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Abstract

Cross-Linking Immunoprecipitation associated to high-throughput sequencing (CLIP-seq) is a technique used to identify
RNA directly bound to RNA-binding proteins across the entire transcriptome in cell or tissue samples. Recent technological
and computational advances permit the analysis of many CLIP-seq samples simultaneously, allowing us to reveal the com-
prehensive network of RNA–protein interaction and to integrate it to other genome-wide analyses. Therefore, the design
and quality management of the CLIP-seq analyses are of critical importance to extract clean and biological meaningful in-
formation from CLIP-seq experiments. The application of CLIP-seq technique to Argonaute 2 (Ago2) protein, the main com-
ponent of the microRNA (miRNA)-induced silencing complex, reveals the direct binding sites of miRNAs, thus providing in-
sightful information about the role played by miRNA(s). In this review, we summarize and discuss the most recent
computational methods for CLIP-seq analysis, and discuss their impact on Ago2/miRNA-binding site identification and
prediction with a regard toward human pathologies.
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Introduction

RNA-binding proteins (RBPs) bind RNAs to regulate their fate,
function, localization or secondary structure [1] to ultimately
modulate many biological processes including cell apoptosis,
growth, fate and differentiation [2–4]. RBPs possess modular
structure composed by at least one domain to directly bind ei-
ther single- or double-stranded RNA, such as the RNA recogni-
tion motif, the zinc-finger domain, the KH domain and the

double-stranded RNA-binding domain [5]. RNA-binding domains
recognize primarily the RNA sequence, the RNA shape or both
[6]. Because of the high versatility of the RNA-binding domains
and the presence of some of them in each RBP [7], the full under-
standing of the RBP mode of binding is a challenging quest. To
comprehensively uncover the RNA–protein interactions network
in a genome-wide manner, Cross-Linking ImmunoPrecipitation
associated to high-throughput sequencing (CLIP-seq) was
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recently developed [8]. Nowadays, CLIP-seq analysis has become
one of the mainstream method to study RNA metabolism and
has led to important discoveries in different fields of molecular
and cellular biology [9–14]. Of particular interest for the commu-
nity of RNA biologists and beyond is the application of CLIP-seq
methods to Argonaute 2 (Ago2) protein, which together with
microRNAs (miRNAs) form the miRNA-induced silencing com-
plex (miRISC) [15]. miRISC targets mRNAs through partial se-
quence complementarity between the miRNA and the target
sequence, promoting degradation or translation inhibition of the
target mRNA [16]. miRNAs regulate many biological processes,
including cell proliferation, differentiation and death in both
physiological and pathological events [16]. Because CLIP-seq
analysis of Ago2 is meant to identify the precise binding sites of
miRNAs [9, 12, 17] but not of the protein itself, the downstream
and validation steps of the analysis are different from those per-
formed for other RBPs: binding features of miRNAs follow differ-
ent rules to that of RBPs. On the other hand, if we consider each
miRNA loaded into Ago2 as a different RBP [18], Ago2 CLIP-seq
may be taken as universal example of the mode of binding to
cognate RNAs.

CLIP-seq protocol has many steps involving sample prepar-
ation, sequencing and bioinformatics analysis. Briefly, RNA of
ultraviolet cross-linked cells or tissue lysates is partially digested
by enzymatic reaction into small fragments of about 50–100 nu-
cleotides (nts), the RBP of interest is immunoprecipitated and the
RBP-RNA complex is isolated by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis migration. Afterward, RNA from
the RBP-RNA complex is recovered by acid phenol/chloroform ex-
traction, RNA adapters are ligated, RNA template is reverse
transcribed and finally high-throughput sequenced. Several
protocol variants for sample preparation have been proposed,
which mainly include the most popular HIgh-Throughput
Sequencing of RNA isolated by CLIP (HITS-CLIP) [9, 10], the
PhotoActivable-Ribonucleoside-enhanced-CLIP (PAR-CLIP) [11–13]
and the individual-nucleotide resolution CLIP (iCLIP) [19].
Detailed differences among these three variants and other more
recent protocols have been previously discussed by others [20,
21]. An additional variant of the CLIP-seq, named CLASH, has
been developed by Helwak et al. [22], and it is particularly appro-
priate to Ago2 CLIP-seq. Briefly, CLASH allows high-throughput
mapping of small RNA::RNA-binding interaction by adding an
intramolecular RNA ligation step during the sample preparation.
CLASH approach and analysis have been previously reviewed by
Broughton and Pasquinelli [23].

