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How do changes in bulk soil organic 
carbon content affect carbon 
concentrations in individual soil 
particle fractions?
X. M. Yang, C. F. Drury, W. D. Reynolds & J. Y. Yang

We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles 
only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a 
Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and 
on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations 
in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size 
fractions were significantly related to the OC concentration of bulk soil. However, OC concentration 
increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than 
the maximum predicted by established C sequestration models. In addition, significant increases in 
OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this 
increase occurred when the OC concentration on silt + clay was still far below the predicted storage 
capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam 
soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept 
of OC storage capacity requires further investigation.

Soil organic carbon (OC) is typically segregated into distinct “pools” with unique characteristics and specific 
turnover times1. These pools have been used to indicate the sustainability of farming practices from a soil quality 
perspective2. The soil’s capacity to store or sequester OC appears to be determined largely by its mass proportion 
of fine particles3–8; and as a result, most OC storage capacity and sequestration models consider only the fine 
soil particulate size fraction5,6,9. It has been found, however, that OC storage on silt and clay can be significantly 
greater than model-predicted maximum levels10, and OC storage can vary substantially with land use, clay type, 
and cultivation practice11. It has also been suggested that OC storage may depend at least partially on specific 
surface area of soil clay minerals8, and could be as high as ~1 mg C m−2 (monolayer-equivalent C loading)12,13.

Although organic carbon sequestration in soil may be controlled primarily by OC associated with the “silt 
and clay” particles, soil OC not associated with these particles (mainly the OC in sand-sized particles) is also 
important because it is the main soil component which controls soil mechanical properties2,14,15. It has been 
proposed, for example, that OC accumulation on sand-sized material tends to occur only after the OC storage 
capacity on silt plus clay is exceeded2,16. Jagadamma and Lal17 further found that OC in sand and silt fractions 
usually decreases quickly with change in land use, while OC in the clay fraction often continues to accumulate at 
a reduced rate. Shrestha et al.18 noted that cultivated soils contain less clay-associated OC than forest soils, and 
that natural forest soils typically have more OC associated with all particle sizes. In a chronosequence of grassland 
restoration, He et al.19 found that increases in soil OC storage occurred primarily in the sand fraction at 0–10 cm 
depth, and primarily in the clay fraction below the 10 cm depth. Recently, Vogel et al.20 suggested that only the 
“rough edges” of clay mineral surfaces contribute to OC storage; and as a consequence, OC sequestration in soil 
may not be directly proportional to silt and clay content. Clearly, more study is needed to better delineate how OC 
in the different soil particle size-fractions changes in response to changing bulk soil OC.

In view of the above, we hypothesized that existing predictive models may underestimate OC storage capacity  
or “saturation levels” on soil silt and clay particle sizes. We further hypothesized that relationships among 
OC storage in bulk soil and on the sand, silt and clay particle size fractions could be profitably examined by 
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considering a single soil type with a large range of OC concentrations resulting from a range of long-term soil 
and crop management practices. Accordingly, soil samples were collected from several long-term field trials on 
a Brookston clay loam, and relationships among OC storage in bulk soil and on the clay (<2 μ m), silt (53–2 μ m) 
and sand (>53 μ m) particle size fractions were studied.

Results
OC concentrations in bulk soil and in the particle size fractions. The OC concentrations in bulk 
soil and in the sand, silt and clay sizes are presented in Table 1. Bulk soil OC concentrations ranged from 4.7 to 
70.8 g C kg−1 soil with an average of 20.8 g C kg−1. The concentration of OC associated with particle size fractions 
ranged from 0.4 to 66.9 g C kg−1 for sand, 1.9 to 64.4 g C kg−1 for silt, and 6.2 to 84.0 g C kg−1 for clay, with the 
averaged values of 6.4, 21.3, and 29.9 g C kg−1, respectively. The concentration of OC associated with particle 
size fractions on a bulk soil basis ranged from 0.1 to 28.3 g C kg−1 bulk soil for sand, 0.6 to 20.7 g C kg−1 bulk soil 
for silt, and 2.9 to 28.9 g C kg−1 bulk soil for clay, with the averaged values of 1.8, 7.1 and 11.8 g C kg−1 bulk soil, 
respectively.

