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Abstract: Fluorescence-linked immunosorbent assay (FLISA) is a commonly used, quantitative
technique for detecting biochemical changes based on antigen–antibody binding reactions using a
well-plate platform. As the manufacturing technology of microfluidic system evolves, FLISA can
be implemented onto microfluidic disk platforms which allows the detection of trace biochemical
reactions with high resolutions. Herein, we propose a novel microfluidic system comprising a disk
with a three-dimensional incubation chamber, which can reduce the amount of the reagents to 1/10
and the required time for the entire process to less than an hour. The incubation process achieves an
antigen–antibody binding reaction as well as the binding of fluorogenic substrates to target proteins.
The FLISA protocol in the 3D incubation chamber necessitates performing the antibody-conjugated
microbeads’ movement during each step in order to ensure sufficient binding reactions. Vascular
endothelial growth factor as concentration with ng mL−1 is detected sequentially using a benchtop
process employing this 3D microfluidic disk. The 3D microfluidic disk works without requiring
manual intervention or additional procedures for liquid control. During the incubation process,
microbead movement is controlled by centrifugal force from the rotating disk and the sedimentation
by gravitational force at the tilted floor of the chamber.

Keywords: fluorescence-linked immunosorbent assay; lab-on-a-disk; vascular endothelial growth
factor; 3D microstructure

1. Introduction

As a consequence of recent technological and medical developments, the human
average life expectancy has increased by interventions which have focused on age-related
disabilities. Analysis of blood biomarkers is essential, which reveals the specificity of
biological aging of individuals, such as immune aging, physical function, and anabolism [1].
Among the biomarkers, vascular endothelial growth factor (VEGF) is a signaling molecule
to promote the formation of new vessel branches within tumors and progression and
metastasis [2]. In particular, VEGF is a pathognomonic biomarker candidate for the
diagnosis criteria of age-related macular degradation incidence, which is most related
to ischemic eye disease found in the vitreous and aqueous humor in proportion to the
VEGF concentration. Observing the variation of VEGF is essential for predicting the
effectiveness of therapy and eye disorder prognoses [3–6]. Research works reported that
the increase in the prevalence rate of ocular diseases is correlated with concentrations of
VEGF [7–12]. Several ophthalmic disorders associated with VEGF concentration, such
as pre-proliferative retinopathy [13], ocular ischemic syndrome [14], and retinal vein
occlusions [15], can cause retinal ischemia, which can result in irreversible changes in
the ocular structures, such as function and anatomy. However, the low concentration of
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VEGF and limited aqueous humor sample collection make it difficult in clinical practice to
measure the VEGF concentration variation.

Fluorescence-linked immunosorbent assay (FLISA) is a plate-based assay technique for
quantifying proteins (antibody and antigen), even in the picogram range per
milliliter [16–19]. The protocol using the well-plate platform for FLISA requires the aqueous
humor sample to be more than 100 µL in order to detect protein with pg mL−1 levels. The
amount of the sample that can be extracted for the reliable quantitative analysis is limited
to 50–100 µL considering the change in intraocular pressure [20,21]. Moreover, in general,
two or more incubation steps are required for 1–2 h each for the binding reaction between
proteins in the FLISA protocol [22–25]. Furthermore, repeating washing steps between
incubations is necessary to remove remaining reagents in a liquid. The FLISA protocol is a
complicated assay procedure and time-consuming. Consequently, innovation in diagnostic
testing uses only small samples and enables high-precision measurements [26–32].

In several studies focusing on an FLISA using a lab-on-a-disk platform detecting
bio-chemicals, the time requirements for the assay protocol could be notably reduced to
under 1 h by using microbeads. Lee et al. reported a fully automated immunoassay on a
disk platform using whole blood; this entire process was terminated within 30 min through
a fully automated disk for infectious disease (antibody of Hepatitis B) detection [31]. Walsh
et al. showed that fluorescence intensity with a 1 ng mL−1 resolution could be acquired
even though all reagents are simultaneously loaded into the chamber, requiring 10 min
in the incubation step. FLISA protocol simplification helps improve the quantitative
analysis efficiency [20]. These results show that FLISA using microbeads can decrease the
protocol time due to the high specific volume of binding reagents. This is the advantage
of the microfluidic platforms; only one-tenth of the volume of the reagent is required
compared with traditional plate-based FLISA. Moreover, the washing and detection steps
are controlled sequentially under the centrifugal force acting on the disk and microbead
sedimentation via density difference, without requiring manual intervention. However,
implementation of the FLISA protocol on a microfluidic disk-based platform requires the
reduction in the reagent volumes as well as precise control. Furthermore, the microfluidic
system is segregated for precise fluid control at each step of FLISA; thereby, it has increased
the manufacturing costs and complexity of the system. Poly(methyl methacrylate) (PMMA)
sheets are commonly used for manufacturing microfluidic chips at a low cost, since they
enable the fabrication of thin and transparent chips [33–36]. However, processing of the
PMMA sheet is improper to fabricate the precise geometry of a microfluidic channel to
apply the one-step FLISA protocol. For sufficient mixing in the incubation process, novel
valve components are tried in the microfluidic system [31,37]. The wax valve components
in the disk would physically isolate each incubation process in the protocol. A fully
automated detection system is required for the complicated manufacturing process and
increases the unit cost to fabricate a microfluidic disk.

