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Abstract: Trees are vital resources for economic, environmental, and industrial growth, supporting
human life directly or indirectly through a wide variety of therapeutic compounds, commodities, and
ecological services. Pterocarpus marsupium Roxb. (Fabaceae) is one of the most valuable multipurpose
forest trees in India and Sri Lanka, as it is cultivated for quality wood as well as pharmaceutically
bioactive compounds, especially from the stem bark and heartwood. However, propagation of the
tree in natural conditions is difficult due to the low percentage of seed germination coupled with
overexploitation of this species for its excellent multipurpose properties. This overexploitation has
ultimately led to the inclusion of P. marsupium on the list of endangered plant species. However,
recent developments in plant biotechnology may offer a solution to the overuse of such valuable
species if such advances are accompanied by technology transfer in the developing world. Specifically,
techniques in micropropagation, genetic manipulation, DNA barcoding, drug extraction, delivery, and
targeting as well as standardization, are of substantial concern. To date, there are no comprehensive
and detailed reviews of P. marsupium in terms of biotechnological research developments, specifically
pharmacognosy, pharmacology, tissue culture, authentication of genuine species, and basic gene
transfer studies. Thus, the present review attempts to present a comprehensive overview of the
biotechnological studies centered on this species and some of the recent novel approaches for its
genetic improvement.

Keywords: biotechnological tools; DNA barcoding; ethnomedicine; in vitro culture; genetic improvement

1. Introduction

Forest trees provide valuable resources for economic, environmental, and industrial
development. Indeed, these plants sustain human life directly or indirectly, which supply
a wide range of goods and ecological services essential for survival and prosperity. The
medicinal plants used in traditional medicine all over the world are a potentially rich source
of therapeutic compounds. Population increase along with rapid technological advances
are putting tremendous pressure on natural genetic resources, especially in developing
countries, where such resources are rapidly declining, and more species face extinction [1].
The more than 70 species in the pantropical genus Pterocarpus (Fabaceae) are also faced
with development pressure [2]. The use of different plant parts in Pterocarpus spp. to treat
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illnesses since ancient times has been well documented [3–8]. The species has received
much attention in experimental studies because of the growing evidence of potential
bioactivities. The increasing demand for wood has led to unsustainable harvesting from
wild sources of three species of Pterocarpus, namely Pterocarpus marsupium, P. santalinus, and
P. indicus, which are now recognized as threatened species [9]. Besides the pharmaceutical
value of Pterocarpus species, the wood is also valuable for bridge and boat building, as well
as small-scale construction materials, plywood, veneer, and specialty wood for musical
instruments [10].

The increase in public awareness of phytochemical-based drugs and the rapid growth
of plant-based pharmacological industries have led to a greater demand for, and overex-
ploitation of, natural flora. An increase in subsistence or non-commercial harvesting, as well
as recent climatic changes have harmed many plant species, including Pterocarpus spp. One
possible biotechnical response to the decline of some species is micropropagation, which
capitalizes on the totipotent nature of plant cells [11]. In vitro propagation through tissue
culture plays an important role in mass multiplication, plant improvement, plant breeding,
regeneration of elite or superior clones, exchange of planting materials, secondary metabo-
lites production, and germplasm conservation [12,13]. However, conventional propagation
practice is time-consuming and labor-intensive and requires the availability of many plants
for plantation or afforestation. Notwithstanding these challenges, plant cell, tissue, and
organ culture techniques will become increasingly important in the cultivation of medicinal,
as well as aromatic, plants by providing healthy and disease-free planting stock that can
be widely utilized in commercial propagation and reforestation programs [14,15]. The
information on actual genetic structure and the cryptic number of the differentiated genetic
resources are valuable aids not only for developing in vitro regeneration protocols but
also for the conservation of these medicinal plants. Many adulterants of Pterocarpus plant
materials are available in the market, and they affect the efficacy of the drug; in some cases,
these adulterants might be toxic and can prove to be lethal. A DNA barcoding technique
can be effectively utilized to characterize and authenticate Pterocarpus and the detection of
adulterants [16]. This technique is an alternative for rapid and robust species identification
of genuine plant materials for the herbal drug industry [17].

P. marsupium propagates only by seed; the germination rate has been reported to be
less than 30%, apparently because of the hard fruit coat coupled with poor viability and
pod setting [18]. The mature fruits are harvested from the trees in April and May or before
they drop to the ground. Pathogenic infections of fallen fruit also affect the germination
rate under natural conditions [19]. Ahmad [20] recommended freshly collected seeds as a
good planting source for obtaining healthy plantlets. The oleo-resin exudates of this species
contain several unique active constituents, including vijyayosin, pterosupin, marsupsin,
and pterostilbene, all of which show a wide range of pharmacological activity [21]. In
addition, the National Medicinal Plant Board (NMPB) of India has estimated that the annual
trade value of P. marsupium is approximately 300–500 metric tons per year and that each
mature tree (10–15 years) produces approximately 0.5–0.6 tons of dry heartwood, valued at
US $ 1200–1500 for each mature tree in the international market. Due to the aforementioned
increased interest in recent years in the pharmaceutical, as well as the economic value
of P. marsupium, the government of India has begun to encourage programs for large-
scale cultivation and conservation of this species. The high demand for oleo-resin and
wood, unsustainable harvesting practices, anthropogenic threats, and lack of regeneration,
have together resulted in the rapid decline of natural populations. Furthermore, illegal
harvesting of oleo-resin by damaging or wounding the wood can cause the trees to be
susceptible to pests or diseases. Thus, uncontrolled extraction of oleo-resin could lead to
adult mortality in combination with fragmentation and a low regeneration rate, threatening
the persistence of the species.

Despite the enormous ethnobotanical value of P. marsupium, there is limited infor-
mation on its genetic structure. Data on intraspecific relatedness is vital for selecting the
best genotypes for plant breeding, effective population management, and conservation of
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germplasm. Given that genetic diversity allows populations to adapt to changing envi-
ronments, the investigation of the genetic diversity of P. marsupium is not only important
for species conservation, but also for the development and utilization of germplasm for
improvement of this valuable but threatened medicinal plant. P. marsupium is a highly valu-
able medicinal plant but is a threatened species in India. Efforts for the conservation and
propagation of this tree species will ultimately lead to the development of policies to make
the species available for general use at a low cost. In view of these facts, it is of paramount
importance to develop biotechnological techniques that ensure rapid propagation, mul-
tiplication, and authentication of the species for optimal germplasm conservation. With
this goal in mind, we review the biotechnological advances made to date in P. marsupium
concerning pharmacognosy, in vitro culture, multiplication, and genetic improvement.

2. Botanical Description of P. marsupium

Pterocarpus marsupium Roxb., a legume, commonly known as “Bijasal” or “Indian
Kino Tree,” (Figure 1) is a valuable multipurpose, as well as industrially important, forest
tree. Ahmad and Anis [22] suggested that it is a potential herbal drug yielding tree in
India. Generally, the tree is found in dry mixed deciduous tropical forests and flourishes in
the open sun under “80” to “200” cm moderate rainfall. It is commonly found in central
and peninsular India, mainly in the forested regions of Madhya Pradesh, Chhattisgarh,
Maharashtra, Andhra Pradesh, some areas of Uttar Pradesh, and sub-Himalayan tracts, up
to 1000 m altitude [20].
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The species performs best in fertile, deep, clayey loam soil with good drainage and
can tolerate extreme temperatures during the summer season. Wild populations have
rapidly disappeared, and even single young saplings are rarely found in the forest. The
International Union for the Conservation of Nature (IUCN) evaluated P. marsupium as a
vulnerable species based on autogenic reproductive deficiency [10]. In addition, this species
has been categorized by several researchers or conservation agencies as vulnerable [23],
depleted [24], fast disappearing [25], endangered [26], critically endangered in Nepal [27],
and vulnerable in Sri Lanka [28]. P. marsupium can be identified in the wild by its upright
bole, longitudinally fissured bark, imparipinnate leaf arrangement (5–7 leaflets, 8–13 cm
long), coriaceous, dark green and shiny leaves, scented yellow flowers in large panicles
(1–5 cm long), and orbicular and winged fruits with flat pods. Each pod contains one to
three seeds, bony and convex in shape. Flowering begins in November and continues up to
March. The mature tree attains a height of up to 30 m and a girth up to 2.5 m, with clear
and straight bole [29].

3. Phytochemistry and Therapeutic Values of P. marsupium
3.1. Active Constituents

A large number of important phytochemicals, such as glucosides, sesquiterpene and
vijayoside (Table 1) have been isolated from aqueous extract of heartwood of P. marsupium [30].
The extract of heartwood contains pterostilbene (Figure 2A, pterosupin) (Figure 2O, mar-
supsin (Figure 2M), and liquiritigenin (Figure 2N), (−)-epicatechin) (Figure 2H) [31,32]. Bark
extract contains several reputed phytochemicals such as 3-o-methyl-D-glucose (Figure 3C),
n-hexadecanoic acid (Figure 3D), 1,2-benzenedicarboxylic acid (Figure 3E), tetradecanoic
acid, (Figure 3F), 9,12-octadecadienoic acid (Z,Z) (Figure 3G), D-friedoolean-14-en-3-one
(Figure 3H), and lupeol (Figure 2J) [33]. At least eleven bioactive compounds, namely
pterocarposide (Figure 2P), 2,6-dihydroxyphenyl glucopyranoside (Figure 2Q), ptero-
side (Figure 3I), vijayoside (Figure 3J), pterosupol, marsuposide, epicatechin, quercetin
(Figure 3M), vanillic acid (Figure 3N), formononetin (Figure 3O), and naringenin have
been extracted from the heartwood of P. marsupium [21]. The most important bioactive
compounds extracted from P. marsupium are presented in Table 1. Structures of bioactive
compounds of P. marsupium are shown in Figures 2 and 3.

Table 1. Important bioactive compounds extracted from Pterocarpus marsupium (in chronological order).