After high-throughput sequencing, the bioinformatics ana-
lysis workflow starts by the preprocessing to filter out the low
quality and duplicate reads, and to map them onto the genome
or the transcriptome of reference. Afterward, to assess real
signal over the noise background, the reads are processed by
peak-calling programs. Called peaks are further analyzed for
functional, structural and biochemical characterizations of the
RNA–protein interaction, including motif discovery, expression
profile and gene ontology.

Importantly, because recent advances in sequencing tech-
nologies and bioinformatics analyses enable us to handle
many CLIP-seq samples simultaneously, it is important to op-
timize a bioinformatic pipeline that can facilitate the work of
researchers in obtaining unbiased and high-quality data.
Despite great efforts from researchers to streamline CLIP-seq
analysis, much remains to be improved on both experimental
(e.g. the quality of the antibody used for the immunoprecipita-
tion) and computational procedures. In fact, because of the
complexity of the large data set coming from high-throughput

technologies such as CLIP-seq, a correct interpretation of the
data is facilitated by a proper and an accurate data analysis
with refined and optimized computational tools. In this re-
view, we describe the computational protocol for CLIP-seq ana-
lysis, discuss the latest bioinformatics developments for data
processing and mining and provide advices for data analysis
interpretation. We discuss the validity and the limitations of
emerging programs for each step of the CLIP-seq analysis and
the quality measurements currently available for specific
tasks, by providing concrete examples on a case study: an in-
house Ago2 HITS-CLIP data set generated from stem cells [24]
(GEO accession: GSE85219). For simplicity and limited space,
we focus the scope of this review in providing a valuable com-
putational guideline for the bioinformatics analysis of the
three main variants of CLIP-seq analysis, namely, HITS-CLIP,
PAR-CLIP and iCLIP. To help the readers, we provide in
Supplementary Table S1 the Web links to download all the pro-
grams cited in the present review. Finally, we discuss how
Ago2 CLIP-seq analyses have improved the miRNA-binding
site prediction and the understanding of miRNA function in
human pathologies.

Bioinformatics workflow for CLIP-seq analysis

In Figure 1, we have summarized the main computational steps
for CLIP-seq analysis. Recently, few computational pipelines
have been developed such as CIMS [25], CLIPSeqTools [26],
CLIPZ [27] and PARCLIPsuite [11], which provide useful re-
sources to deal with preprocessing steps and some of the main
steps of the analysis, including peak-calling procedure. In the
following sections, we describe step-by-step the bioinformatics
workflow of the CLIP-seq analysis giving a quality overview of
existing software and providing practical examples on an in-
house data set for Ago2 HITS-CLIP experiments on P19 stem
cells [24].

Preprocessing and read mapping onto the reference
genome

The first step of the analysis is the preprocessing that involves
adapter removal, filtering raw data according to read quality
scores and collapsing reads with the exact sequence. While for
the adapter removal, specific programs have been developed
such as cutadapt [28] or Trimmomatic [29], for the quality filter-
ing, usually bioinformaticians develop ad hoc scripts. However,
lately few programs have been developed, such as FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and PRINSEQ
[30]. To quantify the differences of the strategies used by differ-
ent preprocessing programs to filter reads based on quality
scores and collapse duplicated reads, we applied FASTX-Toolkit,
PRINSEQ and the CIMS pipelines to a published in-house Ago2
CLIP-seq data set from mouse P19 stem cells [24] (GEO accession:
GSE85219). This analysis was run with the default tuning or the
recommended parameters (see Supplemental Information).
While some programs have tunable parameters, we forgo par-
ameter optimization, which might have improved the results for
some data sets, as this task may be beyond the ken of most
users. The highest number of reads that survive the preprocess-
ing step for the three replicates was obtained using PRINSEQ
(Table 1). To inspect the quality of the reads after the preprocess-
ing, we used the program FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ developed by S. Andrews). As
shown in Supplementary Figure S1, although FASTX-Toolkit
yielded reads with best quality score per sequence and per base,
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this program filtered out much more reads compared with the
other two programs (Table 1). These data indicate that FASTX-
Toolkit is stringent to select high-quality reads. Altogether,
PRINSEQ showed the best balance between quality and amount
of reads, suggesting that this program uses a strategy that fits
better for CLIP-seq data preprocessing than the other two pro-
grams. However, the balance of stringency and sensitivity can be
tuned by changing the parameters of the programs to meet the
needs of the researcher, such as the minimal quality of reads or
their minimal length to be selected. Finally, the three methods
achieved similar results regarding the collapse of duplicates, to
remove redundant fractions of the data. A high redundancy of
the data may be a consequence of low library complexity, which
often occurs when samples are prepared from small amount of
starting material or by performing too many polymerase chain
reaction cycles for library construction.

