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Atmospheric muography 
for imaging and monitoring tropic 
cyclones
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Pasi Kuusiniemi2,5,6, Giovanni Leone2,14, Domenico Lo Presti2,7,8, Jun Matsushima1, 
László Oláh1,2, Sara Steigerwald2, Lee F. Thompson2,9,10, Ilya Usoskin11,12, 
Stepan Poluianov11, Dezső Varga13 & Yusuke Yokota1

Large-scale solid bodies on Earth such as volcanoes and man-made pyramids have been visualized 
with solid earth muography, and the recently invented technique, acqueous muography, has 
already demonstrated its capability to visualize ocean tides and tsunami. In this work, atmospheric 
muography, a technique to visualize and monitor the vertical profile of tropic cyclones (TCs) is 
presented for the first time. The density distribution and time-dependent behavior of several TCs 
which had approached Kagoshima, Japan, has been investigated with muography. The resultant 
time-sequential images captured their warm cores, and their movements were consistent with the 
TC trails and barometric pressure variations observed at meteorological stations. By combining 
multidirectional muographic images with barometric data, we anticipate that muography will become 
a useful tool to monitor the three-dimensional density distribution of a targeted mesoscale convective 
system.

Mesoscale convective systems (MCSs) are organized groupings of meteorological systems that involve the most 
massive convective storm types1. These are storms defined as thunderstorms in the tropics1–3 and mid-latitudes4. 
They can span thousands of square kilometers. Storms qualifying as MCSs are major contributors to extreme 
precipitation1 and meteotsunamis4. There have been many previous papers that have discussed the relationship 
between MCS and precipitation, including those in the tropics5–7. However, even though researchers have identi-
fied the organized deep convection patterns in tropical MCS, characterization of each event is complex, being 
linked to the surrounding environment and/or to the MCS’s internal dynamics and microphysics8. These factors 
influence the development of these deep convective systems9 in somewhat mysterious ways.

Both tropical and warmer midlatitude MCSs are generated in response to atmospheric convective instabil-
ity coupled with widespread and heavy rainfall. Stable and slow-moving MCSs frequently cause flooding, hail, 
strong winds, and tornadoes. Although state-of-the-art models are not yet able to explicitly represent convective 
precipitation due to their coarse grid spacings (i.e. 12/100 km at regional scale, a new model based on a 4 km 
grid spacing cannot effectively represent MCSs1, there are two hypotheses for the creation of MCSs. The first 
hypothesis is that the MCS’s convective cloud is generated by the condensation that occurs in nonhydrostatic 
buoyant upward air currents, where parcels of warm and moist air are accelerated upward2. These air currents 
are thought to subsequently generate in-cloud turbulence as they rise, and after being decelerated, this motion 
will eventually stop and spread out laterally at a level of neutral buoyancy10. Another traditional hypothesis of 
MCS generation surmises that an upward air motion drives the layers of air to adapt a deep slanting, ascend-
ing motion11. According to this theory, the storm is characterized by a pressure reduction in the middle height 
of the MCS. Wind shear3–5 and density profile6 are the primary and essential parameters for buoyancy-driven 
convection of the atmosphere, and thus, understanding the pressure/density anomalies associated with MCSs 
can also be helpful in order to predict its mechanism. Regardless of which hypothesis about the formation of 
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MCSs is ultimately found to be correct, it is evident that monitoring MCS pressure/density anomalies would 
bring researchers closer to creating accurate early warnings of MCS-associated hazards such as meteotsunamis4. 
Muography has been successfully tested in monitoring rapid sea level changes produced by meteostunamis within 
Tokyo Bay12, which could be an early warning in case of tsunamis or meteotsunamis.