From this point of view, this research suggested a method that employs centrifugal
and gravitational forces using a three-dimensional microfluidic disk platform to perform
the simplified microbead FLISA protocol. This 3D microfluidic disk using multi-material
features a hybrid structure comprising a 3D-printed chamber block and laser-cut PMMA
layers. The 3D-printed block contains an incubation chamber with a tilted floor for control-
ling the mixing of reagents through the cyclic movement of microbeads. This microfluidic
disk performs precise microfluidic control in the incubation chamber. Furthermore, the
washing and detecting steps are achieved without requiring any manual intervention or
additional processes. Therefore, the proposed method is expected to diminish the overall
cost of manufacturing microfluidic disks.

2. Materials and Methods
2.1. Fabrication of 3D-Printed Block and Post Treatment

The disk layer is designed using CATIA V5 software for 3D modeling. The chamber
model is converted to an STL file format required for the 3D printing software. The
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incubation chamber layer is fabricated via stereolithography apparatus. The 3D printing
model (ProJet MJP 2500 Plus, 3D Systems, USA) has the ability to fabricate the plane
surface with roughness average (Ra) of less than 0.4 µm, even at an angle of 45◦ from
the printing surface [38]. The incubation chamber has a volume of 25 µL with a tilted
floor. The 3D printing employing SLA enables the fabrication of micro-pillar structures
with 15 µm surface roughness (see Figure S1 in the Supplementary Material). One side of
the chamber is connected to the side wall of the block for liquid transport, and the other
side of the chamber is connected to a ventilation hole in the top layer of the block; this
configuration is demonstrated in Figure S2 of the Supplementary Material. After printing
out the incubation chamber block, post-treatment is performed to remove the wax supports
and to clean surfaces. First, the supporting wax in the chamber is roughly removed under
a water vapor environment at atmospheric pressure for 30 min. Afterward, the hot oil
is used to immerse the incubation chamber block for 2 h in order to entirely remove
the remaining wax. After cooling the block at room temperature for 10 min, ultrasonic
cleaning with detergents and water is used to remove the residual oil in the chamber;
each of these processes are continued for 10 min. Lastly, the washed block is desiccated
for 24 h in a convection oven to remove the moisture. After assembling 3D microfluidic
disk, microfluidic components are washed to remove remaining debris by pipetting using
phosphate-buffered saline (PBS, pH 7.4, Sigma-Aldrich, St. Louis, MO, USA) with 100 µL
containing 0.5 wt% bovine serum albumin (BSA, Sigma-Aldrich) and once distilled water
with 100 µL. Thereafter, the 3D microfluidic disk is desiccated in a convection oven for 24 h
at room temperature.