Reads that survive the preprocessing steps are mapped onto
the reference sequences that can be the complete genome, the
transcriptome or sequences belonging to specific categories,
such as 30 untranslated regions (UTRs), long noncoding RNAs,
small RNAs, etc. The most common algorithms used to perform
this task are Novoalign (http://www.novocraft.com/products/
novoalign/), STAR [31], Bowtie [32], RMAP [33], TopHat [34],
Gsnap [35], SOAP [36] and BWA [37]. A few precautions have to
be considered while setting the parameters of these programs
to perform a gapped alignment onto the genome. In fact, these
parameters permit to map reads that include deletions, muta-
tions or insertions caused by enzymatic errors occurring during
the sample preparation. Depending on the sample, it might be
important to use adequate parameters to map reads on the
exon junctions. In addition, an important issue concerns the
consideration of multiple mapped reads (reads that map in

Figure 1. Main steps of the bioinformatics workflow to analyze CLIP-seq data with the main software or pipeline to use.
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many loci). Although allowing for multiple read mapping would
increase the number of usable reads and the sensitivity of peak
detection, this may also cause an increase of false-positive
peaks, as it was also suggested for ChIP-seq analysis [38].

To provide guidelines about the program to use, we ran two
popular programs that achieved the best performances on RNA-
seq data [39], namely, Novoalign and STAR, on the in-house
Ago2 CLIP-seq data set from P19 stem cells after preprocessing
with the three aforementioned programs. For this analysis, we
set the recommended parameters for Novoalign and used simi-
lar ones for STAR (Supplemental Information). As shown in
Table 1, regardless the preprocessing program used, Novoalign
mapped uniquely between 20 and 30% more reads than STAR.
To test whether there is a qualitative difference on the genomic
location of the reads mapped by Novoalign and STAR, we div-
ided the genome in bins of 100 nucleotides and counted the
number of bins in which reads map by the two programs. As
shown in Supplementary Table S2, we found a relative small
number of bins in common between the two programs. These
data indicate that Novoalign is able to map reads in about 10%
more of the genomic locations than STAR. Therefore, we con-
cluded that differences in both quantitative and qualitative
mapping performances exist between Novoalign and STAR.
Giving that higher numbers of correctly and uniquely mapped
reads would have a beneficial effect on the peak-calling step to
discriminate real peaks over the background, we would recom-
mend to use Novoalign. However, the full version of Novoalign
is not freely downloadable, and the computational analysis can
take much longer with the uncomplete free version compared
with STAR, which is freely downloadable. An alternative strat-
egy is to map the reads with one program and afterward run the
unmapped reads with a second program. Because this strategy
was not benchmarked yet, it is unclear whether it is really ad-
vantageous. Finally, the mappability of multiple mapped reads
can be dealt by tuning the minimal length of reads or using
paired-end sequencing [38].

Peak calling

Assessing peaks is a central step of the analysis to determine
specific signal over the noise background for the identification of
real binding sites. The number of identified peaks increases with
the sequencing depth because weaker sites become statistically
significant with a greater number of reads [40]. However, the op-
timal sequencing depth can only be experimentally evaluated,
as it depends on the noise background of the antibody [38].

Diverse methods of peak calling have been used by different
programs. The most common strategy is to analyze distribution
profiles to find clusters of reads that belong to the same peak.
This strategy is used by different programs, including PIPE-CLIP
[41], Pyicoclip [42], Piranha [43] and CLIPper [44], for all CLIP-seq
protocol variants, and WavClusteR [45] and PARanalyzer [46] for
only PAR-CLIP data. PIPE-CLIP and Pyicoclip group the reads
based on positional overlap, while Piranha, MiCLIP [47] and
HITS-CLIP data analyses (http://qbrc.swmed.edu/softwares.
html) bin on genomic portions by fixed size. On the other hand,
CIMS focuses on the identification of read clusters containing
mutated cross-linked nucleotides [25]. To discriminate enriched
read clusters over the background, the peak-calling programs
use different statistical models. For instance, PIPE-CLIP and
Piranha use the zero-truncated negative binomial likelihoods,
including also additional covariates to refine the peak detection,
such as identification of cross-linked-dependent mutations or
transcript abundance. On the other hand, Pyicoclip performs a
background estimation implementing the modified false dis-
covery rate procedure to determine which clusters of reads are
significantly enriched in a list of genomic regions, by randomly
placing the same number of reads within the region and iterat-
ing the process many times. MiCLIP [47] and HITS-CLIP data
analyses use hidden Markow models (HMMs) to model the spa-
tial dependency of the reads that map in the cluster. Finally,
CIMS assesses statistical significance using a permutation-
based model. Specific statistical models are used for PAR-CLIP

