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Abstract
Models of sequence evolution typically assume that all sequences are possible. How-
ever, restriction enzymes that cut DNA at specific recognition sites provide an example
where carrying a recognition site can be lethal. Motivated by this observation, we
studied the set of strings over a finite alphabet with taboos, that is, with prohibited
substrings. The taboo-set is referred to as T and any allowed string as a taboo-free
string.We consider the so-calledHamming graphΓn(T), whose vertices are taboo-free
strings of length n and whose edges connect two taboo-free strings if their Hamming
distance equals one. Any (random) walk on this graph describes the evolution of a
DNA sequence that avoids taboos. We describe the construction of the vertex set of
Γn(T). Then we state conditions under which Γn(T) and its suffix subgraphs are con-
nected. Moreover, we provide an algorithm that determines if all these graphs are
connected for an arbitrary T. As an application of the algorithm, we show that about
87% of bacteria listed in REBASE have a taboo-set that induces connected taboo-free
Hamming graphs, because they have less than four type II restriction enzymes. On
the other hand, four properly chosen taboos are enough to disconnect one suffix sub-
graph, and consequently connectivity of taboo-free Hamming graphs could change
depending on the composition of restriction sites.
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1 Introduction

In bacteria, restriction enzymes cleave foreign DNA to stop its propagation. To do so,
a double-stranded cut is induced by a so-called recognition site, a DNA sequence of
length 4–8 base pairs (Alberts et al. 2004). As part of their restriction–modification
(R–M) system, bacteria can escape the lethal effect of their own restriction enzymes
by modifying recognition sites in their own DNA (Kommireddy and Nagaraja 2013).
Nevertheless, Gelfand and Koonin (1997) and Rocha et al. (2001) found a significant
avoidance of recognition sites in bacterial DNA, and Rusinov et al. (2015) showed that
this avoidance was characteristic of type II R–M systems. Also in bacteriophages, the
avoidance of the recognition sites is evolutionary advantageous (Rocha et al. 2001),
mainly for non-temperate bacteriophages affected by orthodox type II R–M systems
(Rusinov et al. 2018a). Therefore in those instances the recognition site is, as we call
it, a taboo for host and foreign DNA.

Although avoidance of recognition sites is well studied, e.g. by Rusinov et al.
(2018b), taboo free DNA evolution has not yet been modelled. To initiate models
of sequence evolution with taboos, we studied the Hamming graph Γn(T), whose
vertices are strings of length n over a finite alphabet Σ not containing any taboos
of the set T as subsequence. Two vertices of the Hamming graph are adjacent if the
corresponding taboo-free strings have Hamming distance equal to one. In biological
terms, the sequences differ by a single substitution.

We note that, for a binary alphabet Σ = {0, 1} and taboo-set T = {11}, the corre-
sponding Hamming graphs Γn(T) are known as Fibonacci cubes. Some properties of
the Fibonacci cubes like the Wiener Index or the degree distribution were surveyed
by Klavžar (2013). Further results have been obtained for taboo-sets forbidding arbi-
trary numbers of consecutive “1”s, T = {1 . . . 1}, by Hsu and Chung (1993), or when
T = {s} for an arbitrary binary string s by Ilić et al. (2012). Recently, the equivalent
problem of lattice paths that avoid some patterns has been described using automata
and generating functions by Asinowski et al. (2018, 2020).

We are not so much interested in enumerative properties of Hamming graphs.
We want to define conditions under which the Hamming graphs stay connected for
arbitrary finite alphabets and arbitrary finite taboo-sets. From an evolutionary point
of view, connectivity guarantees that any taboo-free sequence can be generated by
point mutations from any initial taboo-free sequence without containing a taboo-
string during evolution. To include further biological realism, we will also study the
connectivity of subgraphsΓ s

n (T) of theHamming graph, where s is a taboo-free suffix.
Suffix s can be viewed as a conserved DNA fragment, that is, a sequence that remained
invariable during evolution (Shoemaker and Fitch 1989; Fitch and Margoliash 1967).

The inclusion of Hamming graphs with a constant suffix provides more general
results, because Γ e

n (T) = Γn(T), where e is the empty string. Given a taboo-set T, if
for every taboo-free string s and integer n the Hamming graph Γ s

n (T) is connected,
then evolution can explore the space of taboo-free sequences by simple point mutation,
no matter which DNA suffix fragments remain invariable, as long as the taboo-set T

does not change in the course of evolution.
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Structure of the space of taboo-free sequences 1031

Fig. 1 Graph Γn(T) for n ∈ [1, 5] for binary alphabet Σ = {0, 1} and T = {11, 000}. Set Vn+1(T) is
constructed by adding every allowed letter at the beginning of each string in Vn(T)

2 Motivating examples and non-technical presentation of key results

Here, we give a non-technical description of the essential results to determine con-
nectivity. The subsequent sections provide a more technical and precise description of
the central results.

Consider an alphabet Σ , for example Σ = {0, 1}. In a Hamming graph of
length n, all possible words of length n are vertices, and two of these vertices are
joined by an edge if they differ in exactly one position. A taboo-set is a set of forbidden
subwords, such as T = {11, 000}. Then, to construct a taboo-free Hamming graph
Γn(T), we simply have to erase all words of the Hamming graph of length n containing
those taboos. Figure 1 provides an example where Γn(T) is disconnected for n ≥ 3.

Given some alphabet and some taboo-set, deciding whether graph Γn(T) is con-
nected is not a trivial task. To see this, consider the four-nucleotide alphabet Σ =
{A, C, G, T }, which is our main object of interest. Figure 2 shows the connected
graph Γ3(T) for taboo-set T = {AA, AC, AG, C A, CC, CG, G A, GC, GG}. The
word T T T is a cut vertex, meaning that taboo-set T

∗ = T
⋃{T T T } yields the dis-

connected graph Γ3(T
∗).

Since the addition or deletion of one single taboo can have such an impact on
connectivity, we need a tool to determine the structure of the taboo-free Hamming
graphs. This tool is described in full generality at the end of Sect. 8. In the particular
case when Σ = {A, C, G, T }, our results can be simplified as follows.

(1) If the number of taboos is smaller than the size of the alphabet, that is if
|T| < 4, then all graphs Γ s

n (T) are connected (Corollary 25.b). For example, given
T = {AAT T , CCGG}, all taboo-free Hamming graphs are connected.
Similarly, if the size of the set of all starting letters of taboos is smaller than the
size of the alphabet, then all taboo-free Hamming graphs are connected (Corollary
25.a). This applies for taboo-setT={AA, AC, AG, C A, CC, CG, G A, GC, GG},
because the set of initial letters is {A, C, G} and |{A, C, G}| = 3 < 4.

(2) Proposition 24 describes a slightly more complex sufficient condition to deter-
mine connectivity. Given T, delete the first letter of each taboo to con-
struct the set Ψ (T). For example, if T = {AAA, CC A, GG A, T T T }, then
Ψ (T) = {AA, C A, G A, T T }.

123



1032 C. Manuel, A. von Haeseler

Fig. 2 Graph Γ3(T), where Σ = {A, C, G, T } and T = {AA, AC, AG, C A, CC, CG, G A, GC, GG}.
Vertex T T T is a cut vertex, because if we remove T T T and its incident edges (dashed lines, coloured
red), then the resulting graph is disconnected. Consequently, graph Γ3(T

∗) induced by taboo-set T
∗ =

T
⋃{T T T } is disconnected. Red, blue and yellow edges connect vertices with a different distribution of

letter T (colour figure online)

In set Ψ (T), consider every pair of strings with Hamming distances 1 or 0. For
example, the pair (AA, AA) has distance 0; the pair (AA, C A) has distance 1;
and the pair (AA, T T ) has distance 2. If every pair with Hamming distance 1 or
0 can be taboo-free extended to the left by the same letter, then all graphs Γ s

n (T)

are connected.
For example, the pair (AA, AA) can be extended by C , because C AA is taboo-
free, and the pair (AA, C A) can be extended by T , because T AA and T C A are
taboo-free. After checking all possible pairs with Hamming distance 0 or 1, we
see that all such pairs in Ψ (T) are extendable to the left, and thus taboo-set T

generates connected taboo-free Hamming graphs.
(3) If Proposition 24 cannot be applied, thenwe apply the characterization of Theorem

22. Assume for example that T = {AAA, CC A, T AA, G AA}. Since the pair
{AA, C A} ⊂ Ψ (T) with Hamming distance one is not taboo-free extendable to
the left by any letter, we proceed as follows. First we construct suf(T), the set
of all proper suffixes of T. In our example, suf(T) = {AA, C A, A, e}, where e
is the string with no letters. Now we consider, for every suffix r ∈ suf(T) the
graph Γ r|r |+M (T), where |r | is the length of r and M is the length of the longest
taboo(s) in T. If all graphs Γ r|r |+M (T) are connected, then every graph Γ s

n (T)

is connected. In our example, graphs Γ AA
5 (T), Γ C A

5 (T), Γ A
4 (T) and Γ3(T) are

connected, implying that all taboo-free Hamming graphs are connected.
When graph Γ r|r |+M (T) is disconnected for some r ∈ suf(T), then suffix r induces
disconnected taboo-free Hamming graphs of the form Γ r

n (T) for n ≥ |r | + M .
Therefore evolution cannot explore the whole space of taboo-free sequences. This
is the case for taboo-set T

∗ of Fig. 2, where r = e yields the disconnected graph
Γ3(T

∗).
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Structure of the space of taboo-free sequences 1033

3 Outline

We will characterize taboo-sets T such that every Hamming graph of the form Γ s
n (T)

is connected. To this end, we describe in Sect. 5 basic properties of taboo-sets. In
Sect. 6, we introduce a very general type of taboo-sets, called left proper (Definition
4), which are our main object of study. In Proposition 11.b we show that, to construct
graphΓ s

n (T), we only need the longest prefix of s which is a suffix of a taboo, whichwe
call s[1, ks]. In Sect. 7we state the graph isomorphismΓ s

n (T) � Γ
s[1,ks ]

n (T) (Theorem
16). In Sect. 8 we explain how the edges of a quotient graph are related to the structure
of graph Γ n

n (T) (Proposition 17).
Combining all these results, in Sect. 8 we characterize the connectivity of Hamming

graphs Γ s
n (T). We prove by induction that the connectivity of a small number of

quotient graphs implies the connectivity of all Hamming graphs with long suffixes
(Proposition 20). This result can be used to prove connectivity of Hamming graphs
with short suffixes (Proposition 21). These two results yield the characterization of
the connectivity of every suffix Hamming graph in Theorem 22. Section 9 provides
examples of bacterial taboo-sets and their connectivity.

