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Abstract 

Urological cancers are responsible for thousands of cancer-related deaths around the world. Despite all developments 
in therapeutic approaches for cancer therapy, the absence of efficient treatments is a critical and vital problematic 
issue for physicians and researchers. Furthermore, routine medical therapies contribute to several undesirable adverse 
events for patients, reducing life quality and survival time. Therefore, many attempts are needed to explore potent 
alternative or complementary treatments for great outcomes. Melatonin has multiple beneficial potential effects, 
including anticancer properties. Melatonin in combination with chemoradiation therapy or even alone could sup-
press urological cancers through affecting essential cellular pathways. This review discusses current evidence report-
ing the beneficial effect of melatonin in urological malignancies, including prostate cancer, bladder cancer, and renal 
cancer.
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Introduction
Urological cancers, which account for 12% of malig-
nancy-associated deaths across the world, mostly include 
cancers of the prostate, bladder and kidney. Prostate 
cancer is the most prevalent and accounts for one mil-
lion new cases, and 300,000 deaths each year [1, 2]. The 
second most frequent urological cancer is bladder cancer, 
which is the ninth most common cancer in the world. 
Annually, approximately 330,000 people are diagnosed 
with bladder cancer, which leads to about 130,000 deaths 
[2]. The main risk factors for bladder cancer are chronic 
irritation, environmental and chemical exposures (espe-
cially cigarette smoking), molecular aberrations (par-
ticularly p21 and Ras proteins and RB1, TP53, EGFR and 
TP63 genes), and 50–70 years of age [3]. Renal cell carci-
noma (RCC) possesses the greatest mortality rates, one-
third of affected subjects. The main risk factors for RCC 

are hypertension, obesity, cigarette smoking, and age 
(50–70 years) [4]. Because of the resistance to treatment 
and metastasis, exploring novel therapeutic methods is 
vital for urological cancer therapy.

Melatonin is a molecule which has a broad spec-
trum of biological effects, including anti-angiogenic 
[5], anti-oxidant [6, 7], anti-inflammatory [8, 9], anti-
nociceptive [10], weight-reducing, anti-obesogenic [11], 
anti-migration, anti-invasion [12–14], anticancer [15, 
16], immunomodulatory [17], pro-apoptotic [18], and 
anti-proliferation activities [19]. Melatonin synchronizes 
circadian rhythms, and ameliorates the quality, duration 
and onset of sleep. Decline in the melatonin serum level, 
occurred during aging, various disease or artificial light 
exposure at night, leads to the disruption of cellular cir-
cadian rhythm; this is associated with the alterations in 
sleep-activity pattern, suppression of melatonin produc-
tion, and deregulation of expression patterns of cancer-
related genes [20, 21]. Many clinical investigations have 
reported melatonin beneficial application in the therapy 
of cancers [22]. Melatonin suppresses tumor invasion 
through inhibiting CCL24 via blocking the JNK pathway 
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in osteosarcoma [13]. Melatonin represses colon cancer 
stem cells through modulating cellular prion protein/
Oct4 axis [23], and increases brain cancer stem cell sen-
sitivity to paclitaxel [24]. In this review, we discuss availa-
ble data of melatonin therapeutic effects in the treatment 
of urological cancers, based on molecular signaling 
pathways.