Quantifying the mesoscale, and in particular, meso-beta (2–200 km) and meso-gamma (< 2 km) scale time-
dependent pressure variations of the terrestrial atmosphere, would enable us to recognize the mechanisms of 
MCS, and muography has the capacity to be one of the solutions which could provide real-time mapping of the 
MCS associated pressure variations. Muography is similar to x-ray imagery, but instead of x-rays, it utilizes the 
strong penetration capability of high-energy muons (> a few tens of GeV) and their relativistic time-dilation 
effect. By detecting the number of muons that pass through gigantic bodies, like the mass of an entire or portion 
of an MCS, the internal spatial distribution of its density can be determined; this distribution can be mapped 
with muography by identifying where these muons passed through the object and subsequently creating a plot 
of the number of penetrating muons on a 2-dimensional plane. The origin of these high-energy muons is galactic 
cosmic rays (GCR) which are accelerated by supernovas and their remnants in our galaxy13. The GCRs mainly 
consist of nuclei of hydrogen and helium, though other are present in the composition. These charged particles 
are generally accelerated to almost the speed of light (10–1–1011 GeV), and spend millions of years in average in 
diffusive propagation in the interstellar magnetic field. This leads to the isotropic angular distribution of their 
momentum. In application to muography, it is reasonably safe to assume GCRs as isotropic at the entrance to 
the Earth’s atmosphere. Energetic GCRs are able to induce cascades of nuclear reactions in air, where multiple 
secondary particles are produced, generally classified as the hadronic, electromagnetic, muonic components 
and so-called atmospheric neutrinos. This work is focused at the muonic component (muons and antimuons) 
of cosmic-ray cascades in the atmosphere.

Muography takes advantage of the characteristics of the muon, particularly its penetrative nature and univer-
sality, for a wide variety of applications on Earth, including visualizing the internal structure of targeted gigantic 
solid earth and aqueous bodies14–43; its characteristics are also ideal for the application of visualizing the atmos-
phere. Solid muography (visualizing interiors of large-scale solid bodies on Earth) was invented by Luis Walter 
Alvarez and his group in 196814, aqueous muography (visualizing and monitoring large-scale liquid bodies on 
Earth such as seas and lakes) was invented by Hiroyuki K.M. Tanaka and his group in 202143. In this paper, the 
development of atmospheric muography (visualizing and monitoring large-scale gas bodies on Earth such as 
tropic cyclones) and its performance are presented. Ideas of this kind were proposed recently44 but not developed 
further. In their work, vertical muons were measured to trace temporal variations in the atomospheric pressure. 
As a result, vertically integrated profiles were generated as a function of latitude and altitude. In the current 
work, on the other hand, by utilyzing near-horizontal muons, imaging the vertical profile of the distant tropic 
cyclones was attempted. We report that a new muography imaging method could be used to two-dimensionally 
project density structures to render an image of TC (tropical cyclone) associated pressure anomaly variations.

Results
Vertical muon flux versus atmospheric pressure.  Cosmic-ray muons are produced in interactions of 
primary cosmic rays and ambient atoms in the Earth’s atmosphere, and most muons (both µ+ and µ−) are gener-
ated around the tropopause (an atmospheric depth of 100 g cm−2). Figure 1 shows the relationship between the 
vertical muon flux (N) at sea level and the sea-level atmospheric pressure (ρ) on Earth45. If the integral mass of 
matter (e.g., in g cm−2 or hPa) along the muon path increases, the muons lose more energy before reaching sea 
level and thus, the probability that either the muon stops or decays increases. This relationship can be approxi-
mated to be a linear relationship within the atmospheric pressure range between 990 and 1000 hPa. Generally, if 
the pressure drops by 1%, the muon flux increases by ~ 2%. For horizontally arriving muons, since they traversed 
the atmosphere with a thickness of 36,000 g cm−2, an increase in the average mass along the muon path by 1% 
increases the minimum muon energy required to arrive at the ground surface by 1 GeV (an increase from 106 to 
107 GeV)46. This reduces the horizontal muon flux from 4.5 to 4.3 m−2 s−1 sr−1 (~ 5%). Consequently, if the baro-
metric pressure drops uniformly by 10 hPa throughout the upper hemisphere, the muon flux increases 2–5% 
depending on the muon’s arrival angles.