4 Basic notations

Wewill introduce some standard notations concerning strings as well as some relevant
terms from graph theory.

4.1 Strings

We will use the term string to refer to a sequence of symbols over an arbi-
trary finite alphabet Σ = {a1, . . . , am}, where m ≥ 2, while (DNA) sequence is
reserved for biological contexts, where the alphabet consists of the four nucleotides
Σ = {A, C, G, T }.

We denote the set of strings of length n over the alphabet Σ by Σn . The length of a
string s is denoted by |s|. The empty string will be denoted by e, and satisfies |e| = 0
and {e} = Σ0.

Given a string s = b1 . . . bn ∈ Σn , the expression

s[i, j] :=
{

bi . . . b j if 1 ≤ i ≤ j ≤ n

e otherwise

denotes the substring of s starting at the i th position and ending at the j th position,
and e when this substring is not well-defined (for example if j = 0). In particular
s[1, j] is a prefix of s that ends at position j and s[i, n] is a suffix of s that starts at
position i . A substring, prefix or suffix is called proper if it is not the entire string s.
For a set of strings S, we define the substrings from the ith to the jth position of S
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1034 C. Manuel, A. von Haeseler

as

S[i, j] := {s[i, j] | s ∈ S}.

We also need the set of proper suffixes of S, defined as

suf(S) :=
⎛

⎝
⋃

s∈S

⋃

i∈[2,|s|]
s[i, |s|]

⎞

⎠
⋃

{e}.

where i ∈ [2, |s|] refers to all integers i within the interval [2, |s|]. It should not be
confused with substring s[2, |s|] of s.

Example 1 If S = {ACG, GGG, T T C, CC} then

suf(S) = {CG, G, GG, T C, C, e}.

If string s1 is substring of string s2, we write s1 ≺ s2, while s1 ⊀ s2 denotes that
s1 is not a substring of s2. By convention, e ≺ s for any string s. For strings s1 and
s2, we define s1s2 as the concatenation of s1 and s2. Note that es = se = s for any
s. For a string s and a set of strings S = {s1, . . . sk}, the concatenation of s with all
elements in S is denoted by s ◦ S := {ss1, . . . ssk}. If S1 and S2 are disjoint sets, then
the disjoint union of S1 and S2 will be denoted by S1

⊔
S2.

Finally, given two strings s1, s2 of equal length, d(s1, s2) denotes their Hamming
distance, that is, the number of positions at which the corresponding symbols differ.

4.2 Graph theory

We will use common graph theory terminology following Wilson (1986). Let G =
(V , E) denote a simple, undirected graph with vertex set V and edge set E . We say
that graph G1 = (V1, E1) is subgraph of G2 = (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2,
and we denote this as G1 ⊆ G2.

Given a graph G = (V , E) and a subset V1 ⊆ V , then the subgraph induced
by V1 in G, G(V1) = (V1, EV1), has vertex set V1 and, for any u, v ∈ V1, {u, v} ∈ EV1

iff {u, v} ∈ E .
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, denoted by G1 �

G2, if there exists a bijection f : V1 → V2 such that, for every u, v ∈ V1, {u, v} ∈ E1
iff { f (u), f (v)} ∈ E2. That is, G1 and G2 are isomorphic if there exists an edge-
preserving bijection between their vertex sets.

We will also need the quotient graph, as defined by Sanders and Schulz (2013), to
study the connectivity of Hamming graphs. To define it, consider a graph G = (V , E)

and a partition of its vertex set V , namely V = ⊔
b∈J Vb for some index set J . The

quotient graph of G, denoted as Q[G] = (J , E J ), is the graph whose vertices are J
and such that {b1, b2} ∈ E J iff an edge connects a vertex in Vb1 with a vertex in Vb2 .
Figure 3 gives an example of a quotient graph.
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Structure of the space of taboo-free sequences 1035

Fig. 3 Example of a quotient graph. For G = (V , E) on the left hand side, with V = {1, 2, 3, 4, 5, 6, 7, 8}
and partition V = Va

⊔
Vb

⊔
Vc

⊔
Vd , we obtain the quotient graph Q[G] on the right hand side

Our strategy to prove connectivity of taboo-free Hamming graphs will use the
following propositions, whose proof is simple enough to be omitted.

Proposition 1 Consider graph G = (V , E) and partition V = ⊔
b∈J Vb.

If every induced subgraph G(Vb) for b ∈ J is connected and the quotient graph
Q[G] is connected, then G is connected.

Proposition 2 For graph G = (V , E), the following statements are equivalent:

– G is connected.
– For every partition of V , the quotient graph Q[G] is connected.

5 Properties of taboo-sets

We will repetadly use of the following terminology.

Definition 1 – A finite set of strings T such that every t ∈ T satisfies |t | ≥ 2 is
called a taboo-set.

– Strings in T are called taboos.
– The length of the longest taboo(s) in T will be denoted by M := max {|t |}t∈T.
– A string is taboo-free if it does not contain any taboo of T as substring.
– Vn(T) denotes the set of taboo-free strings of length n.
– V s

n (T) denotes the set of strings in Vn(T) with suffix s.
– Similarly, s Vn(T) denotes all strings in Vn(T) with prefix s.

With Definition 1 in mind, we can prove some simple properties of taboo-sets.

Proposition 3 Given taboo-sets T1 and T2, it holds that:

(a) Set T1
⋃

T2 is a taboo-set
(b) For n ∈ N, Vn(T1)

⋂
Vn(T2) = Vn(T1

⋃
T2).

(c) If for every t1 ∈ T1 there exists t2 ∈ T2 such that t2 ≺ t1, then for any n ∈ N,
Vn(T2) ⊆ Vn(T1).

Proof (a) Every t ∈ T1
⋃

T2 has length at least 2, and thus T1
⋃

T2 is a taboo-set.

123



1036 C. Manuel, A. von Haeseler

(b) All strings s ∈ Vn(T1)
⋂

Vn(T2) satisfy t1 ⊀ s for all t1 ∈ T1 and t2 ⊀ s for all
t2 ∈ T2 this is equivalent to s satisfying t ⊀ s for all t ∈ T1

⋃
T2.

(c) Consider s ∈ Vn(T2). Assume that s /∈ Vn(T1); then there exists t1 ∈ T1 such
that t1 ≺ s. But there also exists a t2 ∈ T2 such that t2 ≺ t1, and thus t2 ≺ s, a
contradiction. Hence s ∈ Vn(T1). �
For a given n and T, we can find a taboo-set T

′ �= T such that Vn(T) = Vn(T′). In
this sense, taboo-sets are not unique, as we illustrate in the following proposition.

Proposition 4 For a string t and n ≥ |t | + 1, it holds that

Vn({t}) = Vn

(
(t ◦ Σ)

⋃
(Σ ◦ t)

)
.

Proof – ⊆ : Any taboo in T1 := (t ◦ Σ)
⋃

(Σ ◦ t) has t ∈ T2 := {t} as substring,
and thus Proposition 3.c implies Vn({t}) ⊆ Vn((t ◦ Σ)

⋃
(Σ ◦ t)).

– ⊇ : Assume that there exists an s ∈ Vn((t ◦Σ)
⋃

(Σ ◦ t))with t ≺ s. Since |s| = n
and n ≥ |t | + 1, the substring t is either preceded or followed by some symbol
a ∈ Σ. This contradicts {at, ta} ⊆ (t ◦ Σ) ∪ (Σ ◦ t). �

Proposition 4 implies that, for any T, we can construct many taboo-sets T
′ such that

Vn(T) = Vn(T′) as long as n ≥ max(M, M ′), where M and M ′ denote the length of
the longest taboo in T and T

′, respectively.

Example 2 If T = T1
⊔

T2 with T2 = (t ◦ Σ) ∪ (Σ ◦ t), Proposition 3.a and 4 imply
that T

′ := T1
⊔{t} satisfies Vn(T) = Vn(T′) for any n ≥ M . Repeating this process,

we can construct a taboo-set T
′ such that (t ◦ Σ)

⋃
(Σ ◦ t) � T

′ for any string t and
satisfying Vn(T) = Vn(T′) for any n ≥ M .

Example 2 and Proposition 4 motivate the following definition.

Definition 2 A taboo-set T isminimal if the following conditions hold:

(a) For every different t1, t2 ∈ T, it holds that t1 ⊀ t2.
(b) For every j ∈ [0, M − 1] and s ∈ Vj (T), set (s ◦ Σ)

⋃
(Σ ◦ s) is not a subset of

T.