Relationships between the OC concentrations on different sized particles (g C kg−1 particle fraction)  
and the OC in bulk soil (g C kg−1 bulk soil). Empirical exponential growth models (Equations 2 and 3)  
fitted the OC concentration data very well with P <  0.0001, and R2 =  0.73, 0.96 and 0.95 for sand, silt and clay, 
respectively (Fig. 1, Table 2). The corresponding OC rate constants (b values) varied greatly from 0.051 kg sand 
g−1 C for sand, to 0.014 kg clay g−1 C for clay, to 0.006 kg silt g−1 C for silt. Despite the fact that the clay rate con-
stant was a factor of 2.3 greater than the silt rate constant, the predicted storage capacity for the clay fraction 
(118 g C kg−1 clay particle, y0 +  a, Table 2) was only about half that for the silt fraction (202 g C kg−1 silt particle, 
y0 +  a, Table 2). The maximum OC concentration for the silt-sized particles was predicted by the model to occur 
when the bulk soil organic C concentration was at ~700 g C kg−1 whereas the maximum OC concentration in the 
clay-size fraction occurred when the bulk soil C was ~250 g kg−1. From the perspective of increasing bulk soil 
carbon levels over time, the clay sized particles would become saturated with C far before the silt particles, while 
the OC in the sand sized particle would continue to increase as bulk soil OC increases (Fig. 1, Table 2).

Proportions of OC in size fractions relative to OC in bulk soil. The relative proportions of OC in 
the soil particle size fractions varied with OC concentration in bulk soil (Fig. 2, Table 3). When bulk soil OC 

Bulk soil Particle size distribution
Carbon concentrations, 

particle size basis
Carbon concentrations, 

bulk soil basis

OC* Sand* Silt* Clay* Sand Silt Clay Sand Silt Clay

(g kg−1) (g kg−1 bulk soil) (g C kg−1 particle) (g C kg−1 bulk soil)

Max 70.8 423 407 495 66.9 64.4 84.0 28.3 20.7 28.9

Min 4.7 200 261 236 0.4 1.9 6.2 0.1 0.6 2.9

Mean 20.8 265 327 408 6.4 21.3 29.9 1.8 7.1 11.8

Median 21.4 256 331 404 4.0 22.1 31.8 1.0 7.5 12.9

s.d. (n= 271) 9.9 32.2 22.5 38.5 8.2 11.1 12.4 2.8 3.9 4.2

CV (%) 47.4 12.1 6.9 9.4 128 52.1 41.4 151 54.4 35.8

Table 1.  Selected properties of bulk soil and soil particle size fractions (sand, silt, clay). * OC, organic 
carbon; Sand, 53–2000 μ m; Silt, 2–53 μ m; Clay, < 2 μ m.

Figure 1. Relationships between the organic carbon (OC) concentration in soil particle size fractions and 
OC in bulk soil. 
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concentrations were low (10 to 15 g kg−1 soil), over 70% of OC was associated with clay, less than 5% with sand, 
and the remainder with silt. Increasing bulk soil OC resulted in deceases in the proportion of OC on clay, and 
compensating increases in the proportions of OC on sand and silt fractions (Fig. 3). When the concentration of 
bulk soil OC rose to 20 to 30 g C kg−1, which is typical in the region for near surface (0–10 cm) Brookston clay 
loam under grain production, the proportion of OC in clay fraction dropped to 50–60%, while that in silt and 
sand fractions increased to 30–35% and 15%, respectively. With further increases in bulk soil OC up to 60 g C 
kg−1 soil, the proportion of OC associated with clay dropped to below 40%, while that in silt and sand fractions 
increased to about 30% (Fig. 2).

Discussion
Segregating OC into several pools with different decay rates is common for soil organic carbon sequestration 
models1,11,21. The conceptual nature of these pools makes the individual pools only very loosely associated with 
measurable quantities obtained with existing analytical methods11. A commonly recognized and tested OC model 

Sand (53–2000 μm) Silt (2–53 μm) Clay (<2 μm)

OC OC OC

y =  a × ebx y =  y0 +  (a1 − e-bx)

y0 – − 3.113 0

a (g kg−1) 2.075 205.4 118.3

b (g−1 kg) 0.051 0.006 0.014

R2 0.730 0.964 0.948

P value < 0.0001 < 0.0001 < 0.0001

Table 2.  Model constants (a, b, y0), coefficients of determination (R2) and probability value (P) for 
relationships between OC concentration in particle size fractions (y, g C kg−1 soil particle) and OC 
concentration in bulk soil (x, g C kg−1 soil).