Table 1. Number of reads obtained using different preprocessing and mapping tools on the in-house Ago2 HITS-CLIP data set from P19 stem
cells

# of reads before
preprocessing

Preprocessing
programs

# of reads after
preprocessing

Mapping tools # of reads after mapping

Unique mapping (%) Multiple mapping (%) No mapping (%)

Replicate 1
38 865 698 PRINSEQ 3 783 764 Novoalign 2 120 447 (56.0) 1 300 950 (34.4) 34 565 (0.9)

STAR 1 142 926 (30.21) 1 579 235 (41.74) 1 061 603 (28.05)
FASTX-Toolkit 933 985 Novoalign 596 192 (63.8) 315 845 (33.8) 7 004 (0.7)

STAR 372 062 (39.84) 472 457 (50.59) 89 466 (9.58)
CIMS 2 467 666 Novoalign 1 355 710 (54.9) 784 179 (31.8) 25 516 (1.0)

STAR 787 349 (31.91) 1 297 371 (52.57) 382 946 (15.51)
Replicate 2
34.094.384 PRINSEQ 3 924 075 Novoalign 2 196 430 (56.0) 1 321 658 (33.7) 34 607 (0.9)

STAR 1 311 574 (33.42) 2 036 793 (51.91) 575 708 (14.67)
fastXtoolkit 957 572 Novoalign 634 824 (65.1) 316 995% (32.1) 6 529 (0.7)

STAR 423 300 (43.39) 461 865 (47.34) 72 407 (7.42)
CIMS 2 584 470 Novoalign 1 425 553 (55.2) 801 740 (31.0) 25 557 (1.0)

STAR 871 764 (33.73) 1 314 533 (50.86) 398 173 (15.41)
Replicate 3
32.904.107 PRINSEQ 3 668 439 Novoalign 2 001 844 (54.6) 1 264 702 (34.5) 35 261 (1.0)

STAR 1 152 648 (31.42) 1 956 392 (53.33) 559 399 (15.25)
fastXtoolkit 888 186 Novoalign 562 070 (63.3) 300 647 (33.8) 6 308 (0.7)

STAR 358 485 (40.36) 442 132 (49.78) 87 569 (9.86)
CIMS 2 359 084 Novoalign 1 264 546 (53.6) 750 678 (31.8) 25 402 (1.1)

STAR 740 554 (31.39) 1 242 835 (52.68) 375 695 (15.92)
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analysis. For instance, PARanalyzer uses a nonparametric
kernel-density estimate classifier to identify RNA-protein inter-
action sites using T to C conversion rate and read density, while
wavClusteR uses a two-step algorithm consisting of a nonpara-
metric two-component mixture model and a wavelet-based
procedure.

Importantly, different methods can give different results;
thus, to help researchers in the choice of the right program for
their peak-calling analysis, we recently performed a compre-
hensive, quantitative and qualitative comparative evaluation of
four different publicly available programs for HITS-CLIP peak-
calling step, including CIMS, PIPE-CLIP, Piranha and Pyicoclip,
on four published Ago2 HITS-CLIP data sets [9, 48, 49] and one
in-house Ago2 HITS-CLIP data set generated from P19 stem cells
[24]. By tuning the programs in default parameters, we found
that Pyicoclip outperformed the other programs in terms of sen-
sitivity, positional accuracy, agreement with TargetScan
miRNA-binding site prediction program, specificity and for con-
sistency in finding the same results on different data sets from
the same tissue [24]. Nevertheless, depending on the biological
question and sample conditions, scientists may need to tune
the parameters of the different peak-calling programs to find
the best set to perform this task such as the P value and the
minimal number of reads to select significant peaks.
Alternatively, we suggested to rank the detected peaks accord-
ing to different statistics, such as number of reads, fold of en-
richment over the background or P-value, and apply arbitrarily
thresholds according to the desired stringency [24].

Finally, although not always possible, ideally the addition of
control conditions, such as knockout or knockdown, or stimula-
tion versus nonstimulation, would significantly improve the ac-
curacy and the quality of the peak-calling results [50, 51].
Accordingly, a few number of programs have been developed to
analyze differential CLIP-seq experiments. These programs in-
clude the HMM-based model dCLIP [52], Piranha that uses differ-
ent statistics to model reads distribution allowing the
comparison of two different conditions through the addition of
covariates, Pyicoenrich [42] that uses a strategy based on the
MA plot as for expression profile analysis and PARma [53] that
was specifically designed for PAR-CLIP data and uses a probabil-
istic model for the identification of differential peaks.