Condition (a) is easy to justify: If string AA is a taboo, it is redundant that AAA be a
taboo. Condition (b) avoids unnecessarily complicated taboo-sets. For example, using
the four-nucleotide alphabet, taboo-setT = {AAA, AAC, AAG, AAT , C AA, G AA,

T AA} can be minimized as T
′ = {AA}. In general, one can minimize a taboo-set

according to Example 2.
Since we want to study taboo-free strings of arbitrary lengths, we need conditions

to concatenate taboo-free strings such that the concatenated sequence is taboo-free.
The following result gives such a condition.

Proposition 5 Given taboo-set T, consider three strings s1, s2, s3 such that s1s2 and
s2s3 are taboo-free and |s2] ≥ M − 1. Then s := s1s2s3 is taboo-free.
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Structure of the space of taboo-free sequences 1037

Proof If |s1| = 0 and |s3| = 0, then s = s2 is taboo-free, as desired. Now assume
either |s1| > 0 or |s3| > 0, yielding n := |s1| + |s2| + |s3| ≥ M . For each i ∈
[1, n − (M +1)], the fact that |s2| ≥ M −1 implies that either s[i, i + M − 1] ≺ s1s2
or s[i, i + M − 1] ≺ s2s3, hence each s[i, i + M − 1] is taboo-free and the result
follows. �

6 Prefixes and suffixes of a taboo-free string

Given a taboo-free string s, the construction of set V s
n (T) for n > |s| depends on

which string w can be concatenated to the left side of s, such that ws ∈ Vn(T). This
motivates the following definition.

Definition 3 Given a taboo-set T, consider a taboo-free string s and k ∈ N0. The
k-prefixes of s are the elements of the set Lk(s), defined as

Lk(s) :=
{
w ∈ Σk such that ws is taboo-free

}
= V s

|s|+k(T)[1, k].

If Lk(s) �= ∅, then we will say that s is k-prefixable.
Similarly, the k-suffixes of s, denoted Rk(s), are the strings w ∈ Σk such that sw ∈
V|s|+k(T), that is, Rk(s) := s V|s|+k(T)[|s|+1, |s|+ k]. When Rk(s) �= ∅, we say that
s is k-suffixable.

Example 3 If Σ = {A, C, G, T } and T = {C AA, G AA, T AA}, then L1(AA) = {A}
and L2(AA) = {AA}. Hence string AA is 1-prefixable and 2-prefixable. Moreover,
R1(AA) = {A, C, G, T }, hence string AA is 1-suffixable.

By construction, given s ∈ V|s|(T), for any k ∈ N0 it holds that

V s
k+|s|(T) = Lk(s) ◦ s. (1)

That is,V s
k+|s|(T) is Lk(s)with s concatenated.Moreover, the following proposition

shows that the k-prefixes of a string s induce a disjoint partition of the set V s
n (T).

Proposition 6 Given a taboo-set T and a taboo-free string s, consider integers k ∈ N0
and n ≥ k + |s|. It holds that

V s
n (T) =

⊔

w∈Lk (s)

V ws
n (T).

That is, the set V s
n (T) can be partitioned into the disjoint sets of taboo-free strings of

length n with suffix ws, where w ∈ Lk(s).

Proof If s is not k-prefixable, then Lk(s) = ∅ and V s
n (T) = ∅, hence the equation

holds. Otherwise, the inclusion ⊇ is clear, while the ⊆ follows from the fact that, for
any string w ∈ Σk preceding the suffix s, this w must necessarily belong to Lk(s). �
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Clearly, if a taboo-free string s is k∗-prefixable, then it is also k-prefixable for any
integer k < k∗, while nothing can be said a priori about the case k > k∗. Consequently,
we need to find conditions under which one can concatenate at least one symbol to
the left of a taboo-free string. We will first introduce such taboo-sets in Definition 4
and then characterize prefixability in Proposition 7.

Definition 4 A taboo-set T is called left proper if every s ∈ VM (T) is 1-prefixable.
Analogously, T is right proper if every s ∈ VM (T) is 1-suffixable.

Example 4 If Σ = {A, C, G, T } and T = Σ ◦ A, then AC ∈ V2(T) and AC is not
1-suffixable. Thus, T is not left proper.

Proposition 7 Consider a left proper taboo-set T and a taboo-free string s such that
one of the following conditions holds:

(a) |s| ≥ M
(b) |s| ≤ M − 1 and s is (M − |s|)-prefixable

Then s is k-prefixable for every k ∈ N.

Proof If condition (a) applies, then the prefix s[1, M] ∈ VM (T) is 1-prefixable,
because T is left proper. That is, there exists a ∈ Σ with as ∈ V1+|s|(T). Pro-
ceeding analogously with (as)[1, M], we infer that s is 2-prefixable. Continuing with
this process, we deduce that s is k-prefixable for any k ∈ N.
If condition (b) holds, then we can take any string in V s

M (T) and proceed as we did
assuming (a). �

We mainly study left proper taboo-sets due to Proposition 7, because the existence
of arbitrary k-prefixes is necessary in many of our proofs. Analogous results for right
proper taboo-sets are obtained by reversing the order of the symbols composing the
string.

According to Proposition 7, if the length of a taboo-free string is at least M , then
the taboo-free string can prefixed for arbitrary lengths. Otherwise, one needs to check
the (M − |s|)-prefixability of this string. To that end, the following result comes in
handy.

Proposition 8 Consider a left proper taboo-set T and a taboo-free string s.

(a) If |s| ≤ M − 1 and s /∈ suf(VM (T)), then V s
n (T) = ∅ for n ≥ M.

(b) If either |s| ≥ M or s ∈ suf(VM (T)), then V s
n (T) �= ∅ for n ≥ max(|s|, M).

Proof (a) If 0 ≤ |s| ≤ M −1 and s /∈ suf(VM (T)), since suf(V s
M (T)) ⊆ suf(VM (T)),

it holds that V s
M (T) = ∅. This implies that V s

n (T) = ∅ for every n ≥ M , because
otherwise

∅ � V s
n (T)[n − M + 1, n] ⊆ V s

M (T),

which contradicts V s
M (T) = ∅.
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(b) If |s| ≥ M , since T is left proper, Proposition 7.a implies that s is k-prefixable
for every k ∈ N. Thus, V s

n (T) �= ∅. Similarly, if s ∈ suf(VM (T)), then s is
(M − |s|)-prefixable, and thus Proposition 7.b implies that s is k-prefixable for
every k ∈ N. �
Note that, since the assumptions of Proposition 8.a are the negation of the assump-

tions of Proposition 8.b, in Proposition 8 we have proved that V s
n (T) = ∅ for n ≥ M

iff string s satisfies |s| ≤ M − 1 and s /∈ suf(VM (T)).
To study the connectivity of Hamming graphs Γ s

n (T), we need to know whether
two different strings have a k-prefix in common. Thus, we introduce the following.

Definition 5 Given a taboo-set T, we say that two taboo-free strings s1 and s2
(maybe of different length) are left k-synchronized if Lk(s1)

⋂
Lk(s2) �= ∅. If

Rk(s)
⋂

Rk(r) �= ∅, then we say that s1 and s2 are right k-synchronized.

In words, two taboo-free strings are left k-synchronized if they are k-prefixable by
at least one stringw. Clearly, two taboo-free strings s1, s2 that are left k∗-synchronized
are also left k-synchronized for any k ≤ k∗ (one simply has to “cut” the k symbols
on the left of Lk∗

(s1)
⋂

Lk∗
(s2)). The following proposition states when we can also

guarantee k-synchronization for k > k∗:

Proposition 9 Consider a left proper taboo-set T and two taboo-free strings s1, s2,
with length greater than zero, such that s1 and s2 are left (M − 1)-synchronized. Then
s1 and s2 are left k-synchronized for any k ∈ N.

Proof If k ≤ M−1, then the assertion is true since s1 and s2 are (M−1)-synchronized.
For k > M − 1, consider a string w ∈ L M−1(s1)

⋂
L M−1(s2). We know that ws1

andws2 are taboo-free stringswith length at least M . SinceT is left proper, Proposition
7.a applied to ws1 and ws2 implies that ws1 and ws2 are k′-prefixable for any k′ ∈ N.
Therefore w is k′-prefixable for any k′ ∈ N. For any k′, take x ∈ Lk′

(w) and consider
strings xws and xwr . The fact that |w| = M − 1, together with the fact that xw and
the pairws1, ws2 are taboo-free, allows applying Proposition 5, hence xws1 and xws2
are also taboo-free.

It follows that xw ∈ L M−1+k′
(s1)

⋂
L M−1+k′

(s2). With k := M − 1 + k′, the
result follows for any k > M − 1. �
The following proposition provides a Hamming-distance based criterion to quickly
decide whether two taboo-free strings of length M are left k-synchronized.

Proposition 10 Consider a left proper taboo-set T. If all pairs s1, s2 ∈ VM (T) with
d(s1, s2) = 1 are left 1-synchronized, then all pairs s1, s2 ∈ VM (T) with d(s1, s2) = 1
are left k-synchronized for all k ∈ N0.

Proof Given any left 1-synchronized pair s1, s2 with d(s1, s2) = 1, there exists an
a ∈ Σ such that as1 and as2 are taboo-free. Since (asi )[1, M] ∈ VM (T) for i ∈
{1, 2} and the Hamming distance between these two strings is at most 1, as1, as2 are
1-synchronized, hence there exists a symbol b ∈ Σ such that bas1 and bas2 are taboo-
free, i.e. s1 and s2 are left 2-synchronized. Continuing with this process, it follows that
s1 and s2 are k-synchronized. �
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We will now discuss conditions that allow increasing the string length of an entire
set of taboo-free strings. To this end, consider two taboo-free strings s1, s and the set
V s1s

n+|s1|+|s|(T). It is generally not true that V s1s
n+|s1|+|s|(T) = V s1

n+|s1|(T) ◦ s, because

the concatenation of s to a taboo-free string from V s1
n+|s1|(T) can create a taboo string

around the junction of both strings. For the remainder of this section we will discuss
when the equality holds.