Plant Parts Extract
Preparation Technique * Bioactive Compound References

Heartwood Ethyl acetate C-SG

Pterostilbene (Figure 2A)
(2S)-7-Hydroxyflavanone (Figure 2B)

Isoliquiritigenin (Figure 2C)
7,4′-Dihydroxyflavone 7-rutinoside

(Figure 2D)
5-Deoxykaempferol (Figure 2E)

p-Hydroxybenzaldehyde (Figure 2F)
3-(4-Hydroxyphenyl) lactic acid

(Figure 2G)

[34]

Bark Ethanolic extract C-SG (−)-Epicatechin (Figure 2H) [35]

P. marsupium extract Ethyl acetate C-SG Naringenin (Figure 2I)
Lupeol (Figure 2J) [36]

Roots Ethanolic extract C-SG

7-Hydroxy-6, 8-dimethyl flavanone-
7-O-α-L-arabinopyranoside

(Figure 2K)
7,8,4′-Trihydroxy-3′, 5′-dimethoxy

flavanone-4′-O-β-D-
glucopyranoside

(Figure 2L)

[37]
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Table 1. Cont.

Plant Parts Extract
Preparation Technique * Bioactive Compound References

Heartwood Ethyl acetate Thin Layer
Chromatography

Marsupsin (Figure 2M)
Liquiritigenin (Figure 2N) [31]

Heartwood Ethyl acetate C-SG Pterosupin (Figure 2O) [32]
Heartwood Aqueous extract C-SG Pterocarposide (Figure 2P) [38]

Heartwood Aqueous extract
Coulman

chromatography over
Sephadex LH-20

1-(2′,6′-Dihydroxyphenyl)-β-D-
glucopyranoside

(Figure 2Q)
[39]

Heartwood Aqueous extract C-SG
Pteroisoauroside (Figure 2R)

Marsuposide (Figure 3A)
Sesquiterpene (Figure 3B)

[30]

Leaves Methanolic extract UV-spectrophotometer Phenolics [40]

Wood and bark Ethanolic extract GC-MS

3-O-Methyl-d-glucose (Figure 3C)
n-Hexadecanoic acid (Figure 3D)

1,2-Benzenedicarboxylic acid
(Figure 3E)

Tetradecanoic acid (Figure 3F)
9,12-Octadecadienoic acid (Z,Z)

(Figure 3G)
D-Friedoolean-14-en-3-one

(Figure 3H)

[33]

Apical stem bark Methanolic extract Followed standard
protocols

Alkaloids
Glycosides
Flavonoids
Terpenoids

[41]

Heartwood Ethanolic extract C-SG

Pteroside (Figure 3I)
Vijayoside (Figure 3J)

C-β-D-Glucopyranosyl-2,6-
dihydroxyl benzene

(Figure 3K)

[42]

Heartwood Ethanolic extract C-SG and HPLC (+)-Dihydrorobinetin (Figure 3L) [43]

Heartwood Methanolic extract LC-MS-MS

Pterosupol
Quercetin (Figure 3M)

Vanillic acid (Figure 3N)
Formononetin (Figure 3O)

[21]

Heartwood Methanolic extract HPLC and FTIR Liquiritigenin [44]

* Technique—Phytochemical compound identification techniques used, C-SG—Chromatography over Silica Gel,
GC-MS—Gas Chromatography-Mass Spectrometry, LC-MS-MS—Liquid Chromatography with Tandem Mass Spec-
trometry, HPLC—High-Performance Liquid Chromatography, FTIR—Fourier Transform Infrared Spectroscopy.

3.2. Medicinal Properties

Ethno-medicine: Given the substantial evidence of its pharmacological properties,
P. marsupium has potential as an herbal drug yielding tree; indeed, it has been used to
cure several diseases in the Indian traditional medicine system for many centuries [30,45].
The flowers of the tree are used in the treatment of fever, and the heartwood powder is
useful in treating chest pain, body pain, and indigestion [46]. Trivedi [47] reported that
a paste made from wood and seeds is useful in treating diabetic anemia. In addition,
Yesodharan and Sujana [48] have suggested that heartwood is useful in the treatment of
body pain and diabetes. Interestingly, a cup made of the wood of P. marsupium heartwood
is used for drinking water to control blood sugar levels in “Ayurvedic” medicine [49].
Aqueous infusions of the bark have also been used to treat diabetic patients since ancient
times [50]. The stem bark is used to treat urinary discharge and piles, and the resin-gum is
applied externally in the treatment of leucorrhoea [51]. The medicinal values of the active
constituents or aqueous extracts of P. marsupium are shown in Table 2.



Plants 2022, 11, 247 6 of 39
Plants 2022, 11, x FOR PEER REVIEW  6  of  40 
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Table 2. Potential activities of some important bioactive compounds or aqueous extracts of Pterocarpus
marsupium (in chronological order).

S.N. Extracts/Bioactive Compound Potential Activities References

1 (−)-Epicatechin (Figure 2H)
No effect on central nervous system

Cardiac stimulant activity
Anti-diabetic

[35]

2 Flavonoids Anti-hyperlipidemic [31]
3 Phenolics Anti-hyperglycemic [32]
4 Pterostilbene (Figure 2A) Cyclooxygenase-2 (COX-2) inhibition [52]

5 Pterostilbene and
3,5-hydroxypterostilbene Induce apoptosis in tumor cells [53]

6 5,7,2-4 tetrahydroxy isoflavone 6-6
glucoside Cardiotonic [45]

7 Pterostilbene
Anti-cancerous

Anti-inflammatory
Analgesic

[54]

8 Phenolics Anti-oxidant [40]

9 Pterostilbene Anti-cancerous
Anti-proliferative [55]

10 Bark extract Anti-oxidant
Analgesic [56]

11 Extract of bark and wood Anti-diabetic
Anti-hyperlipidemic [57]

12 Extract of apical stem bark Anti-microbicidal [41]
13 Phenolic-C-glycosides Anti-diabetic [42]
14 Pterostilbene Novel telomerase inhibitor [58]
15 Heartwood extract Dipeptidyl peptidase-4 (DPP-4) inhibition activity [59]

16 Heartwood extract
Anti-glycation

Sorbitol accumulation
Inhibition of aldose reductase

[60]

17 Pterostilbene Inhibition of platelet aggregation [61]

18 Heartwood extract
Reduction in body weight

Anti-diabetic
Anti-hyperlipidemic

[62]

19 (+)-Dihydrorobinetin (Figure 3L) Radical scavenging activity [43]
20 Heartwood extract In vitro lipid lowering activity [21]
21 Liquiritigenin (Figure 2N) Hypoglycemic activity [44]
22 Pterostilbene Sun (UV rays) protective capacity [63]

Anti-diabetic properties: Heartwood extract of P. marsupium was primarily used in
the Ayurvedic system of medicine for treating diabetic patients and has been compared to
proprietary drugs often prescribed to treat diabetes, such as metformin, which is mainly an
anti-hyperglycemic medicine [64,65]. In earlier studies, an extract of P. marsupium bark was
found to contain (−)-epicatechin, an anti-diabetic compound that promotes regeneration
of pancreatic β-cells [66]. Subsequently, Manickam, Ramanathan, Farboodniay Jahromi,
Chansouria, and Ray [32] reported two of the most important phenolic constituents of the
heartwood, namely marsupsin and pterostilbene, which significantly reduced the blood
glucose level in hyperglycemic rats. In yet another study [67], both of these compounds
(marsupsin and pterostilbene) were shown to have insulin-like activities similar to those of
metformin (1,1-dimethylbiguanide), an important hypoglycemic compound that stimulates
glycolysis and inhibits glucose absorption in the intestine. These results indicate that both
pterostilbene and marsupsin are powerful anti-diabetic agents that might be useful in the
treatment of non-insulin-dependent diabetes mellitus patients.

Suppression of platelet aggregation: The oral administration of an extract from the
leaves or stem bark of P. marsupium has been shown to inhibit the reduction of platelets,
which suggests action against platelet aggregation. The heartwood extract, containing
pterostilbene, also exhibited suppressive effects on platelet aggregation [52]. Another
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study [68] suggested that pterostilbene is a derivative of resveratrol—commonly known as
one of the potent inhibitors of platelet aggregation. In a comparative study of pterostilbene
and resveratrol [61] it was found that 50 µM pterostilbene resulted in 91% inhibition of
platelet aggregation in rats, compared with 84% reduction after an equimolar dose of
resveratrol. These results clearly indicate that pterostilbene is a potential substitute of
resveratrol for platelet aggregation inhibition.

Dipeptidyl peptidase-4 (DPP-4) inhibition activity: Dipeptidyl peptidase-4 (DPP-4) is
an intrinsic membrane protein dispersed in several tissues, including intestinal epithelial
cells, renal proximal tubules, and the cells of the lungs, liver, kidney, and placenta [69].
Presently, there are three important DPP-4 inhibitors, namely Sitagliptin, Vidagliptin, and
Saxagliptin, that are commercially available in the international market and used for the
treatment of type-2 diabetes and Alzheimer’s disease (Type-2 diabetes is one of the major
risk factors associated with Alzheimer’s disease). In several scientific studies, we note that it
has been suggested that heartwood extract of P. marsupium has dipeptidyl pepdase-4 (DPP-
4) inhibition properties in the treatment of type-2 diabetes and Alzheimer’s disease [59,70].

Cardiotonic activity: The aqueous extract of P. marsupium heartwood contains 5,7,2-
4 tetrahydroxy isoflavone 6-6 glycoside, which is a potent antioxidant believed to prevent
cardiovascular disease [45]. Digoxin, isolated from Digitalis lanata, is a most effective
cardiotonic medicine but shows some acute side effects, such as gynaecomastia, irregular
heartbeat, and poor kidney function [71]. Mohire, Salunkhe, Bhise, and Yadav [45] re-
ported interesting results from a comparative study of the aqueous extract of P. marsupium
heartwood and digoxin on the positive intropic and negative chronotropic effects on the
heart (frog). They found that the heartwood extract showed a decrease in a heartbeat
(negative chronotropic) and an increase in the height of force of concentration (positive
intropic) effect. In comparison, a low concentration of digoxin increases the height of force
of concentration (20%), which is four times less than the height of force of concentration
produced by an aqueous extract of P. marsupium heartwood (80%). These results clearly
suggest that the therapeutic efficacy of P. marsupium heartwood extract is much higher than
that of digoxin. Thus, the limitations of digoxin can be overcome by using an aqueous
extract of P. marsupium heartwood, which has been found to have excellent cardiotonic
activity as well as a wide margin of safety compared with digoxin.