Figure 2. Proportional changes of organic carbon (OC) on soil particle size fractions in response to 
increasing bulk soil OC. 

Carbon in Carbon in Carbon in

Sand 
(53–2000 μm) Silt (2–53 μm) Clay (<2 μm)

y =  a × ebx y =  a(1 − e−bx) y =  a × e−bx

a (%) 2.75 35.7 80.4

b (g−1 kg) 0.040 0.163 0.014

R2 0.620 0.444 0.734

P value < 0.0001 < 0.0001 < 0.0001

Table 3.  Model constants (a, b), coefficients of determination (R2) and probability value (P) for the 
proportional changes of organic carbon concentration (OC) in particle size fractions, y (%), as related to 
OC in bulk soil, x (g C kg−1 bulk soil).
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that assumes OC pools associated with clay and silt is that of Hassink’s5, which has been used to estimate the 
capacity of soil to preserve C through attachment to silt and clay particles. The concept of soil capacity to store or 
sequester OC has been applied to many soils across the world6–8,11,22. However, the relationship between silt +  clay 
content of soil and the amount of silt- and clay-protected soil C varied with different types of land use activities and 
clay type, as well as for different definitions of silt plus clay size class11. We eliminated the clay type (mineralogy)  
effect by studying one soil type (Brookston clay loam), and hence our relationships are primarily controlled by 
differences in carbon input or output induced by various management practices.

When bulk soil OC was < 20 g C kg−1 soil, up to 98% of the OC was associated with the silt +  clay size fraction, 
and when bulk soil OC was > 30 g C kg−1 soil, 70–80% of the OC was associated with silt +  clay. This indicates 
that the fine particle sizes (< 53 μ m) of Brookston clay loam play a key role in OC retention. In addition, the max-
imum soil OC associated with soil particles < 53 μ m diameter was much greater than the “protective capacity” 
or “saturation level” predicted by a recognized carbon storage model for Canadian soils (40 plus g C in clay +  silt 
fraction kg−1 soil)6; and furthermore, the amount of OC on fine particles continued to increase with increasing 
bulk soil OC with no sign of plateau.

The slope, (incremental rate of C associated with clay plus silt particles with increase in clay pus silt particle con-
tents), of the Carter et al.6 model (0.27) was comparable to the slope for the Hassink5 model (0.37), the Six et al.11  
model (0.21–0.41), and the Feng et al.8 model (0.33 for 2:1 minerals). This was surprising, as the size criterion for 
fine particles differed substantially between the Carter et al.6 model (< 53 μ m) and the other models (< 20 μ m).  
For Brookston clay loam under cash crop management, the Carter et al.6 model predicts saturation levels of 22.5–
33.7 g C kg−1 for silt +  clay (Fig. 3). However, OC on silt +  clay continued to increase to 40–45 g C kg−1 when bulk 
soil OC increased to 60–70 g C kg−1 due to long-term sod management (Fig. 3). It therefore seems that the OC 
storage/protective capacity of a soil can be determined by both the amount of fine particles and rate of C input, 
rather than solely by the amount of fine soil particles, as assumed by most carbon storage models.

Clay mineral surface area has been used in place of clay concentration to estimate the sequestration potential 
of soils. However, using sieved (<2 mm) topsoil and labelled organic carbon, Vogel et al.20 found that only some of 
the clay-sized surfaces can bind organic matter. Surprisingly, Vogel et al.20 noted that < 19% of visible clay mineral 
surfaces accumulated labelled OC, and this OC was found to be preferentially associated with organo-mineral 
clusters with rough surfaces. Other studies have also found that organic carbon is unevenly distributed on clay 
surfaces, and does not cover the mineral surface as a monolayer23,24. Although different soil minerals have dif-
ferent specific surface areas which are positively correlated with OC in bulk soil and on soil fractions13,25,26, few 
studies have examined the OC holding capacity of soil minerals except Keil et al.12 and Mayer13 who proposed the 
monolayer-equivalent C loading of ~1 mg C m−2 as a potential maximal OC associated with fine particles based 
on data from marine sediments and upland soils. Soils with OC loading less than ~1 mg C m−2 are more likely 
to represent agricultural soils or deep soil horizons with low C inputs24,27; therefore, the concept of ~1 mg C m−2 
of holding capacity may not be an accurate estimate of maximal OC sequestration. Our results support the view 
that only a limited portion of fine mineral surfaces contribute to OC sequestration and more work is needed to 
elucidate the impact of amount of carbon input on OC saturation levels.