Anticancer potentials of melatonin: mechanisms 
of actions
Inhibitory impacts of melatonin on metastasis and 
growth of cancer cells have been widely studied. Of 
note, melatonin actions between healthy and tumoral 
cells are clearly different [12, 13, 25]; melatonin exerts 
its pro-apoptotic effects on cancer cells [26], but shows 
its anti-apoptotic properties in healthy cells [27]. This 
effect results from the differences of cancer cells with 
healthy cells in many ways including metabolism, gene 
regulation, and stress responses [28, 29]. The ability of 
melatonin to scavenge free radicals has been proposed by 
several investigations [30]; however, a few in vitro stud-
ies have reported the stimulatory effect of melatonin on 
ROS production at pharmacological concentrations [28]. 
Melatonin suppresses tumor proliferation through inhib-
iting telomerase activity and cell cycle kinetics [12, 31]. 
Melatonin exerts angiostatic features through suppress-
ing the expression and activation of vascular endothelial 
growth factor (VEGF) receptor 2 and inhibiting invasion, 
migration, and tube formation of endothelial cells [32]. 
Autophagy is another important mechanism implicated 
in controlling cellular homeostasis [33–35]. Autophagy 
possesses pro-survival actions; however, excessive 
autophagy probably results in cell fate, a process mor-
phologically different from apoptosis [36]. Further-
more, autophagy-deficient malignant cells succumb to 
radiotherapy and chemotherapy, in vivo [37]. Melatonin 
mediates the generation of intracellular reactive oxygen 
species (ROS), whose accumulation has upstream roles 
in mitochondria-induced autophagy and apoptosis [38]. 
Melatonin impairs the apoptosis resistance and prolifera-
tion of cancer cells through inactivation of ROS-induced 
Akt signaling pathway; Akt stimulates the up-regulation 
of anti-apoptotic proteins including Bcl-2, PCNA and 
cyclin D1 and down-regulation apoptotic proteins such as 
Bax. Melatonin also inhibits the invasion and migration 
of cancer cells via inhibiting ROS-activated Akt signal-
ing, leading to the Vimentin and Snail enhancement, and 
E-cadherin reduction [39]. Melatonin reduces prolifera-
tion and induces apoptosis in cancer cells through regu-
lating PI3K/AKT/mTOR, Apaf-1/caspase-9, PI3K/Akt, 
p300/nuclear factor kappa B (NF-κB) and COX-2/PGE2 
signaling pathways [40, 41]. Mitophagy removes injured 
mitochondria, which impairs chemotherapy-induced 

mitochondrial apoptosis. Melatonin is able to sensitize 
cancer cells to cisplatin-mediated apoptosis via suppres-
sion of JNK/Parkin/mitophagy pathway [42]. Importantly, 
melatonin modulates inflammatory and angiogenic pro-
teins which are responsible for tumor progression [43]. 
The nuclear translocation of NF-κB and the expres-
sion of pro-inflammatory factors, such as tumor necro-
sis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 
are reduced by melatonin [44]. Furthermore, melatonin 
reverses chemotherapy resistance through repressing the 
Wnt/β-catenin pathway and controls migration and inva-
sion of cancer stem cells [45, 46]. Results from clinical 
studies indicate that melatonin improves the sleep and 
quality of life in patients with cancer. Furthermore, com-
bination of melatonin with anticancer drugs enhances the 
therapeutic effect of chemotherapeutic agents and sur-
vival of patients with cancer [47, 48]. Melatonin is sug-
gested to overcome drug resistance through (I) increasing 
response to chemotherapeutics agents via modulation of 
the expression and phosphorylation of their targets, (II) 
reducing the clearance of chemotherapeutics by impress-
ing their metabolism and transport, (III) decreasing the 
survival of malignant cells via alteration of DNA and 
(IV) regulating cell death-associated mechanisms such 
as apoptosis and autophagy [49]. Regarding what briefly 
discussed above, anticancer effects of melatonin widely 
investigated during last decades. Herein, the therapeutic 
actions of melatonin have been evaluated on the patho-
genesis of urological cancers.