Observations.  The observations were conducted in the city of Kagoshima, Japan. In Japan, Kagoshima is 
known to be a city prone to typhoons. A typhoon is defined as a TC when it develops in the Northwestern Pacific 
Basin, one of the most active TC areas in the world47. All types of typhoons are most common from July through 
to September in Kagoshima. During the current observations, muographic data were collected during the three 
previous typhoon seasons in 2016 (July 19-September 19, 2016), 2019 (July 10-October 10, 2016), and 2021 (July 
10-October 10, 2016). During these observation periods, eight typhoons (T-1610, T-1612, T-1613, T-1616 in 
2016, T-1908, T-1910, T-1917 in 2019, T-2109 in 2021) approached Kagoshima. In 2020, no typhoon landed in 
Japan. The recorded characteristics of the typhoons are summarized in Table 1. Figures 2, 3 and 4 respectively, 
show these typhoons’ meteorological history in 2016, 2019, and 2021.

Muograph.  A muograph is a device for recording the muographic data. The detection plane of the current 
muograph located in Kagoshima (Kagoshima Muograph: KM) is positioned vertically in relation to the ground 
surface. KM consists of three layers of segmented scintillation detectors (SSD) where the distance between the 
uppermost and lowermost stream detectors was set to be 1.5 m. In the KM 2016 model, each position-sensitive 
plane consisted of Nx = 14 and Ny = 14 adjacent scintillator strips, forming a segmented plane with 14 × 14 seg-
ments. The width of each scintillator strip was 10 cm. Therefore, at the beginning of the observation, each SSD 
had a 1.4 × 1.4 m2 active area with a spatial resolution of 10 cm, but these SSDs were eventually upgraded to 
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15 × 15 segments; hence it now has a 1.5 × 1.5 m2 active area. Each SSD was placed at the same interval. In order 
to separate muons from other soft components such as electrons, positrons, and gamma rays, a radiation shield 
with thicknesses of 10 cm lead and 2 cm stainless steel was inserted between each SSD interval. Muon events 
were selected by choosing events with linear trajectories. While the muons pass through this radiation shield 
straightforwardly, soft components stop or strongly scatter due to their shorter radiation length (5 mm in Pb 
and 18 mm in Fe). KM had an elevation viewing angle of 0°–45° and an azimuth viewing angle of ± 45°, and it 
was pointed in the south by southwest (SSW) direction (sea direction); it had the capability to detect muons also 
arriving from the opposite direction (where the mountain is located), i.e., north by northeast (NNE), but since 
the viewing angle in this direction was partially covered by mountains, the NNE data were not considered in this 
work. Figures 2, 3, 4, 5 indicate the vertical and horizontal viewing angles of KM that is located at an altitude of 
146 m above sea level.

In the current muography system, the following procedure has been established and the operation is ongoing 
in a real-time manner. Every 10 min, the event-by-event data are automatically converted to the track number 
distribution as a function of azimuth and zenith angles. These track number distribution data are transferred to 
the central data server located in Kyoto, Japan. The member users can access this server anytime to interactively 

Figure 1.   Vertical muon flux (N) versus atmospheric pressure (ρ). Inset illustrates the atmospheric pressure 
within the range between 990 and 1000 hPa.

Table 1.   Characteristics of the typhoons during which muographic data were collected48. A strong wind area 
is defined as an area where the wind speed exceeds 15 m s−148.

Year ID Minimum pressure (hPa) Maximum wind speed (m s−1) Maximum strong wind area (km)

2016 T-1610 940 45 SE: 600 NW: 440

2016 T-1612 955 35 E: 170W: 110

2016 T-1613 1000 20 SE: 280 NW: 170

2016 T-1616 930 50 NW: 440 SE: 330

2019 T-1908 970 35 NE: 280 SW: 170

2019 T-1910 965 40 S: 1100N: 560

2019 T-1917 970 35 SE: 700 NW: 440

2021 T-2109 990 20 SE: 600 NW: 330
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Figure 2.   Meteorological history of tropical cyclones T-1610, T-1612, T-1613, and T-161648. Black numbers 
next to the coordinate grid indicate the latitude and longitude. Blue, red, green, and grey numbers indicate 
the date of the positions of T-1610, T-1612, T-1613, and T-1616, respectively. Triangular symbols indicate the 
atmospheric pressure gauge stations (from north to south, Kagoshima, Yakushima and Naze stations). The 
azimuthal viewing angle of the Kagoshima Muograph (KM) is also indicated (shaded area). HKMT drew the 
map with Microsoft PowerPoint software and HKMT drew the image with Microsoft PowerPoint software and 
holds the copyright.