Definition 6 For a taboo-set T and a taboo-free string s, we define the length of the
longest taboo suffix-prefix match as

ks := max
{

i ∈ [0, |s|]
∣
∣
∣ s[1, i] ∈ suf(T)

}
,

i.e. ks denotes the length of the longest prefix of s being a proper suffix of a taboo.

Note that the length ks is well defined, because s[1, 0] = e ∈ suf(T), hence
ks ∈ [0,min (M − 1, |s|)]. Using this length ks , in Proposition 11 we give conditions
implying that equality V s1s

n+|s1|+|s|(T) = V s1
n+|s1|(T) ◦ s holds.

Proposition 11 For a taboo-set T and a taboo-free string s, the following holds:

(a) Take w ∈ Σ M−1 such that ws ∈ VM−1+|s|(T). Then for any n ≥ M − 1,

V ws
n+|s|(T) = V w

n (T) ◦ s.

(b) For any n ∈ N0 it holds that

V s
n+|s|(T) = V s[1,ks ]

n+ks
(T) ◦ s[ks + 1, |s|].

Proof (a) The inclusion⊆ is clear. The inclusion⊇ follows from the fact that, if we are
given rw ∈ V w

n (T) such that ws ∈ VM−1+ j (T), since |w| = M − 1, Proposition
5 yields that the concatenated string rws is taboo-free.

(b) The result is obvious if |s| = 0 or n = 0, hence assume |s| > 0 and n > 0.
Clearly V s

n+|s|(T) ⊆ V s[1,ks ]
n+ks

(T) ◦ s[ks + 1, |s|]. For r ∈ Vn(T), consider

rs[1, ks] ∈ V s[1,ks ]
n+ks

(T). We need to prove that the string

rs[1, ks]s[ks + 1, |s|] = rs

is taboo-free. But otherwise, since rs[1, ks] and s are taboo-free, there would exist
integers c, d such that 1 ≤ c ≤ |r | ≤ |r | + ks < d ≤ |r | + |s| and (rs)[c, d] ∈ T.
Take k∗ := d − |r | > ks , which yields s[1, k∗] ∈ suf(T), contradicting the
maximality of ks . Hence rs is taboo-free, as desired. Note that the same argument
applies if ks = 0. �
From Proposition 11.b we obtain two corollaries.

Corollary 12 Given a taboo-set T and a taboo-free string s, for any k ∈ N0 it holds
that

Lk(s) = Lk(s[1, ks]).
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Proof By construction, Lk(s) = V s
|s|+k(T)[1, k]. Proposition 11.b yields

V s
k+|s|(T)[1, k] =

(
V s[1,ks ]

k+ks
(T) ◦ s[ks + 1, |s|]

)
[1, k]

= V s[1,ks ]
k+ks

(T)[1, k] = Lk(s[1, ks]).

�
Corollary 13 For a taboo-set T and for any pair of taboo-free strings s1 and s2, the
following statements are equivalent for all k ∈ N0:

– s1 and s2 are left k-synchronized
– s1[1, ks1 ] and s2[1, ks2 ] are left k-synchronized.

Proof Strings s1 and s2 are left k-synchronized iff Lk(s1)
⋂

Lk(s2) �= ∅.We just have
to apply Corollary 12. �

Thus, the string s[1, ks], which is the longest prefix of s that matches a proper suffix
of the taboos, provides all the information we need to construct V s

n (T) or Lk(s).

7 Isomorphisms between taboo-free Hamming graphs

Here we will discuss isomorphism between Hamming graphs. Let us first introduce
the formal definition of a taboo-free Hamming graph.

Definition 7 The taboo-free Hamming graph of length n, Γn(T) := (Vn(T), En(T)),
is the graph with vertex set Vn(T) such that two vertices u, v ∈ Vn(T) are adjacent
if their Hamming distance equals 1, that is, e = {u, v} ∈ En(T) iff d(u, v) = 1.
Analogously, Γ s

n (T) is the Hamming graph with vertex set V s
n (T).

Examples of disconnected Hamming graphs are given in Figs. 1 and 2. When dealing
with taboo-freeHamminggraphs, the followingproposition is a simpleway to establish
graph isomorphisms.

Proposition 14 Consider a taboo-set T, a taboo-free string s and a taboo-free string
w satisfying ws ∈ V|w|+|s|(T). If V ws

n+|s|(T) = V w
n (T) ◦ s for some n ≥ |w|, then

Γ ws
n+|s|(T) and Γ w

n (T) are isomorphic.

Proof By assumption, the vertex set of Γ ws
n+|s|(T) is V ws

n+|s|(T) = V w
n (T)◦ s. Thus, the

map

f : V w
n (T) ◦ s → V w

n (T)

rs �→ r

is well defined and bijective. Moreover, f is an edge-preserving bijection: Given
any pair of strings r1, r2 ∈ Σn and any string s ∈ Σ |s|, then d(r1, r2) = 1 iff
d(r1s, r2s) = 1. �
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Propositions 14 and 11.a imply that, for a taboo-free string s with |s| ≥ M , the
graphs Γ s

n+|s|(T) and Γ
s[1,M−1]

n+M−1 (T) are isomorphic. Furthermore Proposition 11.b

implies that Γ s
n+|s|(T) � Γ

s[1,ks ]
n+ks

(T), which can be stated as follows.

Proposition 15 Consider a taboo-set T and a taboo-free string s. There exists a unique
w ∈ suf(T) such that w = s[1, ks]. Moreover, for any n ≥ 0,

Γ s
n+|s|(T) � Γ w

n+|w|(T).

Proposition 15 does not describe in which cases V s
n+|s|(T) = ∅. However, ifT is left

proper, Proposition 8 implies that this happens iff |s| ≤ M − 1 and s /∈ suf(VM (T)).
This suggests that we can state a version of Proposition 15 for left proper T. But first,
due to our interest in taboo-free strings of length M , we introduce the following.

Definition 8 Given a left proper taboo-set T, the long suffix classification lsc(T) is
defined as

lsc(T) := {w ∈ suf(T) such that ∃s ∈ VM (T) satisfying s[1, ks] = w},

that is, lsc(T) is the set of all suffixes of taboos that are the longest prefix of at least
one taboo-free string of length M .

Example 5 If Σ1 = {A, C, G, T } and T1 = {AA, CC, GG, T T }, then

lsc(T1) ⊆ suf(T1) = {A, C, G, T , e} = Σ1

⋃
{e}.

For any s ∈ V2(T1), we see ks > 0, hence e /∈ lsc(T1). Moreover,

{AC, CG, GT , T A} ⊆ V2(T1),

yielding lsc(T1) = Σ1. If we consider Σ2 := {A, C, G, T , C ′}, where C ′ could
represent a 5-methylcytosine, and T2 := T1, then string s = C ′ A satisfies ks = 0,
hence lsc(T2) = suf(T2).

The following theorem classifies graphs Γ s
n (T) for left proper T.

Theorem 16 Consider a left proper taboo-set T and a taboo-free string s such that
either |s| ≥ M or s ∈ suf(VM (T)). Then a unique w ∈ suf(VM (T))

⋂
suf(T) exists

such that w = s[1, ks], which satisfies Γ s
n+|s|(T) � Γ w

n+|w|(T) for n ≥ 0. Moreover, if
|s| ≥ M, then w ∈ lsc(T).

Proof Proposition 8.b yields V s
n+|s|(T) �= ∅ for n ≥ 0, while Γ s

n+|s|(T) � Γ
s[1,ks ]

n+ks
(T)

for n ≥ 0 follows from Proposition 15. Hence we can set w := s[1, ks], which by
definition belongs to suf(T). Since by assumption either |s| ≥ M or s ∈ suf(VM (T)),
it follows fromProposition 7 that s is k-prefixable for any k, and thus alsow := s[1, ks]
is k-prefixable. We consider x ∈ L M−ks (w), which satisfies xw ∈ VM (T). Therefore
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w = (xw)[M − ks + 1, M] ∈ suf(VM (T)). All in all, w ∈ suf(VM (T))
⋂

suf(T).
This w is trivially unique since ks is uniquely determined given s.

As for the case |s| ≥ M , the fact that s[1, M] ∈ VM (T) and the definition of lsc(T)

implies that w ∈ lsc(T). �
In formal terms, Theorem16 states that the equivalence relation “being isomorphic”

divides all graphs Γ s
n+|s|(T) into equivalence classes. The representative of each class

is a graph Γ w
n+|w|(T), where w ∈ suf(VM (T))

⋂
suf(T). When |s| ≥ M , string w

belongs to lsc(T). This is why lsc(T) is called the long suffix classification.
To efficiently compute lsc(T), we recommend that T be minimal. Theorem 16

implies that
lsc(T) ⊆ suf(VM (T))

⋂
suf(T), (2)

and thus we define the short suffix classification as

ssc(T) :=
(
suf(VM (T))

⋂
suf(T)

)
− lsc(T). (3)

The set ssc(T) is called short suffix classification because only when |s| < M it can
happen that a graph Γ s

n+|s|(T) is represented by a graph Γ w
n+|w|(T) with w ∈ ssc(T).

Note that, if a string w satisfies the condition |w| < M − 1 and w ◦ Ri (w) ⊆ suf(T)

for some i ∈ [1, M − 1 − |w|], then any s ∈ w◦ Ri (w) satisfies s[1, ks + i] ∈ suf(T),
hence w /∈ lsc(T). This property is used in the following example.