2.2. Assembly of the 3D Microfluidic Disk

The 3D microfluidic disk is assembled in a layer-by-layer manner as shown in
Figure 1a; the laser-cut PMMA disk layers are sequentially stacked along with the 3D-
printed block. The washing chamber and microchannel are assembled by adopting
pressure-sensitive adhesive (PSA) sheets between the laser-cut PMMA layers. A laser
cutting machine (Nova24 Laser Engraver; Thunder Laser, China) was used to process
the PSA film-attached PMMA sheets into the disk shape. The laser-cut pattern is aligned
through the 5 mm holes on the disc layer to which disk layers are attached sequentially.
Then, a press machine is used to apply 4.0 MPa pressure for the PSA layers between the
3D-printed block and the PMMA disk layers at room temperature for 10 min. The PSA
sheet prevents the leakage of liquid from the clearance between the 3D-printed block and
the PMMA layers. As shown in Figure 1b, the assembled 3D microfluidic disk features
an incubation chamber (blue-dyed water) and a washing chamber (yellow-dyed water).
Details of the microfluidic components are presented on the right side of Figure 1b. The
microfluidic circuit comprises the following components: (1) incubation chamber, (2) wash-
ing chamber, (3) detection region for fluorescence signal, (4) vent hole of the incubation
chamber, (5) inlet port of the incubation chamber, and (6) inlet port of the washing chamber.
The microchannel bridge between the incubation and washing chambers has a rectangular
cross-section with 300 ± 20 µm widths. A cross-sectional schematic view of the microfluidic
chamber describes the dimensions as shown in Figure 1c. The microchannel has 500 µm
height, which is also the thickness of the PMMA disk. The detection region at the end
of the washing chamber has a sharp edge geometry. This edge geometry of the washing
chamber is intended to aggregate fluorescence-labeled microbeads in order to intensify the
emission light signal.
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Figure 1. (a) Expanded view of the 3D microfluidic disk. (b) Image of the 3D microfluidic disk
containing dyed water in the incubation (blue dye) and washing chambers (yellow dye). (c) Schematic
of the cross-sectional illustrating the dimensions of the microfluidic chambers.

2.3. Preparation of VEGF Reagents

During the reagent preparation, antibodies of VEGF to capture (cAb, Human/Primate
VEGF Antibody, R&D Systems, Minneapolis, MN, USA) and detect (dAb, Human VEGF
165 Antibody, R&D Systems) are bound to the surface of microbead and fluorescent dye,
respectively. An antibody coupling kit is used for binding the cAb onto the 2.8 µm diam-
eter epoxy magnetic bead surface (Dynabeads antibody coupling kit and M-270 Epoxy
microbead, Thermo Fisher, Waltham, MA, USA). This binding procedure requires 24 h in
accordance with the protocol manual. The cAb concentration on the microbead surfaces
is 20 µg mg−1 in 1 mL of the solution with PBS containing 1 wt% BSA. Additionally, a
fluorescence conjugation kit is used for binding the fluorescent dye with dAb with 1:1
volume ratio (DyLight 488 Conjugation kit, Abcam, Cambridge, UK); these are then left
overnight at room temperature in dark condition. Consequently, the dAb-bound fluo-
rescent dye is diluted in PBS to 1 µg mL−1 concentration. Serial ten-fold dilution of the
standard VEGF antigen (Recombinant Human VEGF 165, R&D Systems) was performed
using PBS to obtain from 1000 to 1 ng mL−1 concentration. Additionally, pure PBS without
VEGF antigen is used for a control solution. A dextran (Mr 15,000~25,000, Sigma-Aldrich)
is dissolved with 20 wt% in PBST (0.05 v/v% Triton-X100 contained PBS, Sigma-Aldrich)
for wash buffer at 60 ◦C on a magnetic hot plate stirrer for 24 h.

2.4. Analysis and Detection of Fluorescence

A microscope was customized for fluorescence measurement at detection region in 3D
microfluidic disk, which was placed over the spindle motor instantly after finishing rotation
of disk. Fluorescence signal is measured in a darkroom for blocking outside light pollution.
The 150 W halogen illuminator with optic lens and filters are used for the light source in
the microscope. Optical filtration selectively passes only fluorescence wavelengths using
excitation filter (average light transmission, Tavg over 93% in the 473–491 nm wavelength
range), dichroic filter (Tavg > 93% in the 502–950 nm range, and Tavg < 7% in the 350–488 nm
range), and emission filter (Tavg > 93% in the 506–534 nm range). Images from fluorescence
microscopy are analyzed using image processing software (ImageJ 1.8.0). Inside the border
of the washing chamber, the fluorescence excitation signal is amplified. Additionally,
background noise is removed by high-pass filtration.
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3. Results and Discussion
3.1. Validation of the Simplified Microbead FLISA Protocol

The immunological assay is one of the general analysis techniques using absorbent or
fluorescent materials for the antibody-antigen interaction-based protein level quantification.
The enzyme-linked immunosorbent assay (ELISA) process is performed on well-plate
platforms; it employs a colorimetric reaction of enzymes that trigger color change according
to the conjugation ratio with the substrate. In this technique, the light absorption ratio is
varied according to the enzyme concentration. However, the light absorption mechanism
of the ELISA protocol has limitations in applying to microfluidic systems. The optical
spectroscopy light absorption characteristics have a relationship with the concentration of
the reagent, which is expressed as the Lambert-Beer law following Equation (1):