Figure 3.   Meteorological history of tropical cyclons T-1908, T-1910, and T-191748. This figure is drawn, 
same with Fig. 2. HKMT drew the map with Microsoft PowerPoint software and HKMT drew the image with 
Microsoft PowerPoint software and holds the copyright.

Figure 4.   Meteorological history of tropical cyclons T-210948. This figure is drawn, same with Fig. 2. HKMT 
drew the map with Microsoft PowerPoint software and HKMT drew the image with Microsoft PowerPoint 
software and holds the copyright.
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generate muographs and the time-sequential plots of muon counts. In this work, 24 10-min track number 
distribution data were added to attain an appropriate statistic level so that we can discuss about percent-order 
variations in the muon rate.

Most muons are generated at the height of 15–20 km above sea level. Therefore, the KM was designed to 
record the muons travelling through an atmosphere 20 km to 500 km thick; the length of the muon’s pathway 
(MPL) to the surface of the Earth depends on its arrival angle (Fig. 5). Due to (a) the detector’s geometric accept-
ance and (b) the zenith angular dependence of cosmic ray muons, 50% of the total muon events were recorded 
within the zenith and azimuth angular range between 60o and 80° and ± 15°, respectively.

Figures 6, 7, 8 compare the muon counts collected every 4 h with the atmospheric pressure values observed at 
three barometric pressure (BP) monitoring stations (Kagoshima, Yakushima and Naze as indicated in Figs. 2, 3, 
4) within the viewing angle of the KM48. Yakushima is located 150 km south of Kagoshima, and Naze is located 
380 km southwest of Kagoshima. There is a clear anti-correlation between muon counts and BP. Overall, the 
BP variations are in agreement among these three stations and the muon count rate increases by ~ 2% when 
the pressure drop (PD) had reached 10 hPa. By considering many of these are slanted muons, this level of the 
muon flux increase is in agreement with the relationship shown in Fig. 1. As shown in Fig. 6, the PD event, 
which started on August 28, 2016, was associated with the approach of T-1610; since T-1610 remained south of 

Figure 5.   Schematic view of atmospheric muography conducted in this work. Orange and green arrows 
indicate the galactic cosmic rays (GCRs) and muons, respectively (a single GCR particle can generate numerous 
muons). The label "KM" indicates the location of the Kagoshima Muograph. A schematic diagram (red dashed 
lines and arrows) showing the airflow relative to a two-dimensional, steady-state MCS49 is also overlaid. HKMT 
drew the image with Microsoft PowerPoint software and holds the copyright.

Figure 6.   Observed time-dependent variations of the muon count rate in the 2016 typhoon season (A). 
The atmospheric pressure values observed at three BP monitoring stations of Kagoshima (blue), Yakushima 
(Orange) and Naze (Green)48 are shown (B). The vertical bars associated with the data points indicate 1σ error 
bars. Arrows indicate the period that T1610, T1612, and T1613 are added. T1616 is out of the range of the 
current measurement.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16710  | https://doi.org/10.1038/s41598-022-20039-4

www.nature.com/scientificreports/

Kagoshima for a week, the PD steadily continued until the end of August when this typhoon transformed into 
an extratropical cyclone. The PD associated with the approach of T-1616 started on September 14, and accord-
ingly, an increase of the muon count rate was observed; however, since the path of the typhoon was much closer 
to Kagoshima, this typhoon caused an electricity blackout, and data taking at the Kagoshima MOS was cut off 
at 20:00 on September 19th. Two other minor PD events observed within the periods between September 1–4 
and between September 6–9 have been respectively associated with T-1612 and T-1613. As shown in Fig. 7, the 

Figure 7.   Observed time-dependent variations of the muon count rate in the 2019 typhoon season (A). 
The atmospheric pressure values observed at three BP monitoring stations of Kagoshima (blue), Yakushima 
(Orange) and Naze (Green)48 are shown (B). The vertical bars associated with the data points indicate 1σ error 
bars. Arrows indicate the period that T1908, T1910, and T-1917 approached.