Example 6 IfΣ1 = {A, C, G, T } andT1 = {AA, CC, GG, T T }, then it is clear that
e ∈ suf(VM (T))

⋂
suf(T), because the empty string e belongs to both sets. Moreover,

e /∈ lsc(T1) due to e ◦ Σ ⊆ suf(T1). Therefore e ∈ ssc(T).

8 Connectivity of taboo-free Hamming graphs

We will make extensive use of the quotient graph to study the connectivity of taboo-
free Hamming graphs. Before we start with the technicalities, we briefly describe our
initial strategy.

For aHamming graphΓn+ j (T), let us consider two different subsets of its vertex set,
namely V sb

n+ j (T) and V sc
n+ j (T), where sb, sc ∈ Vj (T). These two subsets are disjoint,

so we can use the quotient graph Q[Γn+ j (T)] to make each of them collapse in a
single vertex, represented respectively by sb and sc. We will prove in Proposition 17
that sb and sc are adjacent inQ[Γn+ j (T)] iff strings sb and sc have Hamming distance
1 and are left n-synchronized. This is specially interesting, because we know from
Proposition 9 that two left (M − 1)-synchronized strings are left n-synchronized for
any n ∈ N. Thus, it is enough to know that sb, sc are adjacent in Q[Γ(M−1)+ j (T)] to
claim that sb, sc are adjacent in all partition graphsQ[Γn+ j (T)] for n ∈ N (that is the
essential content of Lemma 18). More formally, we have the following results.

Proposition 17 Given taboo-set T, j ∈ N0 and n ∈ N0, consider graph Γn+ j (T) and
a subset S ⊆ Vn+ j (T) partitioned as S = ⊔

b∈J V sb
n+ j (T), where sb are taboo-free
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strings of length j . Consider moreover the quotient graphQ[Γn+ j (T)(S)] = {J , E J },
where Γn+ j (T)(S) denotes the graph induced by S in Γn+ j (T).

In these conditions, a pair of vertices b, c ∈ J is connected by an edge {b, c} ∈ E J

iff the pair sb, sc is left n-synchronized and d(sb, sc) = 1.

Proof By definition, b and c are adjacent in Q[Γn+ j (T)(S)] iff in graph Γn+ j (T) an
edge connects a vertex in V sb

n+ j (T) with a vertex in V sc
n+ j (T). Since d(sb, sc) ≥ 1, this

edge exists iff d(sb, sc) = 1 and there exists s ∈ Vn(T) such that ssb, ssc ∈ Vn+ j (T).
The last condition is the definition of sb and sc being left n-synchronized. �

The combination of Propositions 17 and 9 gives the following lemma.

Lemma 18 Given a left proper taboo-set T, a taboo-free string s and k ∈ N, con-
sider, for any n ≥ |s| + k, partition V s

n (T) = ⊔
w∈Lk (s) V ws

n (T) and quotient graph

Q[Γ s
n (T)] = (Lk(s), ELk (s)). Then it holds that

Q
[
Γ s

|s|+k(T)
]

⊇ Q
[
Γ s

|s|+k+1(T)
]

⊇ · · · ⊇ Q
[
Γ s

|s|+k+M−1(T)
]

= Q
[
Γ s

|s|+k+M (T)
]

= Q
[
Γ s

|s|+k+M+1(T)
]

= . . . .

If Q[Γ s
|s|+k+M−1(T)] is connected, then Q[Γ s

n (T)] is connected for n ≥ |s| + k.

Proof For some n0 ≥ |s| + k, consider an edge {wb, wc} of graph Q[Γ s
n0(T)], where

wb, wc ∈ Lk(s). We set sb := wbs and sc := wcs. Proposition 17 implies that wb and
wc are adjacent in Q[Γ s

n0(T)] iff sb and sc are are left (n0 − |s| − k)-synchronized
and d(wb, wc) = 1. Since sb and sc are left (n0 − |s| − k)-synchronized, they are also
left (n − |s| − k)-synchronized for any n ≤ n0, and thus wb and wc are adjacent in
Q[Γ s

n (T)] for |s| + k ≤ n ≤ n0. Hence the decreasing chain of quotient graphs is
proven.

Now we will prove that this chain stabilizes after n = |s| + k + M − 1. If
n0 − |s| − k = M − 1, then, according to Proposition 9, wb and wc are left k-
synchronized for arbitrary k, and thus Proposition 17 implies that wb and wc are
adjacent in Q[Γ s

n (T)] for arbitrary n ≥ |s| + k. All in all, Q[Γ s
n0(T)] and Q[Γ s

n (T)]
have the same edges, as desired.

Regarding connectivity, given graphs G1 and G2 with the same vertex set V1 = V2
such that G1 ⊆ G2, if subgraph G1 is connected, then G2 is connected. �

Figure 4 visualizes Lemma 18 for alphabet Σ = {a, b, c}, taboo-set T = {ba, aa,

ac, cc} (which is left proper), suffix s = b and k = 1.
We are finally ready to study the connectivity of graphs Γ s

n (T) for |s| ≥ M . Let us
begin with the following lemma.

Lemma 19 Given a left proper T, for any w ∈ VM (T) consider the set V w
2M (T) and

partition

V w
2M (T) =

⊔

a∈L1(w)

V aw
2M (T),
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Fig. 4 Visualization of Lemma 18 for Σ = {a, b, c}, T = {ba, aa, ac, cc}, s = b and k = 1. It holds that
L1(b) = {a, b, c}

inducing the quotient graphQ[Γ w
2M (T)] = (L1(w), EL1(w)). Then the following state-

ments are equivalent:

(a) For every w ∈ VM (T), Q[Γ w
2M (T)] is connected.

(b) For every w ∈ VM (T) and integer n ≥ M, Γ w
n (T) is connected.

Proof Proposition 2 states that, in a connected graph, every quotient graph is con-
nected, and thus (b) implies (a) by considering n = 2M .

Now we prove by induction that (a) implies (b). For n = M and w ∈ VM (T), we
have that

V w
M (T) = {w},

hence Γ w
M (T) is connected. For the inductive step, assume that Γ w

n (T) is connected
for every w ∈ VM (T) and up to an integer n ≥ M . We will prove that also every
Γ w

n+1(T) is connected. Consider

V w
n+1(T) =

⊔

a∈L1(w)

V aw
n+1(T).

Let us write w separating the first M − 1 symbols from the last one, that is w = rc
for r ∈ Σ M−1 and c ∈ Σ. Then for any a ∈ L1(w), V aw

n+1(T) = V arc
n+1(T). Since

|r | = M −1, Proposition 11.a implies V arc
n+1(T) = V ar

n (T)◦ c, while the isomorphism
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established in Proposition 14 yields

Γ aw
n+1(T) = Γ arc

n+1(T) � Γ ar
n (T).

Thus, every Γ aw
n+1(T) is connected, because the induction hypothesis implies that

Γ ar
n (T) is connected since ar ∈ VM (T). To prove that graph Γ w

n+1(T) is connected, it
remains to apply Proposition 1, so we need to prove that the quotient graph induced
by partition V w

n+1(T) = ⊔
a∈L1(w) V aw

n+1(T), namely Q[Γ w
n+1(T)], is connected.

We know that, given partition V w
2M (T) = ⊔

a∈L1(w) V aw
2M (T), the quotient graph

Q[Γ w
2M (T)] is connected. Applying Lemma 18 with s = w and k = 1, we get the

following chain of inclusions:

Q [
Γ w

M+1(T)
] ⊇ Q [

Γ w
M+2(T)

] ⊇ · · · ⊇ Q [
Γ w
2M (T)

]

= Q [
Γ w
2M+1(T)

] = Q [
Γ w
2M+2(T)

] = . . . .

Since Q[Γ w
2M (T)] is connected, every quotient graph of the chain of inclusions is

connected, as shown in Lemma 18. In particular, graph Q[Γ w
n+1(T)] is an element of

the chain of inclusions because n + 1 ≥ M + 1, so it is connected, as desired. �
Lemma 19 is very interesting:We wanted to characterize the connectivity of graphs

Γ s
n (T) for s ∈ VM (T) and n ≥ M . We have proved that it is enough to study a finite

number of graphs, namelyQ[Γ w
2M (T)] for s ∈ VM (T), that is, |VM (T)| graphs. Let us

summarize the connectivity results that follow from Lemma 19 and Theorem 16.

Proposition 20 Given a left proper T, the following statements are equivalent:

(a) For any taboo-free string s with |s| ≥ M and any integer n ≥ |s|, Γ s
n (T) is

connected.
(b) For any w ∈ VM (T) and any integer n ≥ M, Γ w

n (T) is connected.
(c) For any r ∈ lsc(T), Γ r

M+|r |(T) is connected.
(d) For any r ∈ lsc(T), the partition V r

M+|r |(T) = ⊔
a∈L1(r) V ar

M+|r |(T) induces a
connected partition graph Q[Γ r

M+|r |(T)].
Proof Implication (a) ⇒ (b) is obvious, while (b) ⇒ (a) is proven as follows: Given
V s

n (T), where s is a taboo-free string with |s| ≥ M , Proposition 11.a implies that
V s

n (T) = V s[1,M−1]
n (T) ◦ s[M, j]. Since s[M, j] = s[M, M]s[M + 1, j], applying

Proposition 11.a again we have V s
n (T) = V s[1,M]

n (T) ◦ s[M + 1, j]. Proposition 14
yields the isomorphism Γ s

n+ j (T) � Γ
s[1,M]

n+M (T), and Γ
s[1,M]

n+M (T) is connected due to
s[1, M] ∈ VM (T) and the assumption of (b). Thus, statements (a) and (b) are equiva-
lent.