The Brookston clay loams used in this study are poorly drained Dark Grey Gleysols with relatively uniform 
clay mineralogy and clay content down to 100 cm28. Our large range of soil OC concentrations reflects differences 
in sampling depth and agronomic management, including cropping, tillage, and organic amendment applica-
tions. We trust that this large range of soil OC concentrations for one soil type (Brookston clay loam) provided a 
unique opportunity to look at the relationship between OC “saturation” associated with fine particles (<53 μ m) 
and the concentrations of OC in bulk soil. Empirical carbon sequestration models suggest that OC accumulation 
on fine soil particles reaches a maximum concentration; however, the concentrations of OC on the fine fraction of 
Brookston clay loam is far below the modelled “potential maximal levels”, particularly for the OC in the silt-sized 

Figure 3. Relationship between organic carbon concentration (OC) in the silt + clay particle size fraction 
(y) and in bulk soil for Brookston clay loam. The 3 horizontal lines depict mean and range of OC storage 
capacity on silt plus clay using the Carter et al. (2003) carbon sequestration model.
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fraction. The OC concentrations associated with fine particles in cropped Brookston clay loam (excluding sod) 
are about 20–25 g C kg−1 soil, which are substantially below the saturation levels of 77 g C kg−1 for OC predicted 
by the model (Table 2). These results may suggest that the so-called “protective capacity” or “the maximal level” 
of OC on fine particles of Brookston clay loam are actually a “steady state” equilibrium level which is much less 
than the total/absolute saturation level, and which is at least partially determined by the cropping system. This is 
consistent with the view of Torn29 that OC protection/sequestration varies with soil environment. Although we 
believe that the influence of soil texture on soil OC storage capacity was not as important as carbon input in this 
study, the authors acknowledge that soil texture could have been a greater factor if a wider range of soil textures 
were used in this study.

Using the “protective capacity” concept, Hassink5 proposed that if the amount of soil OC is below the “storage  
capacity” of the fine particles, adding organic matter will preferentially increase OC in the fine particles  
(silt plus clay), and Carter2 further proposed that this increase will continue until the fine particle “saturation 
level” is reached. Tsutsuki and Kuwatsuka16 and Carter et al.6 also found in their models that soil OC in coarse 
size fractions would increase only when soil OC in the clay plus silt sized fractions was at or near their predicted 
OC storage capacity. This appears consistent with our findings in that OC in the sand fraction of Brookston clay 
loam increased only after the OC concentration in bulk soil exceeded about ~25–30 g C kg−1. This level of soil OC 
(25–30 g C kg−1) is typical for the near-surface of cash-cropped Brookston clay loam in this study, and appears to 
be “steady state equilibrium” for the current management systems. In contrast to other studies, however, we found 
that not only sand OC, but also silt and clay OC, continued to increase with increasing bulk soil OC.

In summary, the ability of clay and silt to “store” OC appears to exist for Brookston clay loam soil, but the 
apparent OC storage capacity of the clay and silt fraction seems much greater than the capacity predicted by 
existing OS sequestration models. Although the OC on the sand fraction of Brookston clay loam showed a sharp 
increase after the OC on the clay fraction reached a certain level, the OC on clay and silt continued to increase at a 
reduced rate. These results support our hypothesis that literature estimates of OC storage capacity on clay and silt 
can be substantially underestimated. It is also appears that soil carbon sequestration is determined by more than 
the “protective capacity” of the silt plus clay particle sizes.