Motif discovery and other features

Following the peak calling, the analysis mainly focuses on the
characterization of the RBP-RNA interactions, especially looking
for possible binding sequence signature(s), using a candidate
screening or a de novo motifs identification. For the candidate
screening approach, programs like FIMO [54] can be used to
screen peak sequences for the identification of known RNA-
binding motifs, such as those from the database of Ray et al.
[55]. If the user is looking for unknown RNA-binding motifs, a de
novo motif identification could be performed. For this task, two
main parameters should be calibrated before launching the
analysis. The first parameter is the nucleotide length of the
motif. Mitchell and Parker [56] recently showed that different
RNA-binding domains bind in average a precise number of nu-
cleotides. Thus, the length of the motif can be set according to
the domain composition of the protein. The second parameter
to take into account is the so-called ‘background sequences’
that can be used as negative template in which it is not ex-
pected to contain the enriched motif sequence(s). Two main
strategies can be applied to select the appropriate background
sequences: (i) to randomly scramble the CLIP-seq peak

sequences; (ii) to define a set of sequences not bound by the
protein of interest [57]. In the first strategy, a few constraints
can be imposed to the background sequences, such as the
dinucleotides frequency to avoid underestimation of false-
positive rates in RNA prediction. As for the second strategy,
instead, it is recommended that the background sequences pos-
sess the same size, dinucleotide frequency and the GC content
of the target sequences used to perform the analysis. Besides
these general options, each program allows to set its own par-
ameters that may depend on the statistical/mathematical
model used by the algorithm, including the distribution to
model motif sites (i.e. the number of motif expected per se-
quence) and the threshold/score associated to the statistical
model (i.e. P-value, enrichment score and probability). If suc-
cessful, the final output of the de novo motif discovery analysis
would be a list of sequences enriched in the CLIP-seq data set.
On motif clusterization [58], these lists of enriched sequences
can be represented as position weight matrices or position-
specific affinity matrices that visualize the different affinity of
the RBP for each sequence. Among the most popular programs
for de novo motif discovery, we can cite MEME [59] and Homer
[60]. Other programs that may be used are MatrixREDUCE [61],
GLAM2 [62] and cERMIT [63]. In addition to the sequence motifs,
some programs take into account other sequence parameters,
including secondary structure prediction, discovering therefore
a structural motif that combines sequence composition with
secondary structure. For such analyses, one may consider to
use Zagros [64], RNAcontext [65], MEMEris [66], PhyloGibbs [67]
and CapR [68]. The identification of the RBP-binding motif(s)
permits the prediction of the RBP binding in different transcrip-
tome analyses.

Because Ago2 binds to miRNAs that determine the sequence
specificity of the binding to target RNAs, researchers often ana-
lyze Ago2 CLIP-seq peaks with prediction programs for miRNA-
binding sites, including Targetscan, PITA and Miranda.
However, such an approach can mislead to high rates of false-
positive and false-negative targets [69, 70]. Moreover, these pro-
grams only predict canonical miRNA-binding sites, which are
defined by a perfect complementarity match between miRNA
seed sequence (between second and eighth nts of miRNA se-
quence) and the 30 UTR [16], or seed-like motifs allowing one
mismatch or 1-nt bulge in the miRNA seed sequence [22, 71].
Lately, few programs have been developed to search for binding
sites of highly expressed miRNAs from Ago2-CLIP-seq peaks.
These programs mainly look for canonical or seed-like binding
sites, such as miRTarClip for all CLIP-seq techniques, which are
limited to 30 UTR [72], or microMUMMIE [73] and mEAT [46] that
are limited to PAR-CLIP data sets. A similar approach was also
adopted by Clark et al. [74]; however, only the precomputed re-
sults for miRNAs expressed in 34 CLIP-seq data sets are avail-
able, but not the program. Finally, we have recently developed a
novel method, called miRBShunter, that uses de novo motif
search for an unbiased identification of miRNA-binding sites
from Ago2 CLIP-seq data sets [24]. miRBShunter identifies any
potential miRNA::RNA heteroduplexes for both canonical and
noncanonical miRNA-binding sites, which involves portions of
the miRNA sequence outside the seed or with seed-like binding,
by searching for de novo motifs. Potential miRNA::RNA heterodu-
plexes are then ranked according to a heteroduplex score,
which takes into account the following parameters of the heter-
oduplex: (i) free energy, (ii) the number of paired nucleotides,
(iii) the number of paired nucleotides in the motif found, (iv) the
number of paired nucleotides in the seed region and (v) the
number of bulge nucleotides in the seed.
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Downstream analysis