Implication (b) ⇒ (c) is consequence of Theorem 16. Moreover, (c) ⇒ (d) follows
from Proposition 2. It remains to prove (d) ⇒ (b), which we do as follows. Corollary
12 implies L1(w) = L1(w[1, kw]). Moreover, for any w ∈ VM (T) and a, b ∈ L1(w),
we claim that the following statements are equivalent:

(i) Strings aw and bw are left k-synchronized.
(ii) Strings aw[1, kw] and bw[1, kw] are left k-synchronized.
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Indeed, the implication (i) ⇒ (ii) is obvious, so let us prove (ii) ⇐ (i). Given a taboo-
free string s ∈ Vj (T) such that saw[1, kw] and sbw[1, kw] are taboo-free, we want
to prove that also saw and sbw are taboo-free. But if that were not the case, it would
be the consequence of either (saw)[c, d] ∈ T or (sbw)[c, d] ∈ T for some integers
1 ≤ c ≤ j < j +1+ kw ≤ d ≤ j +1+ M . However, that contradicts the maximality
of kw, yielding ii) ⇐ i.
Our previous claim and Proposition 17 imply that, if r = w[1, kw] for some
w ∈ VM (T), given partition V r

M+|r |(T) = ⊔
a∈L1(r) V ar

M+|r |(T), it holds that

Q [
Γ r

n (T)
] � Q [

Γ w
n (T)

]
.

Theorem 16 implies that, for everyw ∈ VM (T), there exists r = w[1, kw] ∈ lsc(T).
Applying Lemma 19, finally (d) ⇒ (b) follows. �

It is worth noticing how simpler the connectivity problem has become. Initially, we
were studyingwhether everyΓ s

n (T)with |s| ≥ M is connected, obtaining inLemma19
that this is equivalent to the connectivity of graphs Γ w

2M (T) forw ∈ VM (T), which are
|VM (T)| graphs. Now we see, using Proposition 20 and the fact that lsc(T) ⊆ suf(T),
that we only need to prove the connectivity of | lsc(T)| ≤ | suf(T)| ≤ (M − 1)|T| + 1
graphs, namely eitherQ[Γ r

M+|r |(T)] orΓ r
M+|r |(T) for r ∈ lsc(T).We give an example.

Example 7 Take Σ = {A, C, G, T } and T = {AA, CCC}, which is left proper.
Using Proposition 20, since M = 3 and lsc(T) = suf(T) = {e, A, C, CC}, the
connectivity of graphs

Γ e
3 (T), Γ A

4 (T), Γ C
4 (T), Γ CC

5 (T)

implies that any Γ w
n (T) with w ∈ suf(T) is connected. Proposition 15 implies that,

for any taboo-free string s and n ≥ |s|, Γ s
n (T) is connected.

Proposition 20 characterizes the connectivity of every Γ s
n+|s|(T) for |s| ≥ M . We

know fromTheorem 16 that there exists r ∈ lsc(T) ⊆ suf(VM (T))
⋂

suf(T) such that
Γ s

n+|s|(T) � Γ r
n+|r |(T). Since ssc(T) := suf(VM (T))

⋂
suf(T) − lsc(T), to complete

our characterization of the connectivity of every taboo-free Hamming graph, some
cases (such as Example 6) require considering the connectivity of graphs Γ

p
n (T) for

p ∈ ssc(T). We have the following.

Proposition 21 Given a left proper T and p ∈ ssc(T), assume that, for every r ∈
lsc(T), graph Γ r

M+|r |(T) is connected. Given k ∈ N, if partition

V p
|p|+k+M−1(T) =

⊔

w∈Lk (p)

V wp
|p|+k+M−1(T)

satisfies that (wp)[1, kwp] ∈ lsc(T) for each w ∈ Lk(p), and moreover
Q[Γ p

|p|+k+M−1(T)] is connected, then Γ
p

n (T) is connected for n ≥ |p| + k.
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Proof For n ≥ |p| + k, given partition

V p
n (T) =

⊔

w∈Lk (p)

V wp
n (T),

subgraphs Γ
wp

n (T) are connected due to (wp)[1, kwp] ∈ lsc(T). Moreover, since
Q[Γ p

2M−1(T)] is connected, Lemma 18 with s = p implies that Q[Γ p
n (T)] is con-

nected for n ≥ |p|+k. Thus, the quotient graphQ[Γ p
n (T)] and all induced subgraphs

Γ
wp

n (T) are connected. The connectivity of Γ
p

n (T) follows applying Proposition 1. �
In Proposition 21, one can always take k = M −|p| and just check ifQ[Γ p

2M−1(T)]
or Γ

p
2M−1(T) is connected for p ∈ ssc(T). Otherwise one can try k = 1 and increase

it progressively.

Example 8 If Σ = {A, C, G, T } and T = {AA, CC, GG, T T }, then it holds that
lsc(T) = {A, C, G, T } and ssc(T) = {e}. For r ∈ lsc(T), it can be proven thatΓ r

3 (T) is
connected. Thus, Proposition 20 implies that every Γ r

n (T) is connected for r ∈ lsc(T)

and n ≥ 1.

We can combine Propositions 20 and 21 to obtain our aimed characterization of the
connectivity of every suffix Hamming graph. We do so in the following theorem.

Theorem 22 Given a left proper taboo-set T, the following are equivalent.

(a) Consider, for every r ∈ lsc(T), partition V r
M+|r |(T) = ⊔

a∈L1(r) V ar
M+|r |(T), and

for every p ∈ ssc(T), partition V p
2M−1(T) = ⊔

w∈L M−|p|(p) V wp
2M−1(T).

For r ∈ lsc(T), every partition graph Q[Γ r
M+|r |(T)] is connected; for p ∈ ssc(T),

every partition graph Q[Γ p
2M−1(T)] is connected; for p ∈ ssc(T), every graph

Γ
p

n (T) with |p| + 2 ≤ n ≤ M − 1 is connected.
(b) For r ∈ lsc(T), graph Γ r

M+|r |(T) is connected; for p ∈ ssc(T), graph Γ
p
2M−1(T)

is connected; for p ∈ ssc(T) and |p| + 2 ≤ n ≤ M − 1, every graph Γ
p

n (T) is
connected.

(c) For every taboo-free string s and n ≥ 0, graph Γ s|s|+n(T) is connected.

Proof Proposition 2 states that the connectivity of a graph is equivalent to the con-
nectivity of each of its quotient graphs. Hence (b) ⇒ (a) follows, because if graphs
Γ r

M+|r |(T) and Γ
p
2M−1(T) are connected, then also partition graphs Q[Γ r

M+|r |(T)]
and Q[Γ p

2M−1(T)] are connected. Since the implication (c) ⇒ (b) is obvious, it only
remains to prove (a) ⇒ (c).
Theorem 16 states that, when T is left proper, every nonempty graph of the
form Γ s

n+|s|(T) is isomorphic to graph Γ w
n+|w|(T), where w = s[1, ks] ∈ suf(T)

⋂

suf(VM (T)). By construction, strings in suf(T)
⋂

suf(VM (T)) either belong to lsc(T)

or ssc(T). Therefore, statement (c) is equivalent to the connectivity, for every n ≥ 0,
of every Γ r

n+|r |(T), where r ∈ lsc(T), and of every Γ
p

n+|p|(T), where p ∈ ssc(T).
Assuming statement (a), since every partition graph Q[Γ r

M+|r |(T)] is connected for
r ∈ lsc(T), Proposition 20 implies that every graph Γ w

M+n(T) is connected, where
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w ∈ VM (T) and n ≥ 0. For any r ∈ lsc(T), there exists by construction a w ∈ VM (T)

such that r = w[1, kw]. Since Γ w
M+n(T) � Γ r|r |+n(T) due to Proposition 15, it follows

that (a) implies that every Γ r|r |+n(T) is connected, where r ∈ lsc(T) and n ≥ 0.

It remains to prove that (a) implies that everyΓ
p

|p|+n(T) is connected,where p ∈ ssc(T)

and n ≥ 0. Since every partition graphQ[Γ p
2M−1(T)] is connected, Proposition 21with

k = M −|p| implies that Γ p
M+n(T) is connected for n ≥ 0. The connectivity of graphs

Γ
p

|p|+2(T), . . . , Γ
p

M−1(T) is part of the assumptions of (a), and graphs Γ
p

|p|+1(T) and

Γ
p

|p|(T) are trivially connected, finishing the proof. �
In general, if T has just a few taboos, proving connectivity becomes easier since

most of strings are left k-synchronized. In Proposition 23 only previous results are
used, while in Proposition 24 we study this case more exhaustively in a self-contained
manner. Note that, when taboo-set T is minimal, the assumptions of Proposition 24
are much easier to check.

Proposition 23 Given a left proper T such that every pair of strings w1, w2 ∈ VM (T)

with d(w1, w2) = 1 is left 1-synchronized, it holds that:

(a) For any r ∈ lsc(T) and n ∈ N0, Γ r
n+|r |(T) is connected.

(b) For any p ∈ ssc(T) with connected Γ
p

M (T), Γ
p

n (T) is connected for n ≥ M.