Methods
The Brookston clay loam soil (Canadian Classification: Orthic Humic Gleysol; USDA Soil Taxonomy: fine, loamy, 
mixed mesic Typic Argiaquoll) at the field site (Eugene Whelan Research Farm, Agriculture and Agri-Food 
Canada, Woodslee, Ontario, lat. 42°13′N, long. 82°44′W) is a poorly drained lacustrine soil with an average plow 
layer OC concentration of 20.8 g C kg−1, and average plow layer texture of 265 g kg−1 sand, 327 g kg−1 silt, and 
408 g kg−1 clay. This is why most Brookston clay loam soil in these studies and in southwestern Ontario are system-
atically tile drained. The Brookston clay loam soils comprise about 80% of the agricultural land in Southwestern, 
Ontario, Canada. Soil samples were collected from three long-term field experiments, including: i) an organic 
amendment study which received one-time applications (fall 1997) of household food waste compost (75 Mg ha−1, 
150 Mg ha−1, 300 Mg ha−1), yard waste compost (75 Mg ha−1), and pig manure plus wheat straw compost (75 Mg 
ha−1) (see Yang et al.30 and Reynolds et al.31 for details); ii) a long-term fertilization and rotation experiment (initi-
ated 1959) consisting of three cropping treatments (continuous corn, corn-oat-alfalfa-alfalfa rotation, continuous 
bluegrass sod) and two fertilizer treatments (fertilized, not fertilized) with each phase of the rotation present 
every year (see Drury et al.32 for details); and iii) a long-term tillage study (initiated in 1983 and modified in 1996) 
with corn under moldboard plow tillage, ridge tillage and no-tillage, plus continuous Kentucky bluegrass sod  
(see Yang et al.33 for details).

Soil samples were collected 10 years after initiation of the organic amendment study, 50 years after initia-
tion of the fertilization and crop rotation study, and 24 years after initiation of the tillage study. A total of 221 
soil cores (3.3 cm diameter) were obtained using a tractor-mounted Concord soil sampler, fitted with polycar-
bonate tube inserts. The soil cores were cut into six segments (0–5, 5–10, 10–20, 20–30, 30–40, and 40–60 cm) 
for the organic amendment and fertilization-rotation studies, and into five segments (0–5, 5–10, 10–20, 20–30, 
30–40 cm) for the tillage study. Replicate samples from the same depth were pooled within each experiment and 
visible crop residues removed. The pooled samples were passed through a 2 mm sieve and air-dried, and then 
separated into the clay (< 2 μ m), clay +  silt (< 53 μ m), and sand (53–2000 μ m) particle size fractions using son-
ication34. Sonication was performed on a 20 g soil suspension (oven-dry equivalent) with 80 mL distilled water  
(1:4 mass ratio) in a 250-mL glass beaker. The sonication probe tip was inserted 17 mm below the suspension sur-
face. Three replicate suspensions were analyzed for each soil sample. The samples were sonicated with an energy 
level of 750 J mL−1 soil suspension. The concentrations of OC in bulk soil, and in the sand, clay, and silt +  clay 
fractions were determined using a CN 2000 analyzer (LECO Corporation, MI, USA). Because the soil is free of 
carbonates, the total C concentration is equivalent to the soil OC concentration. The OC in the silt fraction was 
calculated by weight proportion using34:

=
× − ×

−
+ +

+
C

M C M C
M M

( ) ( )
( ) (1)

si
si cl si cl cl cl

si cl cl

where Msi+cl is weight percentage (%) of the silt +  clay fraction, Mcl is weight percentage of the clay fraction, and 
Csi, Ccl and Csi+cl are the organic carbon concentrations (g C kg−1 soil) in the silt, clay, and silt +  clay fractions, 
respectively.

Relationships among OC concentrations on different soil particle sizes and bulk soil were characterized using 
SigmaPlot V12.0 (SSI, San Jose, California) to (best) curve-fit various single-pool growth models to OC data. 
Since the OC in sand size particles grew exponentially with no apparent maximum, equation (2) was used for the 
sand model:
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=y ae (2)bx

where y (g kg−1 soil) and a (g kg−1 soil) are, respectively, the current and antecedent concentrations of OC on 
sand-size particles, b (kg soil g−1) is a constant describing the rate of accumulation/depletion of OC, and x  
(g kg−1 soil) is the concentration of OC in bulk soil. For silt and clay, an exponential growth to maximum model 
produced the best fits:

= + − −y y a e(1 ) (3)
bx

0

where y (g kg−1 soil) and y0 (g kg−1 soil) are, respectively, the current and antecedent OC concentrations on silt or 
clay, (y0 +  a) (g kg−1 soil) is the storage capacity or saturation level for OC, b (kg soil g−1) is a constant describing 
the rate of accumulation/depletion of OC, and x (g kg−1 soil) is the concentration of OC in bulk soil. Relationships 
among the proportional changes of OC in particle size fractions as related to OC content in bulk soil were also 
evaluated using best empirical curves (Table 3).