Lipid-lowering capacity: The condition of obesity is characterized by the deposition
of extra fat along with high levels of fatty acids, glycerol, and pro-inflammatory markers,
which can indicate a diabetic phenotype [72]. A continuous increase in body mass and
weight gain increases the likelihood of type-1 and -2 diabetes [73]. In a recent experiment,
Singh, Bajpai, Gupta, Gaikwad, Maurya, and Kumar [21] demonstrated that heartwood
extract of P. marsupium potentially reduced the extra fat accumulation in adipocytes cells
and was also conducive to the successful treatment of diabetic patients.

Cyclooxygenase (COX-2) inhibition and anti-inflammatory activities: Cyclooxygenase
(COX) plays an important role in body tissue inflammation and inflammatory pain. It is the
rate-limiting enzyme in the conversion of arachidonic acid to prostaglandin. A survey of the
literature shows that there are principally three isoforms of COX that have been identified:
COX-1 [74], COX-2 [75], and COX-3 [76]. Among these, COX-2 plays an important role
during inflammation since it is the main agent to induce prostaglandin production during
inflammation. In a study by Hougee, Faber, Sanders, de Jong, van den Berg, Garssen, Hoijer,
and Smit [52], it was reported that pterostilbene—the active compound found in heartwood
extract of P marsupium—shows selective COX-2 inhibitory activity in humans. In addition,
pterostilbene is a stimulating compound used in the treatment of several inflammatory
diseases [77].

Anticancer, anti-proliferative, analgesic, and antioxidant activities: Pterostilbene
is a naturally occurring stilbenoid phytochemical synthesized in plants via the phenyl-
propanoid pathway [78]. Research has shown that it is a structural analog of various highly
bioactive compounds such as stilbene and resveratrol [60,79]. Because pterostilbene (trans-
3,5-dimethoxy-4′-hydroxystilbene) has a close structural similarity with resveratrol (3,5,4′-
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trihydroxy-trans-stilbene), it yields a large number of health benefits (Table 2). A number
of researchers believe that pterostilbene has more potential bioactivities (i.e., anticancer,
antioxidant, anti-inflammatory) than resveratrol [54,80,81]. In addition, Ferrer, et al. [82],
Tolomeo, Grimaudo, Cristina, Roberti, Pizzirani, Meli, Dusonchet, Gebbia, Abbadessa,
Crosta, Barucchello, Grisolia, Invidiata and Simoni [53], and Chakraborty, Gupta, Ghosh
and Roy [55] reported that pterostilbene did not show any cytotoxic effect against normal
human cells and inhibited certain types of cancerous cells.

4. Propagation of Pterocarpus marsupium

The plant consists of various organs and tissues, which in turn are made up of differ-
ent individual cells. Plants are propagated through various methods: direct seed culture,
explant cultures (from plant cells, tissues, organs, mature or immature zygotic embryo) on
artificial media under aseptic conditions. Micropropagation is one of the best methods for
obtaining genetically identical clones of donor plants [13]. This method has been exten-
sively utilized for regeneration and conservation of various tree species, including Melia
azedarach [83], Acacia ehrenbergiana [84], Albizia lebbeck [85], Lagerstroemia speciosa [86], Cassia
alata [87], and Erythriana variegata [88]. Such propagation methods make possible the mass
multiplication of new cultivars of valuable medicinal woody trees that would otherwise
take several years to develop via conventional methods. In the following sections, the
important methods adopted for the propagation of P. marsupium are discussed concerning
the existing literature.

4.1. Mechanism of Seed Germination

Seed germination, the most common method for multiplication in flowering plants, is
a process in which physio-morphological changes result in the activation of the embryo.
As the seed absorbs water before germination, the seed embryo elongates. Shu, et al. [89]
have proposed that once the radicle has grown out from the seed layers, the process of seed
germination is complete. The processes involved in seed germination and how they are
affected by different physio-morphological barriers have been well documented in a wide
range of plant families, including Fabaceae [90,91]. The moisture content of seeds and the
ambient storage temperature are key factors in promoting seed viability. Generally, seeds of
many plants fail to germinate (due to a number of factors) and subsequently pass through
a phase of dormancy that delays the whole life cycle of the plant. Different treatments have
been found to improve germination and seedling growth. Furthermore, the promotive
role of plant growth regulators on the breaking of seed dormancy and germination has
been studied from time to time in many plant species. The general mechanism of seed
germination and different factors affecting the germination rate are discussed below.

Seed germination and formation of the seedling: The process of seed germination—the
resumption of growth of the embryo, leading to the formation of a seedling—is supported
by environmental conditions that favor vegetative development, such as suitable tempera-
ture, required level of humidity, and the availability of oxygen and inhibitory substance,
if any.

Seed development: Embryogenesis can be divided into three phases of approximately
equal duration. The first phase begins with the zygote undergoing embryogenesis con-
comitant with endosperm proliferation. This is basically a phase of cell division and cell
differentiation. The second phase, the accumulation of storage compounds to support the
process, marks the end of cell division. In the third or final phase, the embryo becomes
tolerant to desiccation. In this process, a seed dehydrates, losing up to 90% of its water. As
a consequence of dehydration, metabolism comes to a stop and the seed enters a quiescent
stage as a mature seed.
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Hormonal balance of seed development: Abscisic acid (ABA) is the principal hormone
involved in maturation and dormancy of an embryo. The content of ABA is very low
during early embryogenesis, peaks (reaches maturation) during mid-embryogenesis, and
declines when the seed attains maturity. However, some other hormones are also induced
in the overall response of seed development. An example is the peak of ABA production
in seeds, which coincides with a decline in the level of IAA and gibberellins [89,92]. Thus,
an interaction between two or more hormones is a recurring theme in seed development
in general. One difficulty in interpreting hormonal balance in seeds is that not all tissues
in the seed are of the same genotype [93]. In a seed, the embryo and endosperm are the
products of the female and male genotype products, whereas the seed coat is the exclusive
product of the genome.

Seed dormancy: Dormancy of the seed, an adaptive feature, is a temporal delay
in the process of germination and thus allows for (a) time for seed dispersal, (b) delay
of germination until the onset of favorable conditions, and (c) maximization of seedling
survival. If the environmental conditions are not suitable for germination, the seeds released
in a dormant state remain in a dormant state. Embryo-imposed dormancy is intrinsic to
the embryo. It is not affected by the seed coat or other surrounding tissues. The embryo
dormancy is primarily due to the presence of an inhibitor such as ABA and the absence
of a promoter such as gibberellin [89]. Finkelstein, et al. [94] reported that dormant seeds
can be made to germinate subject to certain environmental conditions. Many species, such
as tropical tree legumes, produce seeds with a tough seed coat, which protects against
germination by restricting uptake of water and exchange of O2. These limitations can be
removed by scarification. (In nature, abrasion by sand, microbial action, or passage through
an animal’s gut have the same effect.) In some cases, the seeds are treated with mineral
acid. Many seeds lose their dormancy while lying exposed on the ground during storage.
During seed germination, an activated embryo requires the food reserves of cotyledons in
dicot seeds and the endosperm in monocot seeds [95]. Food reserves, such as starch and
proteins, are broken down by a variety of hydrolytic enzymes into sugars and amino acids.

4.2. Propagation from Seed

The fruits of P. marsupium are orbicular winged pods (samara) and are the only plant-
ing material used (Figure 4A). The germination rate is very low (less than 30%) in natural
conditions [96], probably due to the seeds being enclosed within a hard fruit coat and
stony pericarp, resulting in what can be called mechanical dormancy [97]. The mechanical
excision of the hard fruit coat is a tedious and labor-intensive task. Sometimes, pathogenic
infection also restricts the natural propagation rate of P. marsupium [19]. Therefore, to
overcome these constraints and improve the seed germination rate, several methods have
been suggested, including seed viability test, wet-heat treatment, physical and acid scarifi-
cation of seeds, excision of fruit coat by sharp scissors, and using different culture media
compositions and seed orientations [19,20,98].