Figure 8.   Observed time-dependent variations of the muon count rate in the 2021 typhoon season (A). The 
atmospheric pressure values observed at three BP monitoring stations: Kagoshima (blue), Yakushima (Orange) 
and Naze (Green)48 are shown (B). The vertical bars associated with the data points indicate 1σ error bars. 
Arrows indicate the period that T2109 approached.
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largest PD event observed within the period between August 10–17, 2019, was associated with T-1910, while 
the second-largest PD event was observed within the periods between September 20–23 was associated with 
T-1917. Another PD event observed on August 4–7 was associated with T-1908. In Fig. 8, the largest PD event 
was observed within the period between August 4–10, 2021 and associated with T-2109. The pressure drops and 
the increases in muon flux are not all related to TC. In Figs. 6, 7, and 8, several local pressure drops can be seen. 
However, these drops all didn’t reach 1000 hPa. Accordingly, increases in muon flux associated with these drops 
are also smaller, indicating that these drops are associated with the passage of non-TC low pressures. On the 
contrary, the pressure drops associated with T1612, T1613, T1908, and T2109 are much larger and they dropped 
below 1000 hPa, and accordingly larger increases in muon flux can be seen. In the current work, we focused on 
only these large drops, and the threshold was set to be < 1000 hPa. Life spans of the pressure drops are generally 
associated with the traveling speed and traveling trajectories of TCs. For example, in the case of TC 1610, the 
traveling speed during the period between August 21–27 was much slower than other periods. Moreover, this 
CL stayed in the south of Kyushu Island for a week.

For monitoring the vertical profile of tropic cyclones (TCs), the main source of the observation noise comes 
from the statistical fluctuation of the muon counts. If more muon counts are recorded, relative statistical fluc-
tuations are reduced in proportional to N0.5/N, where N is the muon count. Therefore, in order to improve the 
observation quality with higher time resolution and with lower observation noise, larger-sized detectors will be 
needed. TC-1908 also follows the overall trend of the TC-driven PD. In Kagoshima, the pressure drop due to the 
TC-1908 passage was 10 hPa. Therefore, the expected variations in the muon flux was 2%. The observed reduc-
tion in the muon rate was 2% (from 33,500 to 32,800 counts/h). The muon rate also increases, corresponding 
to the TC-1612 passage. However, more quantitative discussion is difficult, since the muon data taking stopped 

Figure 9.   Observed time-sequential muon count rate at high (0.4 < tan θ < 0.8) (A) and low (0 < tan θ < 0.4) (B) 
elevation angles. The vertical bars associated with the data points indicate 1σ error bars. The time-dependent 
BP variations observed at Yakushima (blue) and Naze (orange) are also shown (C). The first pressure drop was 
associated with the T-1610 passage, and the second pressure drop was associated with the T-1612 passage.
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due to a lightning struck. As can be seen in Figs. 7 and 8, such a data taking termination didn’t occur after 2017 
since we strengthened the electric system by adding redundant backup power supplies, surge protectors, etc. in 
the Kagoshima Muography Observatory.