Therapeutic application of melatonin 
and urological cancers: focus on signaling 
pathways therapeutic application of melatonin 
and urological cancers: focus on signaling 
pathways
Prostate cancer
The incidence of prostate cancer significantly elevates 
among males by increasing age. A systematic review 
of epidemiologic studies has reported an association 
between circadian disruption or sleep loss and pros-
tate cancer [50]. A prospective association between first 
morning-void urinary 6-sulfatoxymelatonin (aMT6s) 
level and risk for prostate cancer has been reported by 
a case-cohort study; men with morning urinary aMT6s 
level below the median possess a fourfold higher risk 
for advanced or lethal prostate cancer compared to men 
with higher level [51]. Examination of circadian rhythms 
of melatonin showed that the level of melatonin reduces 
in the serum of patients with primary prostate cancer; 
this depression of serum melatonin has been reported 
to be due to a reduced pineal activity and be not caused 
by an enhanced metabolic degradation in the liver [52]. 
Melatonin increases the survival of animals by 33% when 
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administered at the beginning or at advanced tumor 
stages [53]. Melatonin controls and represses this type 
of cancer by induction of apoptosis through regulat-
ing the generation of ROS, mitochondrial bioenergetics 
and several signaling pathways, including JNK and p38 
pathways [54, 55].(. Melatonin considerably inhibits the 
expression and activity of Sirt1 protein in prostate cancer 
cells, which this is accompanied by a remarkable reduc-
tion in the proliferative activity of cancer cells. Prostate 
cancer cells are protected from anti-proliferative effects 
of melatonin by forced Sirt1 overexpression, proposing 
that Sirt1 may be a direct melatonin target [56]. The ben-
eficial effects of melatonin in declining tumor growth are 
related to the reduction of angiogenesis [57]; to suppress 
tumor angiogenesis, melatonin inhibits the activity of 
hypoxia-inducible factor (HIF)-1α resulting in the inhi-
bition of its target genes expressions in prostate cancer 
cells [58]. Up-regulation of miRNA-374b and miRNA-
3195 by melatonin results in the attenuation of HIF-1/2 
α and VEGF expression [59]. Tai and colleagues selected 
120 newly diagnosed prostate cancer subjects as well as 
240 age-matched controls and measured their main urine 
metabolites. Individuals having a high melatonin-sulfate/
cortisol (MT/C) ratio or high levels of melatonin-sulfate 
were less probable to possess prostate cancer or malig-
nancy in advanced stages [60].

Melatonin exerts anti-androgenic effects on pros-
tate cells through blocking androgen receptor nuclear 
translocation and disrupting the positive interaction 
between androgen receptor splice variant-7 (AR-V7) 
expression and activated NF-κB/IL-6 signaling [53, 61]. 
This anti-androgenic effect of melatonin is mediated by 
the activation of MT1 receptor leading to the delay in 
the development of castration resistance in advanced 
prostate cancer [61]. Melatonin promotes cell toxicity 
and death caused by cytokines including TNF-α and 
TNF-related apoptosis-inducing ligand (TRAIL) with-
out affecting the action of chemotherapeutic agents 
[62]. Terraneo et al. investigated the effect of melatonin 
on prostate cancer cells when delivered by cryopass-
laser or intraperitoneal administration. Intraperitoneal 
administration of melatonin has been reported to be as 
effective as cryopass-laser therapy in attenuating pros-
tate cancer cell growth, and influencing redox balance 
and melatonin plasma level. The effect of cryopass-laser 
is less than intraperitoneal delivery route of melatonin 
in enhancing Nrf2 expression and melatonin content in 
tumor mass. However, cryopass-laser treatment of mel-
atonin is as effective as its intraperitoneal administra-
tion in the inhibition of HIF-1α. Overall, cryopass-laser 
therapy could be an effective method to transdermal 
delivery of melatonin to the site of action without 
causing pain [63]. To prove melatonin effectiveness in 

prostate cancer therapy, further studies are needed. 
Table 1; Fig. 1 summarize present information of mela-
tonin therapy for prostate cancer.

Bladder cancer
Radical cystectomy is known as the standard therapy 
for bladder cancer with neoadjuvant chemotherapy 
[64]; however, 5-year survival of subjects with meta-
static form of this cancer is still low [65, 66]. Although 
various therapeutic approaches have been developed 
up to now, bladder cancer mortality rate has not signifi-
cantly ameliorated. Therefore, finding novel effective 
therapies are required. As discussed in detail, mela-
tonin deserves to be chosen at least as an adjuvant for 
the therapy of diverse cancers. Few but valuable stud-
ies have investigated the effect of melatonin on blad-
der cancer. Therefore, we summarize them here and in 
Table 2; Fig. 2.