In the process of seed embryo growth, combinations of several cellular and metabolic
pathways are coordinated by a complex regulatory network that regulates seed dor-
mancy [89]. This period of growth is crucial to plant survival, given that the seed must
germinate only when conditions—temperature, light, gases, water, seed coats, mechanical
restrictions, hormonal structure, and level—are favorable. However, several plants show
adaptive traits that promote survival under stressful conditions [94]. Many wild species
that have been domesticated show a low level of seed dormancy compared to wild relatives,
which ensures higher emergence rates after sowing [99,100]. However, the loss of seed
dormancy is undesirable when it results in rapid germination of newly matured seeds and
consequently extensive losses in quality and quantity of the crop, which presents problems
for pre-harvest management, as well as industrial consumption [101].
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In the case of ex vitro germination, any mechanism that will improve the absorbency
of fruit coat could result in an improved percentage of seed germination. Wet heat therapy
and physical fruit scarifications weaken the enclosure structure, which improves imbibition
and thus enhances the germination rate of the seed. Generally, all these approaches are
used more commonly in many plants’ fruit and seed dormancy pretreatments. They help
to remove the many inhibitors partially and also to decrease the enclosure structure of
fruits [102]. Sometimes, seeds’ long exposure to hot water may affect the embryo and reduce
germination. The contrasting effects of hot wet therapy on the germination of P. marsupium
and P. santalinus were stated by Kalimuthu and Lakshmanan [97]. It was observed that 24 h
presoaked seeds (Figure 4B) showed decreased seed germination. Physically scarified seeds
have been shown to be more successful in many cases relative to non-scarified and wet
heat-treated seeds. Many physical limitations, such as gasses and the diffusion of moisture,
are regulated by the thick seed coat of several plants, particularly the Fabaceae family. The
high degree of impermeability is largely due to the presence of palisade coating in the
seed coat of some legumes [103,104]. The dormancy seed, therefore, induces significant
uncertainty in the germination of seed. Physical scarification of seeds has demonstrated
that the increased germination rate is possibly attributed to the diffusion of water and gases,
mainly by fissures, which causes various biochemical reactions after the rejuvenation of the
embryo into a seedling [105,106]. In addition, improved germination patterns in chemically
scarified seeds have also been documented relative to other treatments. Barmukh and
Nikam [107] suggested that untreated seeds had a 28.2% germination rate within 15 days,
whereas physically scarified seeds had a 55.3% germination rate. The treatment of H2SO4
for 30 min resulted in a maximum of 78–85% germination in ex vitro conditions. Treatment
of scarification 30 min with concentrated H2SO4 can be enhanced, consistent and fast ger-
mination of seed for the development of P. marsupium seedlings. At this stage, the seedlings
attained the height of 0.4 m after 8 months, and they were successfully acclimatized under
field conditions. The removal of a chemical inhibitor and a scarification of H2SO4 seed coat
is well explored in a variety of experimental studies on the seed germination of plants [108].
The practice of seed germination includes many important elements for the production
of a mature plant under sufficient acid treatment and environmental conditions. The
seed coat has an embryonic axis consisting of a radicle, plumule and cotyledons. Long
exposure of fruit/seed to acid scarification was morphologically compromised embryonic
axis, radicle, plumule, slow development of seedlings, cotyledonary leaf chlorosis, and
leaf burnt on the margins [109,110]. All these characteristics are detrimental and decrease
the food storage potential that sustains the embryo and its development until it has the
ability to absorb sunlight and become autotrophic. In an earlier study, Kalimuthu and
Lakshmanan [97] suggested that various combinations of sulphuric acid pretreatment
had not changed in the germination of P. santalinus and P. marsupium, whereas in another
study, P. santalinus fruit pods were pretreated with 1% H2SO4 for 4 days or concentrated
H2SO4 for 5 min, the most effective treatment for seed germination was found [111]. In
addition, Barmukh and Nikam [107] reported that the chemical scarification of seeds with
concentrated H2SO4 for 30 min is the most effective treatment for homogenous and rapid
germination of P. marsupium.

Several scientific studies have shown that early seed germination and seedling growth
are tightly controlled by numerous hormonal signal molecules [90,112]. Different combina-
tions of media, such as MS [113], B5 [114], and WH [115], were utilized for the assessment
of in vitro seed germination in P. marsupium [116]; the highest seed germination rate (96%)
was reported on half-strength-MS medium after 20 days. The orientation of the seed can
sometimes be a significant factor in improving in vitro seed germination in many plant
species [117]. In another study, Mishra, Rawat, Nema, and Shirin [19] reported that P. mar-
supium seeds cultured on a half-strength MS medium in a horizontal position showed
maximum germination (78.23%). The results clearly showed that the seed orientation
and strength of the medium both have a strong effect on in vitro seed germination (a
significantly higher germination rate was obtained with horizontally cultured seeds com-
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pared with vertically cultured seeds). Similarly, the horizontal orientation of Hardwickia
binata seeds significantly enhanced the germination rate compared with vertical orienta-
tion [118]. One more important aspect observed during in vitro germination practice is the
optimization of an appropriate culture medium and the combination with plant hormones.
Husain, Anis, and Shahzad [98] reported a maximum of 80% in vitro seed germination
on half-strength MS medium enriched with 0.25 mg/L gibberellic acid, after six days of
seed culture. This study clearly demonstrated that the combination of the appropriate
media at the right strength along with the incorporation of plant growth regulator (GA3)
enhanced the germination rate. Ahmad et al. [119] reported various allied parameters on
in vitro seed germination, i.e., highest percent germination (91.3%), speed germination
(29.0 seeds/day), coefficient germination (8.23%), mean germination time (12.15 days), and
mean seedling height (10.31 cm) within 21 days of P. marsupium seed culture on 0.50 µM
GA3 augmented MS medium. The enhanced concentration of GA3 promotes the rupture of
seed testa and endosperm [120]. The use of culture media augmented with GA3 has been
reported in many studies aimed at improving germination along with better elongation
of the plantlets of different species [121–123]. It is also reported that GA3 regulated the
synthesis of α-amylase in the aleuronic layer of seeds by upregulating the α-amylase gene,
SLN1, and GAMYB transcription factors, thereby promoting germination [124]. Further-
more, DELLA mediated inhibition of BZR1 transcription factor has been shown to promote
plantlet elongation [125]. GA3 stimulates the synthesis of mRNA, which is specific for
α-amylase release and is assumed to be one of the factors for improving the rate of seed
germination [126].

4.3. Micropropagation through Various Methods

In vitro propagation basically depends on the choice of appropriate explants (pieces of
tissue used to initiate cultures) to serve as the preliminary experimental planting material.
For multiple shoot bud induction (or bud breaking), the most frequently used explants are
those that contain meristematic cells, such as cotyledonary nodes (CN), nodal segments
(NS), immature zygotic embryo (IZE), hypocotyl segment (HS), shoot tips and root tip
explants. The different types of explants obtained from 7-day-old axenic seedlings of
P. marsupium are shown in Figure 4C–M. The cell division potential is highest in these
tissues, which apparently yield the much-needed growth-regulating substances, such as
cytokinins and auxins [127]. In vitro propagation highlights the potential of morphogenic
responses on various explants of P. marsupium under the regime of different plant hormone
combinations. However, the morphogenic potential of explants of various organs varies
and some do not grow at all. Explants derived from juvenile seedlings are frequently
used for organogenesis under the regime of different plant growth regulators, as they are
easily established in axenic culture and have a greater morphogenic potential than do
mature explants obtained from donor mother plants [128–131]. The axenic seedlings of
P. marsupium are a suitable source for obtaining axenic planting material (or explants) as
they are aseptically grown from sterilized seeds. Multiple shoot bud induction during plant
cell, tissue, and organ culture greatly depend on the type of plant growth regulators (PGR)
applied, and their concentration, uptake, transport, and metabolism, and the endogenous
hormone levels of explants [132,133]. Endogenous levels of cytokinins in explants are
available in various forms, such as free bases, nucleotides, ribosides, O-glucosides, and
N-glucosides [134]. Exogenously supplemented PGRs can modulate the action of enzymes
that control the level of endogenous hormones and enzymes [135]. In the next section,
we will cover the progress made to date in in vitro propagation of P. marsupium through
various explants under PGR regimes.
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4.3.1. Cotyledonary Node Culture

Cotyledonary node (CN) explants obtained from axenic seedlings of P. marsupium have
been shown to have the highest regeneration frequency among explants [22,25,136,137].
Similarly, CN explants have been reported to show significantly greater morphogenic
potential than do other explants in many tree species, including Dalbergia sissoo [138], Acacia
ehrenbergiana [84], Eucalyptus saligna [139], Lawsonia inermis [140], Prosopis cineraria [141],
and Aegle marmelos [142]. A variety of cytokinins, i.e., meta-topolin (mT), 6-benzyl adenine
(BA), Kinetin (Kn), 2-isopentenyladenine (2iP), and thidiazuron (TDZ) has been used for
P. marsupium micropropagation. In Table 3, we have summarized the in vitro propagation
successes in this species.

Table 3. In vitro propagation protocols for Pterocarpus marsupium (in chronological order).

Explants Source Media Compositions
(Multiplication) *

Culture
Response

Media Compositions
(Rhizogenesis)

Rooting
Response

Plantlets
Survival

Rate
References

Shoot tip AS/MT MS + 0.2 mg·L−1 BAP Ca-Dm - - - [96]

Aseptic seeds - MS basal medium ISG
(95–100%) - - >68% [26]

Nodal segment 35-d-old-AS MS + 0.2 mg·L−1 IBA IO MS + 0.2 mg·L−1 IBA RF
Cotyledonary node 20-d-old-AS MS + 4.44 µM BA+ 0.26 µM NAA SM (85%) 1

2 MS + 9.84 µM IBA RF (IVR) 52% [136]

Cotyledonary node 18-d-old-AS MS + 5.0 µM BA + 0.25 µM IAA SM (75%)
2-step-method:

PT on 1
2 MS (liquid) +

200 µM IBA

MRI
(40–50%) - [25]

FT on 1
2 MS (semi-solid) +
0.5 µM IBA

ER (IVR)

Aseptic seeds - 1
2 MS 0.25 mg·L−1 GA3 ISG (80%) - - - [98]

Cotyledonary node 18-d-old-AS 2-step-method:
SIM: MS + 0.4 µM TDZ MSI (90%)

2-step-method:
PT on 1

2 MS (liquid) +
200 µM IBA

MRI
(65%) 70% [137]

FT on SEM: MS + 5.0 µM BA ES (90%) FT on 1
2 MS + 0.5 µM IBA +
3.96 µM PG

ER (IVR)

Nodal segment 18-d-old-AS MS + 4.0 µM BA + 0.5 µM IAA +
20 µM AdS SM (85%)

2-step-method:
PT on 1

2 MS (liquid) +
100 µM IBA + 15.84 µM PG

MRI
(70%) 75% [143]

FT on 1
2 MS (semi-solid) +
0.5 µM IBA

ER (IVR)

Hypocotyl 12-d-old-AS MS + 5.0 µM 2,4-D + 1.0 µM BA Ca-Fm
(90%)

1
2 MS + 1.0 µM BA SEG

(56%) 60% [144]
MS + 0.5 µM BA + 0.1 µM NAA +

10 µM ABA SEs (51%)

Aseptic seed - 1
2 MS basal medium ISG (96%) - - - [116]

Cotyledonary node 18-d-old-AS MS + 1.0 mg·L−1 BAP +
0.5 mg·L−1 NAA

SM (70%) - - -

Aseptic seed - 1
2 MS basal medium ISG

(78.23%) - - - [19]

Immature zygotic
embryo Green fruits MS + 3.0 mg·L−1 BA +

0.5 mg·L−1 IAA
SM

(93.8%)