The last step of CLIP-seq analysis involves functional characteriza-
tion of the target RNAs identified to provide clues about the
molecular function of the RBP(s) or the miRNA(s) of interest. Many
programs/databases address this task, including GoTermFinder
[75] and topGO [76] to perform GO Term enrichment; GeneMania
[77] to predict the function of a set of genes; STRING [78] and
Cytoscape [79] to predict and visualize the protein interaction net-
works; GSEA [80] to determine whether a set of genes show similar
expression differences between two biological conditions; and
RAIN that integrates noncoding RNAs and protein–protein inter-
action networks [81]. Furthermore, the results from CLIP-seq ana-
lysis can be coupled with data sets from other genome-wide
technologies, including RNA expression profile or alternative
splicing.

Although not always routinely updated, many resources
have been developed for the functional analysis of RBPs and
miRNAs. For instance, miRonTop is an online Java Web tool that
integrates DNA microarrays or high-throughput sequencing
data to identify the potential miRNA target mRNAs by comple-
mentary between the seed and the 30 UTR sequences. The list of
potential miRNA targets can be used to assess specific biological
functions of miRNAs by performing Gene Ontology enrichment
[82]. DIANA-mirExTra performs a combined differential expres-
sion analysis of mRNAs and miRNAs to uncover miRNAs and
transcription factors that play regulatory roles between two
conditions [83]. Finally, miRGator is a portal collecting high-
throughput sequencing miRNA data integrated with target ex-
pression profiles [84]. This portal includes 73 deep-sequencing
data sets on human samples from Gene Expression Omnibus
[85], Short Read Archive (SRA) (SRA:http://www.ncbi.nlm.nih.
gov/sra/), The Cancer Genome Atlas archives (http://cancerge
nome.nih.gov/) and several supporting programs. Among those
programs, we mention miR-seq browser that provides short-
read alignment with the predicted secondary structure of tran-
scripts, read count and different features to study iso-miRs and
miRNA posttranscriptional modifications.

Validation of CLIP-seq analysis

CLIP-seq experiments can be validated using different technical
approaches by either candidate or genome-wide approaches
[86]. For practical reasons, the candidate approach is feasible
only to a limited number of targets, usually top-scored targets
from statistical significance tests or identified by machine
learning algorithms, or to a subset of targets with a particular
biological relevance. The candidate approach can be performed
to validate the direct interaction between the protein of interest
and the target RNA(s) or the function played by the protein (or
miRNA) on the target RNA(s). The interaction can be validated
by a plethora of wet laboratory techniques, such as the in vitro
electrophoretic mobility shift assay or RNA immunoprecipita-
tion followed by either northern bloting or reverse transcriptase
quantitative polymerase chain reaction (RT-qPCR) from cell or
tissue extracts. Functional validation may include knockdown/
knockout or overexpression experiments on cells or tissues of
the protein (or miRNA) of interest followed by RT-qPCR or north-
ern bloting to check on the expression levels of the target RNA(s),
or minigene assay to check on alternative splicing events.

The same functional validation can be also performed at the
genome-wide scale assays, which may include RNA-seq or
microarray experiments followed by an appropriate data ana-
lysis that depends on the function investigated. While the latter

approach is more accurate and comprehensive, the cost can be
higher.

Implication for miRNA-binding prediction and
human pathogenesis

miRNAs are small noncoding RNAs of about 22 nts that associ-
ate to Ago2 to bind to RNA for degradation and/or translation
block [16]. About 1000 miRNAs have been experimentally vali-
dated in human [87], which regulate many biological processes
during physiopathological events and development [3, 4]. In this
part of the review, we discuss the latest developments in the
field of miRNA target prediction and mode of action in human
pathologies made by the use of Ago2 CLIP-seq analysis.

Ago2 CLIP-seq data ameliorate miRNA target prediction

To date, the main miRNA target prediction programs take into
account the following miRNA::RNA interaction features: (i) oc-
currence of perfect complementarity match between miRNA
seed sequence and target mRNAs, (ii) sequence conservation of
the target sequence across species, (iii) the free energy of the
miRNA::RNA heteroduplex and (iv) the target site accessibility
[88–91]. Even considering all these features, the rate of false
positives and negatives is still high [70], indicating that more is
needed to better predict miRNA target sequences. The presence
of >15 Ago2 CLIP-seq analyses performed in several cells or tis-
sues and deposited in the Starbase database [92, 93] provides an
important resource for a genome-wide investigation of the
miRNA targeting features. Based on these studies, a second gen-
eration of miRNA target prediction programs has been de-
veloped. Although the second-generation programs seem to
perform better than the first one, a major limitation for both of
them is the lack of an accurate list of bona fide miRNA-binding
sites to calculate true- and false-positive rates.