References
1. Parton, W. J. et al. Quantitative modeling of soil forming processes (eds Bryant, R. B. & Arnold, R. W.) Ch. 9, 147–167 (SSSA Spec. 

Publ. 39. ASA, CSSA and SSA, Madison, Wisconsin, USA, 1994).
2. Carter, M. R. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. 

Agron. J. 94, 38–47 (2002).
3. Oades, J. M. The retention of organic matter in soils. Biogeochem. 5, 35–70 (1988).
4. Carter, M. R. Structure and soil organic matter storage in agricultural soils (eds Carter, M. R. & Stewart, B. A.) Ch. 1, 3–11  

(CRC Press, 1995).
5. Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant & Soil 191, 77–87 

(1997).
6. Carter, M. R., Angers, D. A., Gregorich, E. G. & Bolinder, M. A. Characterizing organic matter retention for surface soils in eastern 

Canada using density and particle size fractions. Can. J. Soil Sci. 83, 11–23 (2003).
7. Liang, A. Z. et al. Soil organic carbon changes in particle-size fractions following cultivation of Black soils in China. Soil Till. Res. 

105, 21–26 (2009).
8. Feng, W., Plante, A. F. & Six, J. Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeoche. 112, 

81–93 (2013).
9. Eludtondo, J., Angers, D. A., Laverdiere, M. R. & N’Dayegamiye, A. Eude comparative de l’agregation et de la matiere organique 

associee aux fractions granulometriques de sept sols sous culture de mais ou en praire. Can. J. Soil Sci. 70, 395–402 (1990).
10. Matus, F. J., Lusk, C. H. & Maire, C. R. Effects of soil texture, carbon input rates, and litter quality on free organic matter and nitrogen 

mineralization in Chilean rain forest and agricultural soils. Commu. Soil Sci. Plant Anal. 39, 187–201 (2008).
11. Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. 

Plant & soil 241, 155–176 (2002).
12. Keil, R. G. et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic 

separation using SPLITT-fractionation. Geochim. et Cosmochim. Acta 58, 879–893 (1994).
13. Mayer, L. M. Relationships between mineral surface and organic carbon concentrations in soils and sediments. Chem. Geol. 114, 

347–363 (1994).
14. Kay, B. D. Soil processes and the carbon cycle (eds Lal, R. et al.) Ch.13, 169–197 (CRC Press, 1997).
15. Qin, S. et al. Soil organic carbon, nutrients and relevant enzyme activities in particle-size fractions under conservational versus 

traditional agricultural management. Appl. Soil Ecol. 45, 152–159 (2010).
16. Tsutsuki, K. & Kuwatsuka, S. Characterization of soil organic matter in particle size fractions obtained from different types of soils. 

In Transaction of 14th Interna. Congr. of Soil Sci. Vol. V., Osaca, Japan. pp. 242–247 (1990).
17. Jagadamma, S. & Lal, R. Distribution of organic carbon in physical fractions of soils as affected by agricultural management. Soil 

Biol. & Biochem. 46, 543–554 (2013).
18. Shrestha, B. M., Singh, B. R., Sitaula, B. K., Lal, R. & Bajracharya, R. M. Soil Aggregate- and Particle-Associated Organic Carbon 

under Different Land Uses in Nepal. Soil Sci. Soc. Am. J. 71, 1194–1203 (2007).
19. He, N. P., Wu, L., Wang Y. S. & Han, X. G. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration 

chronosequence in northern China. Geoderma 150, 302–308 (2009).
20. Vogel, C. et al. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat. Communi. 5, 

2947. doi: 10.1038/ncomms3947 (2014).
21. Paustian, K. Parton, W. J. & Persson. J. Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots. 

Soil Sci. Soc. Am. J. 56, 476–488 (1992).
22. Zhao, L. P. et al. Soil organic carbon in clay and silt sized particles in Chinese mollisols: relationship to the predicted capacity. 