2-step-method:
PT on 1

2 MS (liquid) +
3.0 mg·L−1 IBA

MRI
(70.8%) 74% [56]

FT on 1
2 MS basal medium ER (IVR)

Immature
cotyledon 9-d-old-AS

3-step-method:
MS + 1.07 µM NAA

Ca-Fm
(60.41%) 2-step-method:

95% [145]
FT on MS + 8.9 µM BAP +

1.07 µM NAA
MSI

(60.41%)
PT on 1

2 MS (liquid) +
19.6 µM IBA

MRI
(75%)

FT on MS + 4.4 µM BAP ES FT on 1
2 MS + 2.85 µM IBA ER (IVR)

Nodal segment 10-y-old-MT
2-step-method:

MS + 13.95 µM Kn + 568 µM AA +
260 µM CA + 605 µM AmS +

217 µM AdS

MSBB
(64.44%)

1
2 MS + 4.92 µM IBA RF (42%)

(IVR) - [146]

FT on MS + 9.3 µM Kn +
0.54 µM NAA + 568 µM AA +
260 µM CA + 605 µM AmS +

217 µM AdS
ES

Nodal segment 4-w-old-AS
2-step-method:

PT on 1
2 MS (liquid) + 10.0 µM TDZ

MSBB
(96%)

2-step-method:
PT on 1

2 MS (liquid) +
150 µM IBA

MRI
(80%) 75% [147]

FT on MS (semisolid) + 5.0 µM mT
+ 1.0 µM NAA ES (70%) FT on 1

2 MS + 1.5 µM IBA ER (IVR)

Cotyledonary node 20-d-old-AS MS + 7.5 µM mT + 1.0 µM NAA SM (85%)
2-step-method:

PT on 1
2 MS (liquid) +

100 µM IBA

MRI
(75%) 80% [20]

FT on 1
2 MS + 1.0 µM IBA ER (IVR)
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Table 3. Cont.

Explants Source Media Compositions
(Multiplication) *

Culture
Response

Media Compositions
(Rhizogenesis)

Rooting
Response

Plantlets
Survival

Rate
References

Immature zygotic
embryo Green fruits MS + 5.37 µM NAA SEs

(67.3%)
1
2 MS + 5.8 µM GA3 SEG (70%) 78% [148]MS + 2.69 µM NAA + 4.4 µM BA +

3% Sucrose

Shoot tip 7-d-old-AS MS + 7.0 µM mT + 1.0 µM NAA SM (80%)

2-step-method:
PT on 1

2 MS (liquid) +
250 µM IBA

MRI
(67.7%) 96.7% [149]

FT on Soilrite ER (EVR)

In vitro seedling Seed MS + 0.5 µM GA3 + 0.5 µM TDZ SM (85%)

2-step-method:
PT on 1

2 MS (liquid) +
100 µM IBA

MRI
(80%) 86.7% [150]

FT on 1
2 MS + 0.5 µM GA3 ER (IVR)

Aseptic seeds - 1
2 MS 0.5 µM GA3

ISG
(91.3%) - - - [119]

* AA—Ascorbic acid, ABA—Abscisic acid, AdS—Adenine sulphate, AmS—Ammonium sulphate, AS—Axenic
seedling, BA—6-benzyladenine, CA—Citric acid, Ca-Dm—Callus-dead mass, Ca-Fm—Callus-fresh mass, d—days,
ER—Elongation of roots, ES—Elongation of shoots, EVR—Ex vitro rooting, FT—Followed to transfer, GA3—Gibberellic
acid, h—hours, IBA—Indole-3-butyric acid, IO—Indirect organogenesis, IVR—In vitro rooting, ISG—In vitro seed ger-
mination, Kn—Kinetin, MRI—Multiple root induction, MSBB—Multiple shoot bud break, MSI—Multiple shoot induc-
tion, MT—Mature tree, mT—Meta-topolin, NAA—α-naphthalene acetic acid, PG—Phloroglucinol, PT—Pretreatment,
RF—Root formation, SEG—Somatic embryos germination, SEM—Shoot elongation medium, SEs—Somatic em-
bryos, SIM—Shoot induction medium, SM—Shoot multiplication, TB—1,2,3-trihydroxy benzene, TDZ—Thidiazuron,
w—week, y—year, 2,4-D—2,4-dichlorophenoxyacetic acid.

Ahmad and Anis [22] reported that the highest number of shoots was obtained in CN
explants when cultured on 7.5 µM mT containing MS medium, which is better than BA
for shoot multiplication in P. marsupium. The superiority of mT over other cytokinins for
in vitro propagation has been well documented in many species [151–155]. Meta-topolin, a
benzyladenine analog [N 6-(3-hydroxybenzylamino) purine] is a highly active aromatic
cytokinin [156] and differs from BA by having a hydroxyl group in the aromatic side chain
(Figure 5), which facilitates the formation of a O-glycoside [155] capable of rapid conversion
to the active form of nucleosides, nucleotides, or free bases when required [152]. Further-
more, these bases can be converted by N6- and N9-glycosylation or alanine conjugates of
the purine ring into biologically inactive forms, i.e., stable derivatives [157–159]. Although
BA is a widely used cytokinin in micropropagation systems, it has sometimes inhibited
rooting efficiency, toxicity, and abnormal growths such as basal callus formation in many
species [154,156,160,161]. The undesirable properties of BA may be due to its N7- and
N9-glycosylation or conjugation with alanine that results in biological inactivation by the
formation of chemically stable derivatives [156,162]. Therefore, utilization of mT in plant
tissue culture has gained increasing interest due to reports of various important parameters,
such as improved rate (%) of seed germination [163,164], enhanced multiple shoot induc-
tion [165,166], increased shoot length and quality [167–169], successful rooting [170,171],
better quality of regenerated plantlets [164,172], easy acclimatization [171,173], alleviation
of hyper-hydricity [171,174], delayed senescence [175–177], improved histogenic stabil-
ity [178,179], alleviated shoot tip necrosis [179], improved physiological and biochemical
activities [156,158,176], increased yield [180], and improved biomass content [22,156,173].

Interestingly, while Husain, Anis, and Shahzad [137] observed several shoots from
CN explants when cultured on MS medium containing only 0.4 µM TDZ (Thidiazuron),
yet the proliferation and shoot elongation remained undifferentiated for one months be-
fore these TDZ-exposed cultures were moved to the 5.0 µM BA fortified medium, which
in turn induced the proliferation and subsequent shoot elongation. Studies specifically
suggested that constant TDZ exposure inhibited shoot elongation [181]. In order to coun-
teract such an antagonistic influence of TDZ, TDZ-exposed cultures have been moved to a
secondary medium either free of hormones or supplemented by another PGR such as BA
for development and elongation. Thidiazuron (N-phenyl N′-1,2,3-thiazol-5-yl urea) is a
synthetic phenylurea having a potent cytokinin-like activity [182]. TDZ is widely used as
an alternative to cytokinin in the plant tissue culture system (Figure 6A–C). It is a more
powerful plant growth regulator (PGR) relative to other cytokinins for the induction of
multiple de novo shoots in many plant species [88,183–185]. Murthy et al. [186] reported
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that exogenous usage of TDZ in culture media increased the endogenous amount of plant
hormones, especially auxins and cytokinins, in micropropagation practices. TDZ also
influences the cytokinins biosynthetic or metabolic processes of cytokinins responsible for
controlling the concentration of endogenous levels of purine metabolites [187]. Several
researchers concluded that augmentation of TDZ in culture media showed a favorable
response on axillary shoot bud induction or bud breaks. However, in many plant species
such as Rhododendron [188], Adhathoda beddomei [189], Dalbergia sissoo [138], and Rauvolfia
tetraphylla [190,191], these shoot buds have not been elongated and proliferated. Many re-
search studies have strongly indicated that such a detrimental impact of TDZ-exposed crops
could be due to the existence of phenyl groups and have demonstrated many drawbacks,
including bunching of microshoot, fasciation, hyperhydricity, low microshoot efficiency,
and inhibition of rooting ability [192–195]. Another study by Huetteman and Preece [196]
addressed the issue of shoot elongation by following a two-step culture strategy consisting
of a primary medium fortified with TDZ for the induction of multiple shoot buds, followed
by their transfer to a secondary medium fortified with another plant hormone (i.e., BA) that
promotes shoot elongation. Such a type of culture strategy of using primary medium (shoot
bud breaking/induction medium) and secondary medium (shoot elongation medium) has
been successfully applied to a several tree species [137,147,197–199].
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Anis, Husain, and Shahzad [25] examined the responses of CN explants of P. mar-
supium to optimize the maximum shoot multiplication under BA and Kn regimen alone or
in combination with auxins and obtained good response when cultured on MS medium
fortified with 5 µM BA which produced 7.83 shoots per CN explant within 6 weeks of
culture. Whereas Kn induced a single shoot, and no significant response was detected.
Meanwhile, the explants cultured on the BA fortified medium showed significant shoot
growth, and were considered to be more responsive than Kn. The superiority of BA over
Kn for multiple shoot induction from CN explant has been reported earlier in Pterocarpus
species [136,200,201]. BA and Kn cytokinins are commonly used in plant tissue culture
systems. However, the efficacy of BA over Kn in in vitro morphogenesis has been well
documented in several plant species, such as Curcuma zedoaria [202], Aegle marmelos [203],
Andrographis paniculata [204], Albizia lebbeck [205], Terminalia bellirica [206], Acacia ehrenber-
giana [84], and Acacia gerrardii [207]. In addition, Kn has also been shown to be efficient in
successfully developing in vitro propagation protocols for several species [208–211].