Proof Proposition 10 implies that every pair w1, w2 ∈ VM (T) is left k-synchronized
for any k ∈ N. We know from Lemma 17 that left k-synchronization of two
strings with Hamming distance 1 indexing a partition as suffixes is equivalent to
those two strings being adjacent in the partition graph. Therefore any quotient graph
Q[Γ w

n (T)] = (L1(w), EL1(w)) induced by partition V w
n (T) = ⊔

a∈L1(w) V aw
n (T)

is fully connected (that is, every two vertices are adjacent). In particular, every
Q[Γ w

n (T)] is connected, and thus Proposition 20 implies (a). Similarly with partition
V p

n (T) = ⊔
w∈L M−|p|(p) V wp

n (T), sinceQ[Γ p
n (T)] � Γ

p
M (T) for n ≥ M , Proposition

21 implies (b). �
Example 9 For Σ = {A, C, G, T } and T = {AA, CCC}, the strings T w1 and T w2
are taboo-free forw1, w2 ∈ V3(T), hence they are left 1-synchronized. Since lsc(T) =
suf(T), for any taboo-free string s and n ≥ |s|, Γ s

n (T) is connected.

Proposition 24 Given taboo-set T and set Ψ (T) := ⋃
t∈T t[2, |t |], if every pair of

taboo-free strings w1, w2 ∈ Ψ (T) with |w1| ≥ |w2| and d
(

w1[1, |w2|] , w2
) ≤ 1 is

left 1-synchronized, then it holds that:

(a) Every taboo-free string is 1-prefixable. In particular, T is left proper.
(b) Every two taboo-free strings s1, s2 with d(s1, s2) = 1 are left 1-synchronized.
(c) Graph Γ s

n (T) is connected for every taboo-free string s and n ≥ |s|.
Proof (a) Consider any taboo-free string s. Assume that, for each a ∈ Σ , as is not

taboo-free, that is, that for some integer ca ≥ 2, (as)[1, ca] ∈ T. WLOG assume
ca1 ≤ · · · ≤ cam and consider s[1, cam − 1], which satisfies s[1, cam − 1] ∈ Ψ (T)

since (ams)[1, cam ] ∈ T. By construction, for any a ∈ Σ , string as[1, cam − 1]
is not taboo-free. On the other hand, the Hamming distance between s[1, cam −
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1] ∈ Ψ (T) and itself is 0, and thus the assumption of the statement implies that
s[1, cam − 1] is left 1-synchronized with s[1, cam − 1]. In other words, a symbol
a ∈ Σ exists such that as[1, cam − 1] is taboo-free, which is a contradiction. All
in all, s must be 1-prefixable. Taking s ∈ VM (T) we see that T is left proper.

(b) Given taboo-free strings s1, s2 such that d(s1, s2) = 1, assume that they
are not 1-synchronized. Then for every a ∈ Σ , either (as1)[1, ca] ∈ T or
(as2)[1, ca] ∈ T for some ca ≥ 2. Denote by C1 ⊆ ⋃

a∈Σ {ca} those ca such that
(as1)[1, ca] ∈ T, and analogously withC2. IfC1 were empty, then s2 would not be
1-prefixable, contradicting (a). Thus, both C1 and C2 must be nonempty. Consider
d1 := max{c : c ∈ C1} and d2 := max{c : c ∈ C2}. It holds that s1[2, d1] ∈ Ψ (T)

and s2[2, d2] ∈ Ψ (T). Moreover, we have that the pair s1[2, d1], s2[2, d2] is not
left 1-synchronized. Since d(s1, s2) = 1, that contradicts the assumptions of the
statement, hence s1 and s2 must be left 1-synchronized, as desired.

(c) Clearly Γ s|s|(T) is connected, so let us proceed by induction. Assume Γ s
n (T) is

connected for a fixed n ≥ |s| and considerΓ s
n+1(T). Since V s

n+1(T) ⊆ Σ ◦ V s
n (T),

if |V s
n (T)| = 1, then Γ s

n+1(T) is connected. Otherwise we take different s1, s2 ∈
V s

n+1(T); we will prove that they are connected. We know that s1, s2 ∈ Σ ◦V s
n (T),

hence let us write s1 = c1w1 and s2 = c2w2 for ci ∈ Σ and wi ∈ V s
n (T). If

w1 = w2, the result is obvious, so assume w1 �= w2.
By hypothesis, Γ s

n (T) is connected, and thus there exists a path of vertices of
V s

n (T), namely y1, . . . , yD , such that d(yi , yi+1) = 1, y1 = w1 and yD = w2. For
every j ∈ [1, D −1], the pair y j , y j+1 is left 1-synchronized, and thus there exists
b j ∈ Σ such that b j y j and b j y j+1 are taboo-free. Since d(b j y j , b j y j+1) = 1,
b j y j and b j y j+1 are adjacent in Γ s

n+1(T). Moreover every pair of taboo-free
strings contained in Σ ◦ yi is adjacent for i ∈ [1, D −1]. Since the relation “being
connected” is transitive, vertices s1 ∈ Σ ◦ y1 and s2 ∈ Σ ◦ yD are connected, as
desired. �

Example 10 If Σ = {A, C, G, T } and T = {AA, CC, GG, T T }, then Ψ (T) =
{A, C, G, T }. Every pair of strings in Ψ (T) is left 1-synchronized, hence for every
taboo-free s and n ≥ |s|, Γ s

n (T) is connected.

Now we aim to find an upper bound for the number of taboos needed to guarantee
connectivity of the graphs Γ s

n (T). The following Corollary of Proposition 24 holds.

Corollary 25 Consider an alphabet Σ and a taboo-set T. The following holds:

(a) If |T[1, 1]| < |Σ |, then for any taboo-free string s and n ≥ |s|, Γ s
n (T) is connected.

(b) If |T| < |Σ |, then for any taboo-free string s and n ≥ |s|, Γ s
n (T) is connected.

Proof (a) Assume that taboo-free strings s1, s2 satisfy L1(s1)
⋂

L1(s2) = ∅. That is,
for each a ∈ Σ , either as1 or as2 has a taboo as prefix, contradicting |T[1, 1]| <

|Σ |. Therefore every two taboo-free strings are left 1-synchronized, so we can
apply Proposition 24.c, implying (a).

(b) If |T| < |Σ |, then |T[1, 1]| < |Σ |. Thus, statement (a) yields the result. �
Corollary 25.b implies that, if |T| < |Σ |, then every Γ s

n (T) is connected. In Examples
11 and 12, we give examples of taboo-sets over an alphabet with |Σ | = 2 and |Σ | > 2
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symbols respectively, such that |T| = |Σ | and at least one suffix graph is disconnected.
In this sense, the upper bound |T| < |Σ | that guarantees connectivity for every suffix
graph cannot be improved.

Example 11 If Σ = {0, 1} and T = {10, 01}, then T is left proper and |T[1, 1]| =
|T[2, 2]| = 2 = |Σ |. For n ≥ 2, Vn(T) = {0 · · · 0, 1 · · · 1}, which makes Γn(T)

disconnected. The trivial graphs Γ 0
n (T) and Γ 1

n (T) are both connected.

Example 12 For m ≥ 3, Σ = {a1, . . . , am} and the left proper taboo-set

T = {a3a1, a4a1, a5a1, . . . , ama1}
⊔

{a1a2, a2a2},

we claim that Γ a1
n (T) is disconnected for n ≥ 3. Indeed,

V a1
n (T) = V a1a1

n (T)
⊔

V a2a1
n (T) =

=
(

V a2a1a1
n (T)

⊔
V a1a1a1

n (T)
) ⊔

⎛

⎝
⊔

i∈[3,m]
V ai a2a1

n (T)

⎞

⎠ ,

so take s ∈ V a2a1a1
n (T)

⊔
V a1a1a1

n (T) and r ∈ ⊔
i∈[3,m] V ai a2a1

n (T). It holds that
d(s, r) ≥ 2, hence we found two disconnected components in graph Γ

a1
n (T). This is

coherent with |T[1, 1]| = |Σ | = m.
To generalize this example, for i ∈ N0, denote by si := a1 i). . .a1 the concatenation

of i a1’s. The taboo-set

Ti = {a3si , a4si , . . . , amsi }
⊔

{a1a2si−1, a2a2si−1}

satisfies that graph Γ
si

n (Ti ) is disconnected for n ≥ i + 2.

In this section, we have stated various results regarding the connectivity of every
suffix Hamming graph given a left proper taboo-set T. Up to Theorem 16, our aim
was to characterize the connectivity of every suffix Hamming graph. Then we found
sufficient conditions in Proposition 24 and Corollary 25 that are easier to apply. When
studying this connectivity problem, the practitioner shouldfirstly try to apply the results
requiring easy-to-check assumptions, and increasingly use themore complicated ones.
Given a taboo-set T, a possible workflow would be the following:

(1) We check if |T[1, 1]| < |Σ |. If it holds, we can apply Corollary 25.a. Otherwise
go to step 2)

(2) In order to apply Proposition 24, we check if every pair of taboo-free strings
w1, w2 ∈ Ψ (T) with |w1| ≥ |w2| and d

(
w1[1, |w2|] , w2

) ≤ 1 is left 1-
synchronized. If it does not hold, go to step 3)

(3) We check whether T is left proper (this holds in all the biological examples that
we considered so far). Otherwise redefine an equivalent left proper taboo-set and
apply the characterization of Theorem 22. Two possibilities can arise: Either every
suffix Hamming graph is connected, and thus evolution can explore all the space of
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taboo-free strings; or some taboo-free strings belonging to lsc(T) or ssc(T) induce
disconnected suffix graphs Γ s

n0(T) for some n0 ≥ |s| + M , implying that Γ s
n (T)

stays disconnected for n ≥ n0.

9 Examples of plausible bacterial taboo-sets

Taboo-sets as generated by the avoidance of restriction sites can assume various levels
of complexities. In this section, we discuss some examples from REBASE (Roberts
et al. 2014) using the theory developed in thiswork.Note thatmany restriction enzymes
of REBASE database have an unknown recognition site, hence our taboo-sets may
underestimate the actual amount of taboos. Before describing the examples, we will
briefly review essential nomenclature for DNA sequences.