I = I0 · 10−εcl (1)

where I and I0 are intensity of the transmittance and the incident light to the reagent.
The ε, c, and l are the molar absorptivity coefficient (cm2 mol−1), the molar concentration
(mol L−1), and the optical path length (cm), respectively. In the microfluidic disk platform,
the optical path length is geometrically restricted to spectroscopic analysis, which is the
occurring degradation of the spectral resolution [39]. For this part, it is pointless to increase
the thickness of the disk for improving the detection resolution in a microfluidic platform.
Alternatively, the FLISA method is possible for the superposition of fluorescence signals,
which improve the limit of detection for quantitative immunoassay even when using small
sample volumes [40,41]. The microfluidic disk platforms employing microbead FLISA
protocol are especially helpful in detecting the superposition of excitation signals from the
aggregated fluorescence-linked microbeads. This “simplified” FLISA protocol facilitates
the incubation step and diminishes the required time for the reaction between antibody
and antigen. The reagents are loaded to the incubation chamber concurrently, where they
are mixed and bound together.

In this study, the reagents are prepared as described in Figure 2. Prior to applying
the microfluidic disk platform, the protocol is confirmed using a 96-well black polystyrene
microplate. The variation of the incubation time and reagent volume condition is performed
to verify the fluorescence signal linearity in the protocol. The cAb-bound microbeads, dAb-
bound fluorescent dye, and human VEGF antigens are simultaneously loaded into the
microwell with a volume ratio of 1:1:1. During the incubation process, shaking the incubator
is used for gentle mixing of reagents with 120 rpm for 2 h at 37 ◦C. In the reagent loading
and initial incubation steps, the cAb-bound microbead has a high probability opportunity
to bind with the VEGF antigen due to the 20 times higher concentration compared with the
dAbs in the reagents. After the VEGF antigens are bound to the microbead surfaces, other
epitopes of the VEGF antigen are exposed to binding with the dAb-bound fluorescence
dye in the reagents during the incubation step. In the washing step, unbound reagents
are removed by pipetting for washing three times. The fluorescence microscope is used to
confirm the amount of fluorescent dye-coupled microbeads, which affect the fluorescence
excitation intensity with regard to VEGF concentration.

The schematic in Figure 3a describes the fluorescent dye-coupled microbead surface
formation. The binding between the VEGF antigen-antibody is performed by the specificity
of avidity-driven interactions. In Figure 3b, the microbeads are photographed with a long
wave pass filter (>630 nm). The red image is based on the relatively high spectral reflectance
characteristics of the microbead (ferrite oxide) in the red wavelength (>630 nm) to show
the position of the microbeads. Figure 3c is a fluorescence microscopic image showing
that the fluorescent dye is well bound to the surface of the microbead. The merged image
represents that the green fluorescent dye is located in the same position as the microbeads,
as shown in Figure 3d.
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The simplified microbead FLISA reduces the required reagent volumes and also the
incubation time. The fluorescence signal was analyzed under variations in volume of the
reagent and incubation time. The green fluorescence intensities are analyzed for VEGF
concentrations of 1 µg mL−1 and 1 ng mL−1 as well as the pure PBS. In the simplified
microbead FLISA protocol, 100 µL reagent volume (which is required volume for the
traditional FLISA method) is reduced to 10 and 5 µL, while the incubation time of 2 h is
reduced to 1 h.

The fluorescence intensities are presented under the concentration of VEGF antigen as
shown in Figure 4. When using reagent volumes of 100, 10, and 5 µL for the concentration of
1 µg mL−1 VEGF antigen solution, the fluorescence intensities in the arbitrary unit are 48.08,
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35.03, and 36.19, respectively. Moreover, for the 10 µL volume of VEGF antigen solution
with 1 µg mL−1 concentration, the fluorescence excitation signal is reduced from 35.03 to
28.0 upon decreasing the incubation time from 2 to 1 h. Decreasing the reagent volume
(from 100 to 10 µL) and the incubation time (from 2 to 1 h) causes reductions of fluorescent
intensity of 34.8% and 20.5%, respectively. This shows that the fluorescence intensity is
retained linearly, even when using small reagent volumes and reduced incubation periods.
These results show possibilities, despite the reduction in reagent volume and incubation
time, for analysis via a microfluidic system using image processing for high resolution
through fluorescence signal amplification and the background noise elimination. Thus,
the simplified microbead FLISA on the 3D microfluidic disk is performed employing a
1 h incubation time and 10 µL reagent volume. The microbead FLISA protocol shows the
possibility of a 0.2~3.0 ng mL−1 range of VEGF level detecting, which can be a criterion for
clinical signs for diagnosis and treatment [42,43].
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A flow chart in Figure 5 compares a traditional sandwich ELISA method [44,45] and
the microbead assay method in a microfluidic system [46–48]. The protocol can diminish
the volume of the antigen solution and the required time for the incubation step up to
values of 1/10 and 1/5, respectively.
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traditional sandwich ELISA protocols.