Chand and Singh [136] have developed a protocol for in vitro plant regeneration
through CN of P. marsupium. An average of 9.5 shoots per CN explant were induced on
MS medium containing 4.44 µM BA and 0.26 µM NAA in 85% cultures after 15 weeks.
According to Chand and Singh, BA was more effective than Kn for multiple shoot for-
mation from the CN explant of P. marsupium. It has been found that auxins could not
induce shoot multiplication when used alone and that the cytokinin unaided produced
very few shoots, whereas the combination of cytokinin and auxin underwent profusion of
regeneration. Many studies have shown that a lower dose of auxins is needed in combina-
tion with cytokinin to boost the multiplication rate in many plant species [83,84,212–214].
α-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid
(IBA) are widely used in shoot multiplication, proliferation, and rooting cultures. Recently,
the MS medium fortified with 7.5 µM mT and 1.0 µM NAA exhibited the highest frequency
of shoot regeneration in P. marsupium [22]. Thus, the use of cytokinin to auxin in a ratio
proven to be successful in high in vitro shoot regeneration instead of using cytokinin alone.
The need for a low auxin concentration in combination with cytokinin can also regulate the
endogenous cytokinin level by inhibiting the cytokinin biosynthesis gene, such as isopen-
tenyl transferase (PsIPT1 and PsIPT2) in micropropagated cultures [215,216]. Such type of
synergistic effect of cytokinins (BA, Kn, or mT) with auxins (IAA, IBA, or NAA) on shoot
multiplication and proliferation has been reported by several researchers in many plants’
species [217–219]. Cytokinin-auxin has also been associated with many physiological and
developmental mechanisms, such as in vitro somatic embryo induction, apical dominance,
cell cycle modulation, lateral root induction, control of senescence, and vascular tissues
formation [135,220]. Tippani, Nanna, Mamidala, and Thammidala [148] also reported that
the addition of auxin (NAA) with cytokinin (BA) to the medium increased the frequency
of somatic embryo differentiation rather than BA individually in the medium. In that
study, it was concluded that the MS medium containing 4.40 µM BA in combination with
2.69 µM NAA was the most suitable phytohormone combination for indirect organogene-
sis practice in P. marsupium. Several scientific studies have indicated that auxin controls
the biosynthesis pathway of cytokinin through the unique activation of IPT5 and IPT7
genes [221,222]. In addition to these, several other studies have indicated that cytokinin and
auxin jointly regulate their metabolism and signaling pathways [126,223]. As a result, both
hormones were considered to be a key signaling molecules regulating the morphogenic
response of plants.

4.3.2. Nodal Segment Culture

A successful and efficient regeneration protocol from the nodal segment of P. mar-
supium was established by Ahmad, Ahmad, and Anis [147]. The NS is a good source of
axillary shoot multiplication in the tissue culture system, and even a single explant can give
rise to multiple copies of true-to-type plantlets within a few months. A two-fold culture
strategy was applied to address the problem of shoot elongation. Primarily, the authors
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evaluated the effect of TDZ on nodal explant for axillary buds breaking on half-strength
MS (liquid) medium containing 10 µM TDZ for 8 days. Thereafter, pretreated NS were
transferred to a secondary medium containing different concentrations of meta-topolin.
TDZ-pretreated NS—when transferred to MS medium supplemented with 5.0 µM mT
in combination with 1.0 µM NAA—gave the best results, producing the highest num-
ber of shoots within eight weeks of culture. A similar culture strategy using shoot bud
breaking (primary medium) and subsequent shoot elongation (secondary medium) has
been effectively applied in many tree species, for example, Acacia catechu [224], Eucalyp-
tus grandis [225], Acacia sinuate [198], Lagerstroemia parviflora [226], Malus alba [199], Melia
azedarach [83], Balanites aegyptiaca [227], and Acacia ehrenbergiana [84].

Generally, in woody species, NS inoculated on hormone-free MS medium do not show
any response, but shoot induction has been observed in cytokinin-augmented MS medium.
Husain, Anis, and Shahzad [143] reported that the addition of 20 µM adenine sulfate (AdS)
in MS medium containing 4.0 µM BA and 0.5 µM IAA improved the establishment of nodal
explant cultures. A nucleotide base of adenine in the form of AdS can induce cell growth
and significantly promote multiple shoot growth. AdS provide an additional nitrogen
source to the cell, and this form of nitrogen can generally be taken up more rapidly than
inorganic nitrogen. In a number of studies, the application of AdS in culture medium
is recommended because it promotes the regeneration capacity of explants, especially in
woody species such as Tectona grandis [228], Bauhinia vahlii [229], and Melia azedarach [230].
However, in the place of AdS, some other adjuvants, such as silver nitrate (AgNO3),
casein hydrolysate (CH), polyvinylpyrrolidone (PVP), activated charcoals, coconut water,
amino acids, and vitamins have been used in the culture medium for inducing shoot/root
organogenesis and somatic embryogenesis [231]. Fuentes et al. [232] found that the addition
of AgNO3 and fructose promoted somatic embryogenesis in Coffea canephora, whereas CH
in combination with ammonium chloride has been shown to be the best combination in
culture media to promote embryo germination as well as plant regeneration in Sapindus
mukorossi [233].

4.3.3. Shoot Tip Culture

Now-a-days, shoot tip culture techniques have been attracting interest by plant tissue
culturists mainly due to their possible usage in large areas such as clonal multiplication of
vegetatively propagated crop plants, virus elimination, genetic modification, germplasm
conservation, etc. The most desirable aspect of shoot tip culture is that it has an advantage
over other in vitro processes, the ability to preserve a high degree of genetic integrity
among regenerants. Nehra and Kartha [234] have thoroughly reviewed the different facets
of shoot tip culture and its commercial applications in many fields. Many researchers have
used shoot tip explants to establish an effective in vitro regeneration protocol in several
woody species. Sharma et al. [235] induced multiple shoots of Bougainvillea glabra from
shoot tip explants culture on medium supplemented with of 0.5 mg/L BAP and 1.5 mg/L
IAA. Multiple shoots were successfully achieved in shoot tip explant of Catha edulis (mature
tree) when cultured on MS medium supplemented with 0.3 mg/L BA and 3.0 mg/L IAA
by Hamid [236]. Kaur and Kant [237] reported a successful micropropagation protocol
for Acacia catechu through shoot tip explants. It produced the highest number of shoots
when cultured on MS medium containing 1.5 mg/L BAP plus 1.5 mg/L Kn. Shoot tip
explants obtained from 20-day-old in vivo germinated seedling of Pterocarpus santalinus
proliferated into multiple shoots on 1.0 mg/L BAP in combination with 0.1 mg/L fortified
MS medium [238]. Similarly, Al-Sulaiman and Barakat [239] successfully induced multiple
shoots of Ziziphus spina-christi from shoot tip on MS medium supplemented with 1.0 mg/L
BA and 0.1 mg/L NAA. Recently, Hussain et al. [240] reported the highest differentiation
of shoots Tecoma stans by culturing shoot tip on 7.5 µM BA and 0.5 µM NAA enriched MS
medium. Their studies indicate that the formulation of PGRs in culture media for shoot
tip culture depends mainly on plant species. Shoot tip culture is the most appropriate
method for obtaining both virus-free and true-to-type clones. Up to now, only a single
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report has been published on successful in vitro regeneration of P. marsupium through shoot
tip explants [149]. The highest shoot bud differentiation was achieved in this investigation
at 7.0 µM mT plus 1.0 µM NAA, whereas Das and Chatterjee [96] attempted to regenerate
multiple shoots from the shoot tip of P. marsupium. Initially, it was observed that shoot
tip explants grew at 0.2 mg/L of BAP enriched MS medium, but after some time, it did
not grow and eventually became necrotic on the same medium. As a result, these studies
demonstrate that the formulation of culture media, PGRs and culture conditions plays an
important role in effective shoot tip culture.

4.3.4. Immature Zygotic Embryos Culture

In plant tissue culture systems, the combination of PGRs plays an important role in
determining the morphogenic response of explants. Mature tissues, which lack undiffer-
entiated totipotent cells, respond poorly to regeneration treatments. Tippani, Vemunoori,
Yarra, Nanna, Abbagani, and Thammidala [56] used immature zygotic embryos (IZEs)
of a P. marsupium as the explant source, which, unlike other types of explants, is rich in
meristematic cells. The researchers induced the highest frequency of shoot regeneration
(93.8%) on MS medium fortified with 3.0 mg/L BA in combination with 0.5 mg/L IAA,
which resulted in a maximum of 17.3 shoots per IZE explant. Subsequently, when these cul-
tures were sub-cultured on MS medium containing a reduced concentration of 1.0 mg L−1

BA, an improvement in the average number of shoot (27.2) per IZE explant as well as
increase in the average shoot length (4.5 cm) were documented. The potential use of IZEs to
establish a plant regeneration system through shoot organogenesis and somatic embryoge-
nesis has been verified in many tree species; for example, Bixa orellana [241], Chamaecyparis
obtusa [242], Pinus oocarpa [243], and Sapium sebiferum [244]. IZEs are considered a reliable
source of explants, and the combination of 2,4-D and Kn is generally recommended for
somatic embryogenesis in several woody species angiosperms and gymnosperms [245].

In addition, the rate of multiplication of in vitro shoots depends greatly on the sub-
culture of proliferating explants on a fresh medium. It is also imperative that as the
number of cells, tissues, or organs becomes excessively high, there is a need to increase
the amount of a culture or to increase the organ numbers for in vitro propagation. During
extended cultures, the level of nutrients in the medium is significantly depleted, and as
result of the development of certain harmful metabolites, a decline in relative humidity
in culture vessels has resulted in the drying of developing cultures. Apóstolo et al. [246]
advocated that the high humidity in culture flask or culture tubes helps to boost rapid
growth. Thus, a repetitive sub-culture strategy can help in inducing multiple shoots,
followed by improved rooting [217,247]. Several researchers have introduced a repeated
sub-culture approach to improve multiplication rates in several plant species such as Feronia
limonia [248], Pterocarpus santalinus [249], Balanites aegyptiaca [217], Spondias mangifera [250],
Arnebia hispidissima [251], and Tetrastigma hemsleyanum [252].