If we neglect modulations of the primaries (e.g., by Forbush decrease) and the stratospheric seasonal tem-
perature variations, variations in muon intensity are mostly dependent on ionization through the air since 
bremsstrahlung is suppressed by a factor of me

2/mμ
2. Since the muon flux varies as a roughly linear function 

(2000–5000 g cm−2) of the matter thickness for small variations in average density along the muon paths43, the 
flux-pressure relationship shown in Fig. 1 (1% variations in the muon flux per 5-hPa variations in the atmospheric 
pressure) is applicable to near horizontal muons (up to ~ 80° from zenith). Variations in the muon flux seen in 
Figs. 6, 7, and 8 were consistent with the corresponding observed pressure drops. For example, for T-1610, the 
muon flux increased by 2% that is corresponding to the pressure drop by 10 hPa while the pressure drop observed 
at Kagoshima meteorological station was also 10 hPa (from 1005 to 995). For another example, for T-2109, 
the muon flux increased by 4.8% that is corresponding to the pressure drop by 24 hPa while the pressure drop 
observed at Kagoshima meteorological station was 25 hPa (from 1005 to 980).

Figure 10.   Time-sequential muographic images (A). The four images show the muon flux variations observed 
every 8 h within the period between 00:00 on September 3, 2016, and 08:00 on September 4, 2016. The 
horizontal width of these muographic images corresponds to the shaded area indicated on the map on the right 
side. The meteorological history of T-1612 is also shown. Triangular symbols indicate the atmospheric pressure 
gauge stations (Yakushima Station is in the north, and Naze Station is in the south). The symbol KM indicates 
the location of Kagoshima Muograph. The red numbers and red hollow circles respectively indicate the date 
and the position of the T-1612’s center. The filled red circles indicate the T-1612 positions at 08:00, 16:00 on 
September 3, and 08:00 on September 4. The red dashed circles indicate the storm area (wind speed > 25 m s−1) 
at 00:00, 08:00, 16:00, and 24:00 on September 3, and the brown dashed circles indicate the strong wind area 
(wind speed > 15 m s−1) at 00:00 and 24:00 on September 3. The time-dependent variations of the minimum 
pressure of T-1612 are also shown (B). HKMT drew the map with Microsoft PowerPoint software and the image 
with Microsoft PowerPoint software and holds the copyright.
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Discussion
As shown in Figs. 6, 7, and 8, the overall trend of the TC-driven PD events recorded at these weather stations 
matched except for those observed in the period between September 1–4, 2016 (T-1612 PD), and between August 
4–7, 2019 (T-1908 PD). The common feature of these discrepancies can be summarized as follows: The PD 
negative spikes associated with T-1612 and T-1908 can be seen in the Kagoshima and Yakushima pressure data, 
but these cannot be seen in Naze data, and vice versa. Since the distance between Kagoshima and Yakushima is 
130 km, and the distance between Kagoshima and Naze is 360 km, we expected meso-beta scale pressure anoma-
lies during the aforementioned periods. We also anticipated that these anomalies could be captured with KM.

Figure 11.   Schematic interpretation of the time-sequential muographic images shown in Fig. 10. The diameter 
of the storm corresponds to the storm area at 00:00 on September 3. HKMT drew the image with Microsoft 
PowerPoint software and holds the copyright.

Figure 12.   Muographic image of T-1612. The color and angular ranges are the same as in Fig. 10. The position 
of the centre of the cyclone illustration and its height correspond to the average position and 15 km, respectively. 
HKMT drew the image with Microsoft PowerPoint software and holds the copyright.
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Figure 9 compares the high elevation angle (HEA) (0.4 < tan θ < 0.8; 25 km < MPL < 50 km at an altitude of 
20 km) (Fig. 9A) and low elevation angle (LEA) (0 < tan θ < 0.4; 50 km < MPL < 506 km at an altitude of 20 km) 
(Fig. 9B) components of the time-sequential muographic data for the 9 days during which T-1610 and T-1612 
caused the local PD. The HEA component represents the muons that passed through a more local atmosphere, 
closer to KM, and the LEA component represents those muons that passed through a less local atmosphere, fur-
ther from KM. In Fig. 9C, the time-dependent barometric variations observed at Yakushima and Naze stations48 
are presented for reference. As can be seen in Fig. 9A,B, there are two muon count rate (MCR) increase events 
between August 27–September 1 and September 1–5. These MCR increase events were interpreted as PD events 
associated with T-1610 and T-1612. These events were labeled MCR1610 and MCR1612 here. In Fig. 9A,B, we 
find that the magnitude of HEA-MCR1610 is larger than LEA-MCR1610. Also, we find that the timing and 
duration are both different between HEA-MCR1612 and LEA-MCR1612. These results are consistent with the 
pressure variations observed at Yakushima (closer to KM) and Naze (further from KM) stations: PD smaller 
than that at Yakushima was observed at Naze for T-1610, and at Naze, T-1612 associated PD appeared earlier and 