Geoderma 132, 315–323 (2006).
23. Mayer, L. M. & Xing, B. S. Organic matter-surface area relationships in acid soils. Soil. Sci. Soc. Am. J. 65, 250–258 (2001).
24. Wagai, R., Mayer, L. M. & Kitayama, K. Extent and nature of organic coverage of soil mineral surfaces assessed by a gas sorption 

approach. Geoderma 149, 152–160 (2009).
25. Kahle, M., Kleber, M. & Jahn, R. Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase 

variables. J. Plant Nutr. Soil Sci. 165, 141–149 (2002).
26. Zinn, Y. L., Lal, R., Bigham, J. M. & Resck, D. V. S. Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: 

texture and mineralogy. Soil Sci. Soc. Am. J. 71, 1204–1214 (2008).
27. Wiseman, C. L. S. & Püttmann, W. Interactions between mineral phases in the preservation of soil organic matter. Geoderma 134, 

109–118 (2006).
28. Richards, N. R., Caldwell, A. G. & Morewick, F. F. Soil survey of Essex County (Department of Agriculture and the Ontario 

Agricultural College, 1949).
29. Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and 

turnover. Nature 389, 170–173 (1997).
30. Yang, X. M. et al. Organic carbon and nitrogen stocks in a clay loam soil 10 years after a single compost application. Can. J. Soil Sci. 

94, 357–363 (2014).
31. Reynolds, W. D., Drury, C. F., Tan, C. S. & Yang, X. M. Temporal effects of food waste compost on soil physical quality and 

productivity. Can. J. Soil Sci. 95, 251–268 (2015).
32. Drury, C. F. at al. Impacts of 49–51 years of fertilization and crop rotation on growing season nitrous oxide emissions, nitrogen 

uptake and corn yields. Can. J. Soil Sci. 94, 421–433 (2014).



www.nature.com/scientificreports/

7Scientific RepoRts | 6:27173 | DOI: 10.1038/srep27173

33. Yang, X. M., Drury, C. F., Reynolds, W. D. & Tan, C. S. Impacts of long-term and recently imposed tillage practices on the vertical 
distribution of soil organic carbon. Soil Till. Res. 100, 120–124 (2008).

34. Yang, X. M., Drury, C. F., Reynolds, W. D. & MacTavish, D. C. Use of sonication to determine the size distributions of soil particles 
and organic matter. Can. J. Soil Sci. 89, 413–419 (2009).

Acknowledgements
We gratefully acknowledge the technical assistance of Mary-Anne Reeb, John Goerzen, Dr. Tom Oloya, Wayne 
Calder and Don MacTavish. Funding for this work was provided by the Science and Technology Branch of 
Agriculture and Agri-Food Canada.

Author Contributions
X.M.Y. and C.F.D. performed determination on soil properties. X.M.Y., C.F.D., W.D.R. and J.Y.Y. interpreted the 
results and wrote the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Yang, X.M. et al. How do changes in bulk soil organic carbon content affect carbon 
concentrations in individual soil particle fractions? Sci. Rep. 6, 27173; doi: 10.1038/srep27173 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

	Results

	OC concentrations in bulk soil and in the particle size fractions. 
	Relationships between the OC concentrations on different sized particles (g C kg−1 particle fraction) and the OC in bulk so ...
	Proportions of OC in size fractions relative to OC in bulk soil. 

	Discussion

	Methods

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Relationships between the organic carbon (OC) concentration in soil particle size fractions and OC in bulk soil.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Proportional changes of organic carbon (OC) on soil particle size fractions in response to increasing bulk soil OC.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Relationship between organic carbon concentration (OC) in the silt + clay particle size fraction (y) and in bulk soil for Brookston clay loam.
	﻿Table 1﻿﻿. ﻿  Selected properties of bulk soil and soil particle size fractions (sand, silt, clay).
	﻿Table 2﻿﻿. ﻿  Model constants (a, b, y0), coefficients of determination (R2) and probability value (P) for relationships between OC concentration in particle size fractions (y, g C kg−1 soil particle) and OC concentration in bulk soil (x, g C kg−1 soil).
	﻿Table 3﻿﻿. ﻿  Model constants (a, b), coefficients of determination (R2) and probability value (P) for the proportional changes of organic carbon concentration (OC) in particle size fractions, y (%), as related to OC in bulk soil, x (g C kg−1 bulk soil).



 
    
       
          application/pdf
          
             
                How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27173
            
         
          
             
                X. M. Yang
                C. F. Drury
                W. D. Reynolds
                J. Y. Yang
            
         
          doi:10.1038/srep27173
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep27173
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep27173
            
         
      
       
          
          
          
             
                doi:10.1038/srep27173
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27173
            
         
          
          
      
       
       
          True
      
   