4.3.5. Intact Seedling Culture

Multiple shoot induction directly from the seed explant (also called intact seedling
culture) is another method for rapid in vitro propagation (Figure 4C). The significant aspect
of this regeneration protocol is that shoot differentiation occurs directly from the CN of the
seedling, eliminating the need for an explant preparation step. Our literature review found
that the intact seedling method greatly reduces many difficulties such as the cost of culture,
time of regeneration protocol, and other considerations such as the age and size of the
explant and its orientation in the culture vessel. However, it should be noted that these very
same factors are thought to have an important role in successful regeneration, especially
in leguminous tees. Malik and Saxena [253] reported that the rate of shoot multiplication
via the intact seedling method in Phaseolus vulgaris was higher than that obtained from the
explant method. Bhuyan et al. [254] developed a high throughput shoot multiplication
protocol through intact seedling propagation of Murraya koenigii cultured on 5.0 mg/L BA
and 0.4 mg/L GA3 in MS medium. The authors found that the application of GA3 to the
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medium had no stimulatory effect on shoot multiplication per intact seedling, whereas it
did exhibit a remarkable effect on shoot elongation. Hussain, et al. [255] reported that the
shoot multiplication rate from intact seedlings of Sterculia urens was highest when cultured
on MS medium containing 5.0 µM BA, 0.4 µM GA3, and 0.1% ascorbic acid. Perveen,
Anis, and Aref [85] successfully developed an in vitro regeneration protocol for Albizia
lebbeck through the intact seedling method. In this trial, the highest shoot multiplication
response was obtained from the highest dose of 5.0 µM TDZ (primary medium) followed
by transfer to a lower dose (0.5 µM) of TDZ (secondary medium). Cumulatively, the results
of these studies are clear evidence that intact seedling cultures are greatly influenced by
the formulation of the growth regulator and that excision of the explant is not necessary
for in vitro shoot multiplication. In case of P. marsupium, Ahmad, Anis, Khanam and
Alatar [149] reported only direct shoot multiplication from the intact seedling method.
The optimum culture, containing 0.50 µM GA3, induced the maximum seed germination
response along with better shoot growth when compared to cultures with TDZ. Similarly,
cultures treated with TDZ exhibited a higher shoot multiplication rate than did those
treated with GA3. However, it was found that the two hormones combined together at
an optimal level (TDZ at 0.50 µM and GA3 at 0.50 µM) resulted in the most effective
treatment for germination response, shoot multiplication, and subsequent shoot elongation
per explant. The authors [149] hypothesized that the improvement in protocol performance
was due to the interaction of the two hormones, with successful regulation both in terms of
biosynthesis and signal transduction.

4.3.6. Somatic Embryogenesis

In somatic embryogenesis (SE), a single cell or group of somatic cells initiate the devel-
opmental pathway that leads to the formation of NZEs. This means that the embryos have
no connection with pre-existing vascular tissue within the maternal callus. Williams and
Maheswaran [256] suggested that somatic embryos can differentiate from pre-embryogenic
determined cells, leading to direct embryogenesis. There are two well-defined methods for
SE: the direct method (without callus) and the indirect method (with a callus-intervening
phase). SE has been widely exploited in many plant breeding activities, such as mass-scale
propagation, shortening of the breeding cycle, development of synthetic seeds, and genetic
transformation of industrially important crops [127,231]. Currently, there are only a few
published reports of SE in P. marsupium (Table 1). Differentiation of the somatic embryo can
occur directly on the callus induction medium, whereas in many cases a combination of dif-
ferent media and hormones is required for callus induction, somatic embryo formation, and
morphogenesis of shoot and plantlet conversion [144]. Recently, Tippani, Nanna, Mamidala,
and Thammidala [148] developed an improved protocol for in vitro plantlet regeneration
via SE from IZE explants of P. marsupium. Dedifferentiated tissues were induced profusely
in 96.6% callus from IZE explants when cultured on a callus induction medium, i.e., MS
plus 5.37 µM NAA. The callus was successfully induced to produce somatic embryos when
cultured onto differentiation medium, i.e., MS consisting of 2.69 µM NAA and 4.40 µM BA.
Lastly, maturation of somatic embryos into plantlets has been accomplished with the use of
half-strength MS fortified with GA3 (5.80 µM). Chaturani et al. [257] reported that IZEs are
an ideal explant to obtain the highest culture initiation and multiplication under in vitro
conditions. There are many reports available on the utilization of IZE explants for inducing
SE in tree species such as Pinus oocarpa [243] and Fraxinus mandshurica [258].

In addition, there have been many reports of the efficacy of HSs, obtained from asep-
tic seedlings, to achieve indirect SE in many plant species [259,260]. Husain, Anis, and
Shahzad [144] achieved SE from the callus, derived from hypocotyl segment (excised
from12-day-old axenic seedlings) of P. marsupium. Primarily, callus formation occurred
on callus induction medium, i.e., MS containing 2,4-D (5.0 µM) and BA (1.0 µM). Secon-
darily, the calluses were successfully converted into somatic embryos when they were
sub-cultured onto differentiation medium; i.e., MS containing 0.5 µM BA and 0.1 µM NAA
in combination with 10 µM ABA. Husain, Anis, and Shahzad [144] also suggested that
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maturation of somatic embryos takes place by the addition of ABA, a growth inhibitor,
which creates stress conditions that are conducive to the development and maturation of
somatic embryos of P. marsupium. It may be possible that ABA interacts synergistically with
both hormones (auxin-cytokinin) and stimulates maximum somatic embryo maturation. SE
formation has occurred in many leguminous tree species via various explant sources such as
immature cotyledon in Acacia catechu [261], immature cotyledon in Hardwickia binata [262],
endosperms in A. nilotica [263], embryonic axes with cotyledons in Albizzia julibrissin [264],
IZEs in Acacia mangium [265], and immature cotyledon in Pterocarpus marsupium [145].

4.4. Rooting and Acclimatization

Rhizogenesis of in vitro raised microshoots is often problematic in woody species and
leads to significant economic consequences because of losses at this stage [266,267]. The
development of a well-rooted system is vital for the successful establishment of in vitro
raised microshoots in field conditions. Therefore, adventitious root formation is an impor-
tant step for in vitro regeneration of various woody plants [268]. The use of auxins affects
the in vitro root formation of microshoots raised in tissue culture [269]. Some important
factors (type and concentration of auxin and treatment duration) play crucial roles in root
induction [270,271]. IBA is an important exogenous auxin utilized for in vitro root induc-
tion in several plant species because it has shown more resistance to photodegradation,
adherence to microshoots, and inactivation by biological action [272]. The stimulatory
effect of IBA on induction of rooting may be due to successive rooting gene activation and
better uptake, transportation, and stability compared with other auxins [159,273]. This
type of two-step rooting strategy has been applied in many tree species [147,274]. In the
first step, the distal ends of microshoots are dipped in a half-strength MS (liquid) medium
containing a high dose of auxin (IBA) over a filter paper bridge for several days. In the
second step, these pretreated microshoots are transferred onto half-strength MS (semisolid)
medium, fortified with a lower dose of IBA, and cultured for one month (Figure 7A–F). Re-
generated microshoots of P. marsupium have been affected by high dose IBA pretreatments,
which improves the rate of rooting response, the number of roots per microshoot, and their
subsequent length [25,56,143].
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Ahmad and Anis [22] have reported that root forming efficiency in mT-derived mi-
croshoots is higher compared to BA-derived microshoots. Rhizogenesis in microshoots was
carried out via a two-step rooting procedure. For the purpose, distal ends of microshoots
were pre-treated with a high dose of IBA (100 µM) augmented 1

2 MS (liquid) medium
for 5 days, followed by their transfer onto the half-strength of MS (semisolid) medium
containing a low dose of IBA (1.0 µM) resulting in a successful root induction response.
Ludwig-Müller [273] proposed that several factors, such as better absorption of auxin,
transport, and stabilization over other auxins, and the subsequent genes, are responsible
for the in vitro root formation. However, an inhibitory effect of BA on in vitro root develop-
ment and low acclimation rates has also been recorded in many plant species [172,275]. On
the other hand, a profound impact of meta-topolin on in vitro rooting and acclimatization
of regenerated plantlets has also been identified in several species [161,173,276]. Exogenous
doses of auxin in the culture medium are commonly used in different plants to induce
in vitro rhizogenesis in regenerated microshoots [84,277,278]. Auxins serve as a central reg-
ulator of adventitious root formation. Specifically, it stimulates the preparation of pericycle
cells that induce lateral roots [279,280]. De Smet [281] has reported several research studies
on the use of auxin for the initiation and growth of lateral roots in isolated microshoots.
The addition of exogenous auxin to the culture medium induces new primordial lateral
root unrelated to acropetal branching in many plant species, including Arabidopsis [282].
In an experiment performed by Ilina, Kiryushkin, Semenova, Demchenko, Pawlowski
and Demchenko [280], the main lateral root of the pericycle cells undergoes asymmetric
anticline arises three adjacent pericycle cells. After some time, all active pericycle cells are
arrested in the basal portion of the elongation region [283]. Since some of the pericycle
cells that left the basal portion of the root apical meristem in the G1 phase of the cell cycle
may begin the cell division of the cells involved in the induction of primordia’s lateral
roots [284].

