy” (heavy isotope amino acids labelled cells)
and “light” (regularly growing cells) cells, concomitantly treated with either vehicle or a protein kinase
inhibitor, might be directly lysed, trypsinized, enriched for phosphopeptides, and analyzed. Mixing
the SILAC samples diminishes the false positives arising due to experimental errors of individually
processed samples. As a result, in the MS spectra each peptide appears as a doublet with distinct
mass differences. The differential abundances between the analyzed samples are calculated directly by
comparing the intensity of differences for the pairs of isotope labelling peaks in MS. SILAC-combined
mass spectrometry analysis (SILAC-MS) has been successfully used to screen various drug targets [138],
analyze differences in post-translational modifications [139,140], follow dynamic changes in meiotic
proteomes [141,142], and search for key factors of the signal pathways [143], and has been also applied
to reveal the involvement of protein kinases in cell cycle regulation [81,144]. Despite the fact that
classical SILAC-MS is a highly reliable method and provides a very high accuracy, its main shortage
is a limited number of variations for analyzed cells, which makes this technique applicable mainly
for protein quantification. To enlarge the practicability of SILAC, several variations of SILAC were
developed—e.g., spike-in SILAC-MS, super-SILAC-MS, or triple-SILAC-MS [145–147]. For example,
the spike-in SILAC-MS was developed to label samples separately from the biological experiments.
The unlabeled samples are then combined with the SILAC standard, and each of the combined
samples is analyzed separately. The variability between the experimental samples is calculated as
the “ratio of ratios”, where the ratio of one sample relative to the SILAC standard is divided by
the ratio of the other samples relative to the SILAC standard. A similar strategy is used also in
triple-SILAC or super-SILAC, which are broadened to three or five SILAC-labelled samples, thus
allowing an even more precise quantification of the protein phosphorylation. Except for SILAC
labelling, which incorporates isotopically labelled amino acids in vivo, the samples might be subjected
to chemical labelling by employing labelling techniques, such as isobaric tag for relative and absolute
quantitation (iTRAQ) [148], isotope coded affinity tag (ICAT) [149], phosphoprotein isotope-coded
tags (PhIAT, PhIST) [150,151], or isobaric tandem mass tags (TMT) labelling [152,153]. The known
mass difference between labelled and unlabeled phosphopeptides allows us to distinguish between
various biological conditions. However, labelling approaches mostly suffer from the finite number of
labels/tags that can be used simultaneously. This limits total sum of conditions and samples that can
be successfully compared.

Regardless of the fact that labelling approaches represent powerful strategies for the profiling of
protein kinase targets and the unbiased analysis of the dynamics of protein phosphorylation, label-free
quantitative (LFQ) phosphoproteomics is currently becoming the golden platform. LFQ avoids
the limits of metabolic and chemical labelling and allows a theoretically unlimited number of samples
to be compared. The power of the LFQ approach was clearly demonstrated by the description of the
ultradeep human phosphoproteome, where more than 50,000 phosphopeptides and more than 38,000
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phosphosites were identified [34]. At the same time, this work demonstrated one of the drawbacks of
LFQ, as the overall instrument time of the analysis reached about 40 days.

One of the main objections to LFQ is that each sample has to be processed and measured
independently. This decreases its reproducibility. The variability of LFQ might be also worsened,
as various processing steps are required for sample preparation prior to MS analysis. As such,
appropriate caution must be taken during sample preparation to decrease the variability in the
detected phosphopeptides. Importantly, as the relative amounts of phosphopeptides may not be
representative of their in vivo level, it is also necessary to check if the signals of the detected
phosphopeptides are proportional to their concentration in the original sample. As a rule of thumb,
label-free quantification requires more measurements or repeats to achieve acceptable levels of
statistical significance. The workflow of LFQ phosphoproteomics consists of three distinct steps:
sample preparation, MS analysis, and computational data analysis. In general, the enzymatically
digested samples are individually desalted using reversed-phase solid phase extraction and enriched
for phosphopeptides using an appropriate phosphopeptide enrichment method. The enriched fractions
are then analyzed one by one using nLC-MS/MS, following reconstitution in buffer containing an
array of internal standard peptides. The obtained raw MS data are processed to generate peak lists
further analyzed by a search engine (e.g., Mascot™) to obtain the phosphopeptide identification data.
Following this, the acquired data are used to create a database of all the phosphopeptide identifications
from individually analyzed samples. From the retention time (tR), charge (z), and mass-to-charge ratio
(m/z) data for each phosphopeptide, and by predicting the tR values of each peptide in the particular
sample, the individual chromatograms are effectively aligned using the tR of spiked peptide standards
or common ions. This allows each phosphopeptide to be quantified from its MS1 precursor ion
signal. It should be noted that, although not every phosphopeptide may have been subjected to MS2
fragmentation in each sample, it still remains quantifiable [152,154–156].

Combining identification and quantitation gives the LFQ approach a great advantage over labelling
methodologies. The data obtained in label-free proteomic experiments that were designed solely for
protein and/or phosphopeptide identification can be further processed in the LFQ pipeline, providing
additional quantitative data. However, great precaution needs to be taken to ensure the reproducibility
of the sample preparation and data acquisition of the individual datasets. Label-free proteomic
strategies will therefore remain one of the main approaches to address quantitation challenges in
proteomics and phosphoproteomics.

5. Perspectives

Protein phosphorylation is a major and essential post-translational modification that plays an
important regulatory role in various cellular processes. Although several protein kinases have been well
characterized and demonstrated to be physiologically important for the regulation of various protein
functions, the vast majority of protein kinases remain uncharacterized. The recent advancement in the
chemical genetics strategy of conditional as protein kinase mutants and the rapid improvements in
mass-spectrometry-based phosphoproteomics offer a great opportunity to finally uncover the regulatory
functions of thus-far uncharacterized protein kinases and identify their hidden substrates. As the
chemical genetic strategy can be applied to almost any protein kinase, the phosphoproteomic analysis
of currently available or newly created conditional as protein kinase mutants would definitely unveil
biologically relevant protein kinase–substrate relationships. Additionally, the phosphoproteomic
analysis of as protein kinase mutants could reveal the fundamental principles implicated in the
regulation of phosphoproteome dynamics and might help us to understand the spatiotemporal
regulation of cellular processes.
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