Synergistic anticancer effects of melatonin in com-
bination with curcumin have been evaluated against 
bladder cancer [67]; this combination results in a pro-
moted suppression of bladder cancer cell prolifera-
tion. Moreover, melatonin and curcumin combination 
blocks the activity of IκB kinase β (IKKβ), leading to 
the repression of NF-κB nuclear translocation and their 
binding on COX-2 promoter. This combination medi-
ates apoptosis in bladder cancer cells via increasing 
cytochrome c release into the cytosol. Therefore, mela-
tonin synergizes curcumin suppressive impacts against 
bladder cancer growth through promoting the pro-
apoptotic, anti-migration, and anti-proliferation func-
tions. This indicates that this combination might reveal 
efficient therapeutic potential in the therapy of bladder 
cancer. Melatonin induces cell cycle arrest at G0 phase 
and inhibits colony formation, mitochondrial mem-
brane potential, cell migration, and the growth of blad-
der cancer cells. Melatonin also blocks oxidative stress, 
and inhibits AKT-MMP9 signaling pathway leading 
to the reduction of invasion, migration, and growth of 
bladder cancer cells [68].

Combination of valproic acid and melatonin stimulates 
the expression of particular genes involved in necrosis 
(RIPK1, PARP-1, and MLKL), autophagy (ATG5, ATG3, 
and BECN) and apoptosis (such as TNFRSF10B and 
TNFRSF10A). This combination activates Raf/MEK/ERK 
and Wnt signaling pathways, up-regulates expressions 
of E-cadherin and endoplasmic reticulum-stress-related 
genes including ERdj4, EDEM1, IRE1, and ATF6 and 
down-regulates expressions of Slug, Snail, Fibronectin, 
and N-cadherin. These suggest that combination of val-
proic acid and melatonin increases cytotoxicity through 
modulating cell death pathways in bladder cancer [69].
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Table 1 Investigations on melatonin treatment against prostate cancer

Melatonin dose 
or concentration

Targets Effects Model Cell line Refs

1 pM, 1 nM, 1 μM, 1 mM mTOR, ERK1/2, Akt, OXPHOS, 
ROS

Anti-proliferative and antioxi-
dant effects

In vitro PNT1A [55]

UCM 1037 (analogue) Androgen receptor, Akt Anti-proliferative and cytotoxic 
effects against cancer cells

In vitro LNCaP, PC3, DU145, 22Rv1 [76]

1 mM Pentose phosphate pathway Decreased LDH activity, tricar-
boxylic acid cycle, ATP/AMP 
ratio, glucose uptake, and 
lactate labeling

Limited glycolysis

In vitro LNCaP , PC-3 [77]

3 mg/kg Nrf2, HIF-1α Inhibited tumor growth In vivo LNCaP [63]

10− 6 M NF-κB, AR-V7, IL-6, Delayed castration resistance 
development

In vitro LNCaP, 22Rv1 [61]

200 µg/ml
50 µM–1 mM

MAPK/ERK, IGFBP3 Increased survival time of 
TRAMP mice when admin-
istered at the initiation or 
advanced stages

In vivo, in vitro LNCaP [53]

10 µg/kg
500 µM, 5 mM, 10 mM

Androgen receptor (AR), PCNA, 
MTR1B

proliferative and anti-apoptotic 
effects in prostate cells 
subjected to HG levels

In vivo, in vitro PNTA1, PC-3 [78]

1 mM VEGF, HIF-1α, HIF-2α, miR-3195, 
miR-374b

Anti-angiogenic activity In vitro PC-3 [59]

1 mg/kg Nrf2, Ki67, HIF-1α, Akt Inhibited cancer growth and 
exerted anti-angiogenic 
effects

In vivo LNCaP [57]

10− 8 M p27, NF-κB, MT1, Anti-proliferative effects In vitro LNCaP, 22Rv1 [79]