3.2. One-Step Simplified Microbead FLISA Using a 3D Microfluidic Disk

The 3D microfluidic disk using simplified microbead FLISA protocol is completed
by a one-step process including incubation, washing, and detection steps in sequence.
The schematic of Figure 6 describes the cross-section of the microfluidic circuit along the
radial direction of the disk in order to highlight the proposed sequential process. First,
the 30 µL wash buffer is loaded into the washing chamber through the inlet port. Then,
the reagents with a volume of 10 µL in each of the cAb-bound microbeads, VEGF antigen
diluted solution, and dAb-bound fluorescent dye are loaded into the incubation chamber
using pipettes.
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After loading the reagents, the 3D microfluidic disk is placed on a spindle motor,
which is located in a dark room to avoid the photobleaching of the fluorescent dye during
the incubation process. The inlet ports are blocked using commercial transparent tape to
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prevent reagent evaporation during the protocol. For the incubation step, disk rotation
is regulated to ensure that the reagents mix sufficiently. In the incubation chamber with
the tilted floor, microbeads move along the radial direction of the chamber surface, while
accelerating at 260 rpm for 10 s. Afterward, when the disk is stopped for 10 s, the mi-
crobeads move back to the disk axis direction along the chamber bottom. The microbead
is controlled by regulating rotation to enhance the mixing reagents. The angular velocity
of the disk affects the bead movement during sedimentation, which can be expressed as
Equation (2), referring to Stokes’ law:

Us =
2
9
(ρbead − ρ f )

µ
aR2 (2)

where Us is the sedimentation velocity; ρbead and ρf are the microbead and fluid densi-
ties, respectively; µ is the fluid viscosity; R is the radius of the microbead; and a is the
acceleration. Here, for the microbeads in the incubation chamber with a tilted floor, the
acceleration is changed to a·cos θ − g·sin θ, where θ and g are the slope of the incubation
chamber and gravitational acceleration, respectively. The disk angular velocity with respect
to time for the cycle is shown in Figure S3 of the Supplementary Material, including the
microbead position after each step (reagent loading, reagent incubation, and washing).
In the incubation chamber, when the disk rotates and then stops for 10 s, the microbeads
move by 5.50 ± 2.86 µm along the radial direction at 260 rpm angular velocity and then
move back by 3.22 µm, respectively, according to Stokes’ law (Equation (2)). When the disk
is rotating, the distance traversed by the microbead depends on its relative radial position
to the central axis of the disk. For the stationary state of the disk, the microbeads on the
tilted floor of the incubation chamber are only influenced by gravitational force and move
toward the central axis, regardless of their position. The incubation step between reagents
is achieved through gentle mixing for 1 h. At the end of the incubation process, the disk is
accelerated for microbead sedimentation in the washing step to 5 krpm for 10 s and then
continued for 1 min. The unbound dAb-fluorescent dye is separated due to the difference
in density when the microbeads pass through the wash buffer. During this process, the
fluorescent dye-coupled microbeads as well as the unlabeled microbeads settle together at
the end of the washing chamber.