Here, we briefly describe the recent improvements of the
prediction programs for miRNA-binding sites, based on CLIP-
seq data (Table 2). Recently developed second-generation pro-
grams propose new models/parameters for the implementation
of new algorithms. For instance, TargetSpy uses for the first
time Ago2-CLIP-seq data to train a machine learning algorithm
[100]. MIRZA develops a biophysical model through the param-
etrization of miRNA::mRNA target alignments and the free en-
ergy of the binding optimized using CLIP-seq data [101]. STarMir
implements a logistic prediction models based on thermo-
dynamic parameters of the miRNA::RNA heteroduplexes and
the secondary structure features of the target mRNAs from
CLIP-seq analyses [103]. MiRTar2GO is a rule-based machine
learning approach to predict cell type-specific miRNA target
mRNAs, which are ranked using validated binding sites from
luciferase assay or Ago CLASH data sets [105]. Lu and Leslie
[106] developed the program chimiRic that uses a discriminative
machine learning approach on Ago2 CLIP-seq and CLASH data
to train a novel miRNA target prediction model. On the other
hand, some of the first-generation miRNA prediction programs
have been refined and updated thanks to Ago2 CLIP-seq ana-
lyses. For example, DIANA-micro-T-CDS [102] is an extension of
the first-generation algorithm DIANA-micro-T [107] that uses a
machine learning approach to identify the most relevant fea-
tures of miRNA targeting from CLIP-seq data sets. Finally, the
latest version of miRDB contains miRNA target prediction based
on an updated version of the MirTarget computational model by
including CLIP ligation (cross-linking and immunoprecipitation
followed by RNA ligation) data in the training data set [104].
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In addition to the features within the miRNA::RNA heterodu-
plex identified by CLIP-seq analyses, few reports showed that
the binding activity of miRNAs is also modulated by RBPs that
sit on the sequence surrounding miRNA-binding sites [108–110].
This has led to the concept of a sequence microenvironment
surrounding miRNA-binding sites that can play an important
role in regulating miRNA activity [89]. However, much remains
to be explored about the use of RBP-binding motifs to improve
the prediction of miRNA target sequences. A first step toward
this direction was made by Incarnato et al. [111]. Briefly, the au-
thors used Pumilio-binding motif to predict miRNA-binding
sites within a distance of 100 nts. Validation of this analysis
was carried out by RNA expression profile. We foresee that the
full incorporation of RBP-binding motifs may pave the way to a
third generation of miRNA target prediction programs.

Application of Ago2 CLIP-seq in human pathologies

Several publications reported miRNA targetome in different
cells and tissues [12, 48–50, 110, 112–116]. Ago2 CLIP-seq experi-
ments significantly contributed to our knowledge about the role
of miRNAs in human pathogenesis. For instance, recently sev-
eral reports use Ago2 CLIP-seq analysis to study the role of
either host or viral miRNAs during viral infection [117].
Noteworthy, Kim et al. [118] combined Ago2 CLIP-seq and bio-
informatics to identify miRNA targetomes of the human cyto-
megalovirus miRNAs during infection. This study reveals that
viral miRNAs can regulate multiple pathways and cooperatively
function with the host human miRNAs to promote viral replica-
tion [118].