1 mM TRAIL, TNF-α Promotes cell toxicity and can-
cer cell death, inhibited oxi-
dative stress, and suppressed 
cancer cell proliferation

In vitro LNCaP, PC-3 [62]

10 mg/kg GSH, MDA, SOD Inhibited tumor growth and 
oxidative stress

In vivo – [80]

10− 11-10− 5 M MT1, p27, AR Anti-proliferative effects In vitro RWPE-1, 22Rv1, VCaP, LNCaP [81]

1 mM Akt/GSK-3β, HIF-1α, SPHK1, 
VEGF, von Hippel-Lindau

Antioxidant effects In vitro PC-3 [82]

100 nM–2 mM Sirt1, IGF-1)/IGFBP3, PCNA, 
Ki-67

Anti-proliferative effects
Inhibited tumorigenesis

In vivo, in vitro PC-3, DU145, 22Rν1, LNCaP [56]

100 µM, 1 mM, 2mM Per2, Clock, Bmal1 Anti-proliferative effects
Caused a resynchronization of 

oscillatory circadian rhythm 
genes

In vitro PC-3, DU145, 22Rν1, LNCaP [83]

10− 8-10− 3 M – Inhibited viability and induced 
apoptosis

In vitro PC-3, DU145, 22Rν1, LNCaP [84]

1 mM HIF-1α, Anti-angiogenic effect In vitro PC-3, DU145, LNCaP [58]

0–3 mM p38, JNK Induced apoptosis
Inhibited cancer cell growth

In vitro LNCaP [54]

10− 9,  10− 8,  10− 7 PKA, PKC, p27, MT1 Anti-proliferative effects In vitro 22Rv1 [85]

10− 11,  10− 5 p27, PKA, PKC, MT1, andro-
gen signaling

Anti-proliferative effects In vitro 22Rv1 [86]

0.5, 1 mM – Induced cell cycle arrest and 
cellular differentiation

Inhibited proliferation of 
cancer cells

In vitro LNCaP, PC-3, [87]

5 mg MT1 Anti-proliferative effects
Induced stabilization of 

patient’s hormone-refractory 
disease

Human – [88]
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Kidney cancer
Kidney cancer is responsible for 2–3% of all cancers, 
and RCC is the most common type of this cancer. 
Among urological malignancies, RCC is believed to be 
the most lethal [70]. The 5-year survival rate of RCC is 
approximately 93%; however, this rate for patients with 
metastatic RCC is 12% [71]. Similar to other urologi-
cal cancers, searching for appropriate therapy for the 
treatment of this malignancy is essential. Melatonin is 
believed to possess the potential to suppress this cancer.

Melatonin suppresses RCC metastasis by suppressing 
Akt-MAPKs pathway, DNA-binding activity of NF-κB 
and MMP-9 transactivation [72]. Combination of mela-
tonin and thapsigargin induces apoptosis in renal cancer 
cells through up-regulating CCAAT-enhancer-binding 
proteins homologous protein (CHOP) expression; the 
up-regulation of CHOP expression is melatonin receptor-
independent and may result from antioxidant properties 
of melatonin [73]. Furthermore, Kahweol and melatonin 
combination up-regulates the p53-upregulated modula-
tor of apoptosis (PUMA) through endoplasmic reticulum 
stress-induced CHOP induction and p53-independent 
pathway [74]. Melatonin could induce apoptosis in renal 
cancer cells through up-regulating the expression of E2F1 
and Sp1, leading to the enhancement of the expression of 
Bcl-2-interacting mediator of cell death (Bim). Melatonin 

also modulates the stability of Bim protein via inhibit-
ing proteasome activities. However, up-regulation of Bim 
induced by melatonin is independent of melatonin recep-
tors and antioxidant potentials. Overall, these findings 
show that melatonin mediates apoptosis by up-regulating 
the expression of Bim at transcriptional levels and at the 
post-translational levels [75]. Table 3; Fig. 3 illustrates a 
summary of carried out investigations related to mela-
tonin therapeutic roles in renal cancer therapy.