In Figure 7a, the images depict the microbeads with and without fluorescent dye-
coupled VEGF at the end of the washing chamber. The dashed yellow line indicates
the boundary of the washing chamber. In Figure 7b, the results of the fluorescence area
ratio, Af/Ab, is a parameter evaluated by the fluorescence area (Af) and the microbead
aggregation area (Ab). The value of Af/Ab increases with the VEGF concentration between
1 µg mL−1 and 0 g mL−1. The average coefficient of variation of five points is 5.50% in the
calibration curve. To summarize the study, the one-step process is successfully performed
employing the simplified microbead FLISA protocol. The proposed multi-material disk
structure comprises laser-cut PMMA layers and a 3D-printed block. The microfluidic
disk contains a washing chamber with microchannels and an incubation chamber. The
pressurized PSA films grasp layers together while preventing leakage of reagents during
the processes. In the proposed simplified microbead FLISA protocol, the excitation signal
intensity of the fluorescence is linearly related to the VEGF concentration, regardless of
adjustment of the incubation time and the volume of reagent. In the 3D microfluidic
disk, the entire protocol of the simplified microbead FLISA can be terminated within 1 h
without additional manual intervention to process. Furthermore, the fluorescence signals
can be detected immediately on the disk after completing the rotation. The obtained green
fluorescent images are analyzed through the image processing. The calibration curve shows
clearly over 10 ng mL−1 to show quantitative detection for the VEGF concentration via
the fluorescence area ratio, Af/Ab. Through the fluorescence images of the fluorescent dye-
coupled microbeads, the detection limit of the 1 ng mL−1 VEGF concentration is enough to
distinguish with 0 g mL−1. As a result, VEGF detection can be accomplished to a resolution
with ng mL−1 through the fluorescence area ratio analysis (Af/Ab) via a three-dimensional
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microfluidic system employing the one-step simplified microbead FLISA protocol. The
detected VEGF level using a 3D microfluidic disk can be a diagnosis for clinical signs of
retinal disorders. In detecting VEGF level with a 1 ng mL−1 resolution, difficulties of the
quantitative analysis for VEGF concentration still remain in the 3D microfluidic system by
using rapid antigen testing. Moreover, the reagents can be detected precisely by operating
the disk angular velocity and the number of cycles with bi-direction rotation in order to
enhance the resolution for target antigens.
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4. Conclusions

A simplified microbead FLISA protocol using a multi-material-based 3D microfluidic
disk is successfully implemented for the low-level VEGF detection. The 3D microfluidic
disk consists of the PSA film-attached laser-cut PMMA layers and a 3D-printed block. In the
proposed microfluidic disk, only the component for the incubation step requiring precise
control is fabricated using a 3D printing method, whereas the remaining components
are constituted of the laser-cut PMMA channel in order to reduce the manufacturing
cost. the microbeads are utilized as the substrate for the immobilization of antibodies on
their surface to apply the simplified microbead FLISA protocol. Even for a 30 µL volume
of the reagents, the enlarged specific surface area of the microbeads provides support
for the antigen–antibody interactions. Additionally, in the simplified microbead FLISA
protocol, the reagent volumes are only required to be 1/10 compared with the commercial
detection method. The linearity of green fluorescence signals is shown with respect to
VEGF concentrations. The excited fluorescence signals observed during the detection step
are superimposed from the aggregated microbeads at the edge of the washing chamber.
The fluorescence area ratio, Af/Ab, with respect to the VEGF concentration could be
confirmed as characteristic with a ng mL−1 resolution. Therefore, the 3D microfluidic disk
platform can be used to detect VEGF on the sequential benchtop process using only passive
mixing in a simple clockwise rotation cycle within one hour. Regardless of the target
antigen including VEGF, manipulating the conditions of disk acceleration and cycles with
bi-directional rotation enhances the physical contact opportunity to an antigen–antibody
interaction by microbead movement control. In the future, it can be applied as a low-cost,
high-speed diagnostic system in developing countries for virus detection, such as for
COVID-19. This is possible by providing a platform for detecting biochemical targets
within an hour by utilizing a 3D microfluidic disk and a simple rotor.
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Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/
article/10.3390/bios11080270/s1, Figure S1: SEM images of microstructure (designed diameter (D)
= 500, 250, 200, and 100 µm) on 3D-printed surface fabricated in the (a–d) vertical and (e–h) lateral
directions to show resolution of stereolithography apparatus, Figure S2: (a) Top view of 3D-printed
block. (b) Isometric view and (c) sectional view of the 3D-printed block, Figure S3: Angular velocity
of disk with respect to time for the mixing cycle during incubation and the bead washing process.
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Abbreviations

BSA Bovine Serum Albumin
cAb Capture Antibody
dAb Detection Antibody
ELISA Enzyme-Linked Immunosorbent Assay
FLISA Fluorescence-Linked Immunosorbent Assay
PMMA Poly(methyl methacrylate)
PBS Phosphate Buffer Saline
PBST Phosphate Buffer Saline with Tween Detergent
PSA Pressure-Sensitive Adhesive
SLA Stereo-Lithography Apparatus
VEGF Vascular Endothelial Growth Factor
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