Figure 13.   Time-sequential muon count rate observed in the eastern azimuthal angle region (0 < tan ϕ < 1.0) 
(A) and the western azimuthal angle region (− 1.0 < tan ϕ < 0) (B). The vertical bars associated with the data 
points indicate 1σ error bars. The time-dependent BP variations observed at Yakushima (blue) and Naze 
(orange) are also shown (C).
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lasted longer than Yakushima. Differences between the magnitude of HEA-MCR and the magnitude of LEA-MCR 
are not always the same. These differences depend on the trajectory, the speed, the size, and the shape of TCs.

In Fig. 9C, we can see that the pressure drop started a couple of day earlier in Naze than the time it started in 
Yakushima. This is because TC approaced to Naze before it approached to Yakushima. Accordingly, increase in 
the LEA muon count rate started earlier than increase in HEA muon count rate (Fig. 9B) since the current muog-
raphy detector was directed towards Naze. This result indicates that if the mugraphy detector is focused towards 
the same direction of the TC passages, we can detect the far distant pressure drop before the TC approaches to 
the detector even if there is no meteorological stations in this direction. For the future cyclone early warning 
system, a multi-directional muography detector that covers all the azimuth angles would be useful.

Figure 10 shows the time-sequential muographic images taken in the period between 00:00 on September 
3, 2016, and 08:00 on September 4, 2016, to analyze the pressure variations caused by the passage of T-1612. In 
order to cancel the KM’s geometrical acceptance and the muon’s zenith angular dependence, the number of muon 
tracks in each pixel was divided by that averaged over a period of 6 months (including the period during the 
passage of T-1612). Moreover, each pixel was mapped within an elevation angular range between tangents 0.067 
and 0.4, and an azimuthal angular range between tangents ± 0.17. This elevation angular range is respectively 
equivalent to the horizontal range between 300 and 50 km at an altitude of 20 km. The overall feature is that the 
large-flux region indicated in the reddish pixels in Fig. 10 was shifted westwards within this period. This large 
flux-region was interpreted as the low barometric pressure (BP) region associated with the T-1612 passage, and 
these time-dependent BP variations are consistent with the trajectory of T-1612.

Figure 14.   Time-sequential muographic images. The eight images show the muon flux variations observed 
every 12 h between 12:00 August 4, 2019, and 12:00 August 8, 2019. The horizontal width of these images 
corresponds to the shaded area indicated on the map on the right side. The meteorological history of T-1908 is 
also shown. Triangular symbols indicate the BP stations (Yakushima Station is in the north and Naze Station in 
the south). The symbol KM indicates the location of Kagoshima Muograph. WAA and EAA respectively indicate 
the eastern azimuthal angle region and the western azimuthal angle region used in Fig. 11. HKMT drew the map 
with Microsoft PowerPoint software and HKMT drew the image with Microsoft PowerPoint software and holds 
the copyright.
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Figure 11 shows the schematic interpretation of the time-sequential muographic images shown in Fig. 10. The 
distance between KM and the center of T-1612 changed from 180 to 120 km within the period between 00:00 
and 08:00 on September 3, 2016. Therefore, the T-1612’s lowest-density region where the warm core was located 
was captured at an elevation angle region between 70 and 130 mrad. T-1612 continued to move northwards after 
08:00 on September 3, and as a result, the distance between KM and the center of T-1612 was further shortened 
from 120 km (at 08:00) to 60 km (at 16:00). As a result, the T-1612’s warm core was captured at an elevation 
angle region between 130 and 200 mrad. Figure 12 shows the resultant muographic image taken between 08:00 
and 16:00 on September 3, 2016. In this figure, the image pixels in Fig. 10 were interpolated with polynomial 
functions. A low-pressure area that is warmer at its center than at its periphery (warm core) is visualized.