Conclusion
Urological cancers are serious life-threatening diseases 
for societies and account for thousands of morbidity 
and mortality each year. Because standard therapies 
have not been able to increase survival time in affected 
patients, researchers should make so many attempts to 
produce further efficient drugs as alternative, comple-
mentary or adjuvant for cancer therapy. In addition to 
the improvement of sleep and quality of life in patients 
with cancer, melatonin in combination with anticancer 
agents increases the efficacy of routine medicine and 
survival rate of patients with cancer. The present review 
suggests that melatonin can be utilized as adjuvant of 
cancer therapies through reducing possible adverse 
events of chemotherapy or radiotherapy and increas-
ing the sensitivity of cancer cells to medical treatments. 

Table 1 (continued)

Melatonin dose 
or concentration

Targets Effects Model Cell line Refs

4 µg/g EGF, Cyclin D1 Inhibited tumor growth and 
proliferation

In vivo PC-3, DU145, LNCaP [89]

– – AR activity attenuation 
by melatonin is not due to 
inhibition of AR binding to 
the androgen responsive 
element (ARE)

In vitro LNCaP, PC-3 [90]

4 µg/g MT1 Anti-proliferative effects In vivo PC-3, LNCaP [91]

0.01–100 nM cAMP suppressed cancer cell pro-
liferation and induced cell 
cycle arrest

In vitro DU145 [92]

5 × 10−11-5 × 10 −5 MT1, sex steroid-mediated 
calcium influx

Anti-proliferative effects In vitro LNCaP [93]

0.01–1000 nM Mel1a receptor Anti-proliferative effects In vitro LNCaP [94]

20 mg IGF-1, PRL Combination therapy with 
triptorelin and melatonin 
decreased PSA mean con-
centrations

Melatonin reversed clinical 
resistance to LHRH analogue 
triptorelin in metastatic 
prostate cancer

Human – [95]

50 µg – Inhibited tumor growth In vivo Dunning R-3327-HIF tumor [96]
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Fig. 1 Melatonin (a) promotes apoptosis in prostate cancer cells through activating TNF-α/TRAIL, JNK and P38 signaling pathways, and inhibiting 
SIRT1 pathway, (b) inhibits angiogenesis by inhibition of HIF-1/2α and VEGF expression and (C1) exerts anti-androgenic effects by inhibiting nuclear 
translocation of androgen receptor and (C2) MT1 receptor-dependent disruption of positive interaction between androgen receptor splice variant-7 
(AR-V7) expression and NF-κB/IL-6 signaling

Table 2 Results from experimental studies of melatonin application against bladder cancer

Melatonin dose 
or concentration

Targets Effects Model Cell line Refs

10 mg/kg
1 mM

cytochrome c, NF-κB, 
COX-2, IKKβ

Combination of melatonin and curcumin induced cell 
apoptosis

Melatonin exerted pro-apoptotic, anti-migration, and anti-
proliferative functions

Melatonin synergized curcumin ability to suppress tumor 
growth

In vivo, 
in vitro

5637, UMUC3, 
T24

[67]

100 mg/kg ZNF746 , p-AKT/MMP-2/
MMP-9

Inhibited cancer cell growth, invasion, and migration
Induced cell cycle arrest
Suppressed oxidative stress

In vivo, 
in vitro

HT1376, HT1197, 
RT4, T24

[68]

10− 6 m Wnt, E-cadherin, N-cad-
herin Raf/MEK/ERK

Combination of valproic acid and melatonin enhanced cyto-
toxicity by modulating cell death pathways

In vitro UC3 [69]
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The underlying mechanisms mainly include inhibition 
of cell survival, metastasis, angiogenesis, and clone 
formation. Furthermore, melatonin reduces resistance 
to treatment in cancers through the modulation of the 
expression and phosphorylation of drug targets, the 
reduction of the clearance of chemotherapeutics, the 

alteration of DNA of malignant cells and the regulation 
of cell death-associated mechanisms such as apopto-
sis and autophagy. Notably, it is obvious that multiple 
studies should be conducted, particularly human trials, 
to prove its safety and effectiveness in patients with dif-
ferent malignancies, including urological cancers.