DNA is double-stranded, where A pairs with T and G pairs with C , hence it
suffices to discuss only one of the strands. We adopt the convention that, given any
of the strands, the DNA sequence is always represented from the 5’ end to the 3’
end (which is chemically determined). As a consequence, given a DNA sequence, its
complementary DNA sequence, the one lying on the opposite strand, is obtained by
inverting the order of the symbols and carrying through substitutions A ↔ T and
C ↔ G. If a DNA sequence s is identical to its complementary DNA sequence, we
say that s is an inverted repeat (Ussery et al. 2008). For example, sequence CCGG
is an inverted repeat.

The fact that DNA is double-stranded implies that each recognition site induces
taboos in pairs, namely itself and its complementary DNA sequence. For example, if
AGGGC is a recognition site, then also the complementary strandGCCCT is a taboo.
If, however, the recognition site is an inverted repeat such as T GC A, then this pair
is actually one single recognition site. Recognition sites of type II R–M systems are
nearly always an inverted repeat (Rusinov et al. 2015; Gelfand and Koonin 1997), and
therefore one recognition site induces one single taboo. This is specially interesting
because, according to Rusinov et al. (2015, 2018a), only type II R–M systems induce
taboos.

A permutation of the symbols of alphabet Σ does not alter any of the results that
we proved along this work. Moreover, by reversing the order of the symbols, any
statement regarding e.g. left-properness and suffixes has an analogous one in which
right-properness and suffixes are involved. On the other hand, taboo-sets induced by
restriction enzymes remain invariant when we interchange every recognition site by
its complementary sequence. Therefore, note that, for a bacterial taboo-set T, if we
prove that every graphΓ s

n (T) is connected, then also every graph sΓn(T) is connected.

9.1 A frequent case: Turneriella parva

The Turneriella parva (REBASEorganismnumber 8970) strain produces a restriction
enzyme with recognition site G AT C , an inverted repeat. Similarly, another of its
enzymes has recognition sitesGG ACC andGGT CC . Thus, these restriction enzymes
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generate the taboo-set

TT .pa = {G AT C}
⋃

{GG ACC, GGT CC}. (4)

Since |TT .pa[1, 1]| < 4, Corollary 25.a implies that every graph Γ s
n (TT .pa) is con-

nected. Therefore the evolution of the DNA sequences can potentially reach any other
taboo-free DNA sequence, no matter which suffix was conserved along this process.

Among the 3623 bacteria in REBASE (2020a), only 465 have more than three
type II restriction enzymes. Assuming that only type II restriction enzymes induce
taboos, as stated by Rusinov et al. (2015, 2018a), Corollary 25.b implies that at
least 87% (3158/3623) of bacterial taboo-sets in REBASE (2020a) yield connected
taboo-free Hamming graphs. Similarly, at least 90% (139/153) of archea in REBASE
(2020b) induce connected taboo-free Hamming graphs, because they have less than
four type II restriction enzymes. The following example describes a more complex
collection of restriction enzymes.

9.2 Helicobacter pylori

InH. pylori 21-A-EK1, studied byAilloud et al. (2019),many restriction enzymes have
been identified. For the sake of clarity, let us write TH .py = A

T
⋃ G

T
⋃ C

T
⋃ T

T,
where a

T denotes those taboos in TH .py whose first symbol is a ∈ Σ . Then we have

A
T = {AC ◦ Σ ◦ GT },

G
T = (GT ◦ Σ2 ◦ AC)

⋃
{GT C AC, GT G AC}

⋃
{GT AC, G AGG}

C
T = {CCGG, CCT C, C AT G},

T
T = {T GC A},

(5)

where GT ◦ Σ2 ◦ AC represents taboos of the type GT abAC with a, b ∈ Σ , and so
on for analogous notations.

We want to apply Proposition 24. Take any r1, r2 ∈ Ψ (TH .py) and assume
that they are not left 1-synchronized. In particular WLOG we can assume that
T /∈ L1(r1), implying r1 = GC A. If C /∈ L1(r1), then r1 ∈ {CGG, CT C, AT G},
which contradicts r1 = GC A. Therefore it must be C /∈ L1(r2), yielding r2 ∈
{CGG, CT C, AT G}. In any case, d(r1, r2) ≥ 2. Thus, for any w1, w2 ∈ Ψ (T)

with d
(

w1[1, |w2|] , w2
) ≤ 1, it holds that w1 and w2 are left 1-synchronized, so

Proposition 24 can be applied: Every graph Γ s
n (TH .py) is connected and, in particular,

Γn(TH .py) is connected.

9.3 An imaginary bacterium

The taboo-set can significantly influence evolution in the cases where some Γ s
n (T) is

disconnected. To explain this, wewill create a plausible, nonexistent example. Suppose
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that a strain of Bacterium imaginara has taboo-set

TB.im = {ACCC, T CCC, CGCC, GGCC}
⋃

{GGGT , GGG A, GGCG},

where the second set contains the complementary DNA sequences of the first set,
except that of GGCC , which is an inverted repeat. Thus, taboo-set TB.im is induced
by 4 restriction enzymes. At first glance, taboo-set TB.im seems less restrictive than
TH .py , which has 6 taboos of length four and 22 taboos of length five or more.

Proposition 24 cannot be applied because CCC and GCC are not left 1-
synchronized, and actually we can find a disconnected suffix graph. Let us take
V CCC

n (TB.im), which satisfies

V CCC
n (TB.im ) = V GCCC

n (TB.im )
⋃

V CCCC
n (TB.im )

=
(

V AGCCC
n (TB.im )

⋃
V T GCCC

n (TB.im )
)⋃(

V GCCCC
n (TB.im )

⋃
V CCCCC

n (TB.im )
)
,

implying that, for any strings s1 ∈ V GCCC
n (TB.im) and s2 ∈ V CCCC

n (TB.im), it holds
that d(s1, s2) ≥ 2. Thus, we found two disconnected components in Γ CCC

n (TB.im),
namely Γ GCCC

n (TB.im) and Γ CCCC
n (TB.im). All in all, the graph Γ CCC

n (TB.im) is
disconnected for n ≥ 5.

This produces the following evolutionary implications: Assume that we have two
correctly aligned DNA fragments fα and fβ of the genome of Bacterium imaginara.
Assume moreover that we can write fα = rαGCCC and fβ = rβCCCC for some
strings rα and rβ , as also that the suffixCCC is invariable due to functional constrains.
Then fα cannot have evolved from fβ by simple point mutations, because at some
point in evolution a taboo string is produced that is lethal for the carrier. Thus, the
standard models of sequence evolution (Strimmer and von Haeseler 2009) do not
apply.

10 Concluding remarks

Using the results proven in this work, it is possible to decide whether every Ham-
ming graph Γ s

n (T) is connected. The connectivity of the taboo-free Hamming graphs
induced by the restriction enzymes of the bacteria listed in REBASE could be quickly
analysed with our tools. Unfortunately, for many organisms listed in REBASE, the
recognition sites of restriction enzymes are not available.

Based on the current version of REBASE (2020a), we conclude using Corollary
25 that taboo-sets of at least 87% (3158/3623) of bacteria in REBASE induce con-
nected taboo-free Hamming graphs, because they have less than four type II restriction
enzymes. For larger taboo-sets, Proposition 24 can be used, as we did in Sect. 9.2, or
one can directly use the characterization of Theorem 22. Thus, restriction enzymes in
bacteria generally do not lead to any disconnected taboo-free Hamming graph, and
our models of sequence evolution are by and large applicable. However, the influence
of some missing sequences in the Hamming graph on the estimation of evolutionary
parameters deserves further investigations. We also would like to emphasize that still
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many recognition sites have to be identified, and thus it may be well possible that we
find disconnected taboo-free Hamming graphs in the next future.

We consider the formal framework developed in this paper as a first and neces-
sary step to understand the effect of restriction enzymes (and possibly other taboo
sequences) on the DNA composition of bacteria and viruses, or more generally on the
sequence space modelled as a Hamming graph. Consider, for example, the phyloge-
netic studies by Ailloud et al. (2019), where the H. pylori taboo-set TH .py of Sect. 9.2
was taken from. The following natural questions arise: How are inferred evolutionary
times between the two H. pylori populations affected by TH .py? Has their GC content
varied due to the taboos of restriction enzymes?

To answer such questions, we need to develop models of sequence evolution that
take taboos into account. Taboo avoidance induces complex dependencies along a
DNA sequence, which can be measured using Markov Chain Monte Carlo (MCMC)
simulations. If all taboo-free Hamming graphs Γ s

n (T) are connected, then MCMC
methods are easy to apply (Manuel et al. unpublished). A disconnected taboo-free
Hamming graph, however, leads to a reducible Markov chain, which complicates
simulation of taboo-free evolution.

Another application of our framework is the construction of combinations of restric-
tion enzymes that lead to a disconnected Hamming graph, and thus limit evolutionary
freedom. This may help to efficiently treat viral infections. Some progress has been
made in the usage of restriction enzymes for the treatment of viral infections (Weber
et al. 2014). Since one or just a few SNPs can significantly alter the symptoms or even
the mortality associated to a pathogen (Collery et al. 2017; Yuan et al. 2017), our char-
acterization of the connectivity of taboo-free Hamming graphs could help to delete
SNPs from the viral genome that are detrimental to humans. Although the treatment
of an infection using restriction enzymes is mostly unexplored, this work could be a
first theoretical guide to a successful treatment.
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