Figure 13 compares the eastern azimuthal angle (EAA) (0 < tan ϕ < 1.0) (Fig. 13A) and western azimuthal 
angle (WAA) (− 1.0 < tan ϕ < 0) components of the time-sequential muographic data for the 21 days during 
which T-1908 affected the local atmospheric pressure. The EAA component represents the muons that passed 
through the atmosphere within the directional range between SSE-SSW, while the WAA component represents 
those muons that passed through the atmosphere within the direction range between SSW-SWW. In Fig. 13C, 
the time-dependent BP variations observed at Yakushima and Naze stations are presented for reference48. As 
illustrated in Fig. 13A, there is an MCR increase event during the period between August 3–8, 2019. This MCR 
increase event was interpreted as PD associated with T-1908 and is labeled MCR1908 in the current discussion. 
However, there is no MCR increase event in Fig. 13B between August 3–8. These results are consistent with that 
PD which was observed at Yakushima (south of KM within the directional range between SSE-SSW), but it was 
not observed at Naze (southwest of KM within the direction range between SSW-SWW) stations.

Figure 14 shows the time-sequential muographic images taken between August 4, and August 8, 2016 to ana-
lyze the pressure variations caused by the passage of T-1908. Like previous time-sequential muographic images, 
the KM’s geometrical acceptance and the muon’s zenith angular dependence were corrected in this figure. These 
images were mapped within an elevation angular range between tangents 0–and 1.0, and an azimuthal angular 
range between tangents ± 1.0. This elevation angular range was respectively equivalent to the horizontal range 
between 506 and 20 km at an altitude of 20 km. The overall feature was that the large muon flux region indicated 
in the reddish pixels in Fig. 13 appeared in the HEA-EAA region between 00:00 and 12:00 on August 6, 2019. This 
large muon flux region was interpreted as the low barometric pressure (BP) region associated with the T-1908 
passage, and these time-dependent BP variations are consistent with the trajectory of T-1908.

In conclusion, it was found that an increase in the muon flux is associated with a decrease in pressure associ-
ated with the development of TC, indicating atmospheric muography can track density variations associated with 
TC. Moreover, since muography measures the near-horizontally integrated density of the atmosphere, and BP sta-
tions measure the vertically integrated density of the atmosphere, a three-dimensional image of the atmospheric 
density distribution can be reconstructed with joint inversion of these techniques. Alternatively, the placement 
of multiple muographs (multidirectional muography) at dispersed locations could also be used to generate a 
three-dimensional image of the volume within the viewing angle of these muographs. Each muograph unit is 
low-cost and versatile, so it is possible to position these units nearly anywhere on land. We anticipate that real-
time three-dimensional muographic monitoring of TC can become practical and widespread in the near future.

Method
Kagoshima Muograph (KM) originally consisted of 84 counter bars (3 layers of (Nx + Ny = 14 + 14)), 1 muon 
readout module, 1 high-voltage power supply (Matsusada Precision HAR-2N300) and 2 radiation shields. Each 
counter bar consisted of a plastic scintillator strip (Bicron BC-408) connected to a photomultiplier tube (PMT; 
Hamamatsu H7724) via an acryl lightguide. Six counter bars were eventually added to KM to make 3 layers of 
(Nx + Ny = 15 + 15). Each radiation shield consisted of a 10-cm thick lead plate covered by a 1-cm thick stainless-
steel plate. The PMT signals were discriminated and sent to the field-programmable gate array (FPGA) for logi-
cal processing of these signals50. The muon track data were sent to a computer every 10 min and subsequently 
uploaded to the external server so that a remote computer could access the data in real-time.
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