Fig. 2 Melatonin affects some signaling pathways leading to the induction of cell death and inhibition of invasion and proliferation of bladder 
cancer cells

Table 3 A summary of current findings of melatonin for renal cancer treatment

Melatonin dose 
or concentration

Targets Effects Model Cell line Refs

200 mg/kg
0.5, 1, 2 µmol/L

PGC1A, UCP1 Eliminated the abnormal lipid deposits
Repressed tumor progression
Induced autophagy

In vivo HK2, 786-O, A498, Caki‐1, ACHN [97]

0.5–2 mM MMP-9, JNK1/2, ERK1/2, MT1 Suppressed metastasis and invasion In vitro Caki-1, Achn [72]

0.1, 0.5, or 1 mM Bim, E2F1, Sp1, proteasome Induced apoptosis In vitro A549, HT29, Caki [75]

20 mg/kg
10 µM

HIF-1α Inhibits tumor growth and blocks tumor 
angiogenesis

In vivo, in vitro RENCA [98]

1 mM CHOP Induced apoptosis In vitro HCT116, HT29, Caki [73]

1 mM PUMA Induced apoptosis In vitro Caki [74]

1 mM Mcl-1 Attenuated oxaliplatin-mediated apoptosis In vitro Caki [99]

20 mg – Increased survival
Abrogated the negative influences of opi-

oids on IL-2 immunotherapy cancer cells

Human – [100]

40 mg – Combination of immunotherapy with IL-2 
plus melatonin increased survival time, 
and lymphocyte and eosinophil number

Human – [101]

10 mg – In addition to anticancer effects, low doses 
of human lymphoblastoid

interferon and melatonin showed no toxic-
ity in patients

Human − [102]
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Abbreviations
RCC : Renal cell carcinoma; CCL24:  C-C motif chemokine ligand 24; JNK: c-Jun 
N-terminal kinase; Oct4: Octamer-binding transcription factor 4; ROS: Reac-
tive oxygen species; VEGF: Vascular endothelial growth factor; TNF-α: Tumor 
necrosis factor-α; IL-1β: Interleukin-1β;  IL-6: Interleukin-6;  Nrf2: Nuclear factor 
erythroid 2-related factor 2; Apaf-1: Apoptotic protease activating factor-1; 
COX-2: Cyclooxygenase-2; PGE2: Prostaglandin E2; Sirt1: Sirtuin; PC-3 cells: 
Human prostate cancer cells; HIF: Hypoxia-inducible factor; MT/C: Melatonin-
sulfate/cortisol; TRAIL: TNF-related apoptosis-inducing ligand; IKKβ: IκB kinase 
β; MMP9: Matrix metallopeptidase 9; RIPK1: Receptor-interacting serine/thre-
onine-protein kinase 1; PARP-1: Poly [ADP-ribose] polymerase 1; MLKL: Mixed 
lineage kinase domain like pseudokinase; ATG : Autophagy related; ERdj4: 
Endoplasmic reticulum localized DnaJ 4;  EDEM1: Endoplasmic reticulum deg-
radation enhancing alpha-mannosidase like protein 1; IRE1: Inositol-requiring 
enzyme 1; ATF6: Activating transcription factor 6; ERK:  Extracellular signal-
regulated kinase; Raf: Raf-1 proto-oncogene, serine/threonine kinase; MEK: 
Mitogen-activated protein kinase kinase; MAPK: Mitogen-activated protein 
kinase; CHOP: CCAAT-enhancer-binding proteins homologous protein; PUMA: 
p53-upregulated modulator of apoptosis; GSH: Glutathione; Sp1: Specificity 
protein 1; Bim: Bcl-2-interacting mediator of cell death; PI3K: Phosphatidylino-
sitol-3-kinase; Akt: Protein kinase B.
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