Surprisingly for some human pathologies, such as cardiovas-
cular diseases, despite the vast literature and the well-established
roles of small RNAs in their pathogenesis [2, 119–121], genome-
wide studies of miRNA regulatory networks are poorly developed.
Indeed, only two Ago2 CLIP-seq studies have been performed in
cardiovascular diseases, including one in the heart of transgenic
mice overexpressing miR-133a and miR-499 [122], and the other
one in the left ventricular cardiac tissue from six men with cardio-
myopathy [123]. Interestingly, in ventricular tissue of patients
with cardiomyopathy, about 4000 Ago2-binding sites that contain
seed sequence complementarity for the most highly expressed
cardiac miRNAs have been identified. The authors deeply charac-
terized the targetome of miR-133, known to be enriched in many
pathological conditions of the heart and characterized new roles
for miR-29 [123]. In particular, they found that miR-29 targets sev-
eral mRNAs, including Ryr2, Serca2 and Junctin that are key regu-
lators of sarcoplasmic reticulum Ca2þ in cardiomyocytes, PIK3R1
(p85-alpha) and Med13 that are involved in cardiomyocyte growth
and metabolic signaling and Lama2 that plays a more general role
in extracellular matrix composition of muscle cells. The authors
speculate that these target genes suggest new roles for miR-29 in
cardiomyocyte growth and calcium handling, which may have
significant clinical relevance to cardiac hypertrophy and contract-
ile dysfunction in cardiomyopathy patients. The novel aspect of
these findings is also based on the fact that prior studies have
focused on miR29 function in cardiac fibroblasts ignoring the car-
diomyocytes [124]. Further preclinical and clinical investigations
may strengthen these findings and eventually propose miR-29-
based therapeutic approach to cure or prevent cardiopathies.

We foresee that Ago2 CLIP-seq experiments from biopsies of
cardiovascular case-control studies and animal models will un-
ravel the global role of miRNAs in the pathogenesis of cardio-
vascular disease and other human pathologies. A major
limitation in the application of this approach is the limited

amount of primary tissues derived from biopsies. Future
technological advances to increase the depth of single-cell
sequencing would overcome this limitation [125].

Concluding remarks

In this review, we discuss the recent computational develop-
ments of CLIP-seq analysis and highlight key points associated
with each step, providing useful guideline to nonexpert users. We
stress that a quality check of the data at each step is important to
properly perform the analysis. While our manuscript was in revi-
sion, Uhl et al. [126] published a review on the CLIP-seq data ana-
lysis, which mainly focuses on the peak-calling step, whereas our
review provides a more general point of view of the computa-
tional workflow. In addition, by addressing recent applications of
CLIP-seq analysis for Ago2/miRNA target identification and pre-
diction in physiological conditions or in human pathologies, our
review provides practical examples of direct applications of this
technique in biomedical fields. We believe that this review bene-
fits scientists in RNA biology, gene expression fields and beyond.

CLIP-seq analysis provides a huge amount of data that often
are not fully exploited by the researchers because of the lack of
time or tools dedicated to perform/integrate different analyses.
A further effort should be done to make these data available in
a user-friendly format and resource databases to collect them.
Some databases, such as StarBase [92], CLIPdb [127] and CLIPZ
[27], collect raw data of CLIP-seq studies and provide peak se-
quences and/or coordinates. However, they are not always
updated and use standard pipelines that may not be suitable for
every RBPs. Therefore, the development of integrated platform
of CLIP-seq data analysis and databases could be a direction to
be taken in the near future. In particular, these platforms
should combine multiple software, such as pipelines covering
multiple steps of data analysis or multiple databases including
other high-throughput techniques as RIP-seq, ChIP-seq, RNA-
seq and quantitative proteomics data, making the analysis
faster and more comprehensive. On the other hand, improve-
ment of the experimental protocol or conditions, such as quan-
tification of the benefits of using replicates and/or control
experiments, is needed to improve the reproducibility of the
data and increase the efficiency of the data mining.

Overall, we have shown that CLIP-seq experiments associ-
ated to sophisticated bioinformatics analysis have become now-
adays an essential instrument to gain insight into the direct
regulatory network(s) of RBP-RNA interactions to address cen-
tral questions of RNA biology and gene expression control in
normal and pathological events of physiology or development.
We foresee that progression in software development will take
the stage in the near future to render the CLIP-seq analysis
more integrated to other genome-wide approaches and more
accessible to nonexpert users.

Key Points

• Recent developments in sequencing technologies and
bioinformatics analyses enable us to handle many
CLIP-seq samples simultaneously; thus, it is important
to optimize bioinformatics pipelines that can facilitate
the work of researchers to obtain unbiased and high-
quality data.

• Despite great effort from researchers to streamline
this CLIP-seq analysis, much remains to be improved
on computational procedures.
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• In this review, we discuss the validity and the limita-
tions of emerging programs for CLIP-seq analysis and
the quality measurements currently available for spe-
cific tasks by providing concrete examples on an in-
house Ago2 HITS-CLIP data set generated in stem
cells.

• We have focused the scope of this review in providing
a valuable computational guideline for the bioinfor-
matics analysis of the three main variants of CLIP-seq
analysis, namely, HITS-CLIP, PAR-CLIP and iCLIP.

• We discuss how Ago2 CLIP-seq analyses have im-
proved the miRNA-binding site prediction and the
understanding of miRNA function in human
pathologies.
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