Jaiswal, Choudhary, Arya, and Kant [146] reported that being a woody perennial
P. marsupium is difficult for in vitro rhizogenesis. In vitro root induction in microshoots
found that IBA was more effective than the other auxin and 1

2 MS medium containing
4.92 µM IBA induced 2.14 roots per microshoots with an average root length of 1.24 cm
in 42.2% cultures. On the other hand, in an experiment performed by Tippani, Vemu-
noori, Yarra, Nanna, Abbagani and Thammidala [56], the best response was recorded on
MS medium containing 3.0 mg L-1 IBA pretreatment for 24 h, followed by transfer onto
hormone-free MS medium, produced a maximum number of 3.2 roots per microshoot
with mean root length of 2.9 cm in 70.8% cultures after 15 days of transfer. According to
De Klerk et al. [285], high doses of auxin pretreatment are needed during the initial root
induction process, but in many cases during root elongation, a high dose of any growth
regulator becomes inhibitory. A large number of researchers have proposed IBA as the best
rooting hormone in many plant species like Kigelia pinnata [286], Terminalia arjuna [287],
Albizia lebbeck [85], and Syzygium cumini [214]. On the other hand, in P. marsupium mi-
croshoots, Husain, Anis, and Shahzad [137] applied a two-step rooting protocol for in vitro
root induction. In the first step, the distal end of microshoots was pulse-treated with
200 µM IBA for 4 days and on filter paper bridge on 1

2 MS (liquid) medium, followed
by step-two with subsequent transfer of these pulse-treated shoots to 0.6% agar-gelled
1
2 MS containing 0.2 µM IBA in combination with 3.96 µM phenolic acids (phlorogluci-
nol). At this stage, the maximum number of 4.4 roots per microshoot with a mean root
length of 4.0 cm was obtained in 65% of cultures after 4 weeks. In several tree species,
the stimulatory effect of phloroglucinol has been documented [288–290]. Interestingly, De
Klerk et al. [291] suggested that phloroglucinol in combination with auxin had a synergistic
effect in inhibiting peroxidase activity in the culture, thereby protecting the endogenous
auxin from peroxidase-catalyzed oxidation. Subsequently, an in vitro rooting response in
microshoots of P. marsupium was also observed when it was grown on the primary liquid
MS medium followed by switch to the secondary hormone-free semisolid half-strength
MS medium. The highest root formatting frequency (70%) was achieved with a maximum
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3.8 roots per microshoot on an average root length of 3.9 cm on the MS medium containing
100 µM IBA and 15.84 µM phloroglucinol after 4 weeks of culture [143]. Ahmad, Ahmad,
Anis, Alatar, Abdel-Salam, Qahtan, and Faisal [150] recently reported an improvement in
the in vitro rooting response in P. marsupium by pre-treating microshoot with 100 µM IBA
for 5 days and then transferring to medium of containing 0.50 µM GA3. This combination
has been shown to be the highest in vitro rooting in microshoots. Improvement in rooting
response was hypothesized that IBA would be stored in basal ends of microshoots during
pretreatment and would be actively used when interacted with GA3.

Recently, many tissue culturists have focused on ex vitro rhizogenesis in microshoots
because ex vitro rooted plantlets produce a better developed root system compared with
those of in vitro raised plantlets [129,292,293]. The ex-vitro rooting strategy is practical and
cost-effective, requiring less time, less labor, fewer chemicals, and only minimal equip-
ment compared with the requirements of in vitro rooting practice. Many researchers have
reported that ex vitro rooted plantlets have good quality roots with minimum damage,
are easy to acclimatize, and have a high survival rate because they do not require any
additional acclimatization before being transplanted in natural conditions [85,129,294–296].
A major breakthrough in ex vitro rooting was achieved by Ahmad, Anis, Khanam, and
Alatar [149] via a two-step rooting procedure. In this process, microshoots were isolated
from in vitro grown cultures and subjected to the pretreatment of basal ends in optimized
doses of IBA, followed by transfer onto various potting substrates. The best rooting re-
sponse was obtained when the basal ends of microshoots were treated with 250 µM IBA for
5 days, followed by transfer to Soilrite, where a maximum of 3.63 roots per microshoot and
mean root length of 3.59 cm, as well as the highest rooting frequency 67.7%, were recorded
4 weeks after transplantation. The authors reported that the ex-vitro rooted plantlets of
P. marsupium were successfully acclimatized, with 96.7% survival rate [149]. Similarly, ex
vitro rooting in regenerated microshoots has been achieved in a large number of woody
species, including Tectona grandis [297], Nyctanthes arbor-tristris [298], Vitex negundo [183],
Malus zumi [299], Melia azedarach [83], and Tecomella undulata [300]. In the study by Ahmad
and Anis [22], the hardening of regenerated plantlets of P. marsupium was achieved by
the well-rooted shootlets being gently removed from the culture vessel and washed with
running tap water to remove any adherent; after which the plantlets were transplanted to
Thermocol cups (10-cm diameter) containing sterile Soilrite. Other researchers have covered
the culture cups with transparent polyethylene bags as a safeguard to ensure high humid-
ity and placed the cups under 16/8 h (day/night) in culture room conditions [147,301].
These polybags were gradually opened in order to acclimatize the plantlets to natural
conditions. Finally, the acclimatized plantlets were successfully shifted to normal garden
soil under natural daylight conditions. Generally, tissue culture-raised plantlets have low
photosynthetic rate because regenerated plantlets have underdeveloped photosynthetic
apparatuses [302]. The improvement in photosynthetic pigment contents in regenerated
plantlets is possible during acclimatization, as noted by several researchers [303,304]. The
substantial increment in photosynthetic pigment content with high light intensity promotes
the pigment biosynthesis enzyme, which is vital to synthesis of photosynthetic pigment
content [305]. There have been several investigations of the abrupt decrease in photosyn-
thetic pigment contents during the initial days followed by a continuous increase during
the acclimatization processes in many plants [131,306,307].

5. Molecular Studies of P. marsupium
5.1. Genetic Fidelity Assay

Plant tissue culture techniques are an important tool in the clonal propagation of
genetically uniform plants that possess desirable traits. Many researchers have suggested
that the existence of somaclonal variations among sub-clones of an elite parental line is a
potential drawback during micropropagation practice [240,308]. Javed, Alatar, Anis, and
El-Sheikh [88] advocated that genetic uniformity of regenerated plantlets is a prerequisite
to sustain the desired genotypes. The application of phytohormones at elevated concentra-
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tions and continuous sub-culturing of cultures for long periods hinders the maintenance of
genetic stability [22]. The consequences of unintended mutations and the mixing of regen-
erated plantlets could mean that much time and money is wasted before the mistakes are
discovered. Therefore, it is necessary to validate the uniformity of the regenerated plants at
the genetic level through molecular markers, given that variability induced by continuous
practice of in vitro propagation cannot be detected phenotypically because the structural
differences in the gene products are not sufficient enough to alter the phenotypes [309].
Although many approaches have been attempted to detect genetic homogeneity (i.e., true-
to-type clones) among regenerants, the most suitable technique appears to be DNA-based
molecular markers. Such markers are not affected by environmental factors and can be
analyzed using genomic DNA from any growth stage; therefore, these markers are very
useful in analyzing genetic fidelity in a large number of plant species. RAPD and ISSR
have become more popular among the different molecular marker techniques, as they do
not require any prior DNA sequence information [87,191,310].

There have been scores of studies on genetic fidelity analysis by using RAPD and
ISSR techniques in regenerated plants of different species such as Moringa peregrina [311],
Alhagi maurorum [312], Terminalia bellerica [313], Morus alba [314], Lawsonia inermis [140],
Platanus orientalis [315], Erythrina variegata [88], Tecoma stans [240]. Their simplicity, cost-
effectiveness, and requirement of low quantity DNA are some reasons for the selection of
these markers for genetic fidelity analysis [311,314,316–318].

Although DNA-based markers have been shown to be an effective technique to assess
genetic fidelity in a number of plant species, there are few documented techniques particular
to P. marsupium. In one recent study [149], assessment of genetic fidelity in P. marsupium
regenerants was achieved using DNA-based ISSR primers. The authors of this study
obtained a total of 35 bands, with an average of 4.38 bands per primer, in a monomorphic
banding pattern. In an earlier study, Ahmad and Anis [22] had used a total of 29 RAPD
primers to detect genetic fidelity among regenerated plantlets of P. marsupium; the results
were monomorphic DNA bands exhibiting complete genetic uniformity. In still earlier
work, Tippani, Vemunoori, Yarra, Nanna, Abbagani, and Thammidala [56] reported that
four ISSR primers produced a monomorphic banding pattern regenerated when compared
with mother plant. In a later experiment [148], eight ISSR primers were used for DNA
amplification, producing a clear, reproducible, and monomorphic DNA banding pattern
demonstrating genetic fidelity among regenerants of P. marsupium derived through the SE
method. Taken together, this research confirms the efficacy of regeneration protocols for
true-to-type plant breeding in general and P. marsupium in particular.

5.2. DNA Barcoding

Presently, several adulterants of Pterocarpus species are available in the international
trade market [16]. Scientific authentication of genuine species is vital for the herbal drug
industry; however, the conventional approach for the identification of authentic species
is not sufficient. The difficulty lies in the fact that most of the physical and anatomical
characteristics (i.e., wood density, grain, and color) of Pterocarpus species are very similar
to its adulterants. DNA barcoding offers an alternative and feasible taxonomic tool for
rapid and robust species identification in general [17,319–321] and could be an effective
technique to distinguish Pterocarpus and its adulterants. Jiao, Yu, Wiedenhoeft, He, Li, Liu,
Jiang, and Yin [16] developed a DNA barcode to distinguish adulterants of six commercially
important species of Pterocarpus (P. marsupium, P. santalinus, P. indicus, P. erinaceus, P. zenkeri,
P. angolensis). An array of genes, including ITS2, matK, ndhF-rpl32, and rbcL, have been
utilized to discriminate Pterocarpus species through TaxonDNA and tree-based analytical
methods. Jiao, Yu, Wiedenhoeft, He, Li, Liu, Jiang, and Yin [16] suggested that two of
these genes, namely matK and rbcL, are the core DNA barcodes for authentication of many
plant species. The ITS2 regions are standard DNA barcodes, especially used in identifying
adulterants of industrially important medicinal plants [9,322]. Similarly, ndhF-rpl32, an
intergenic spacer gene of cpDNA, has the potential to be used for DNA barcoding of
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a large number of species [323–325]. Consequently, many researchers in this field have
recommended DNA barcodes as well-known tools for authenticating genuine herbal raw
materials in quality control programs and forensic studies [326–328].

5.3. Genetic Transformation

Establishment of in vitro propagation protocols is a prerequisite for genetic manip-
ulation studies because in traditional breeding techniques—such as backcrossing and
selfing—it is difficult to fix desirable alleles in a particular genetic background [13]. Suc-
cessful transfer of genes of interest through genetic transformation technique has been
well documented in many tree species [329–331]. Gorpenchenko et al. [332] established
a successful genetic transformation process in Panax ginseng through callus-based shoot
organogenesis. Similarly, Tippani, Yarra, Bulle, Porika, Abbagani, and Thammidala [145]
demonstrated genetic transformation in P. marsupium through callus-based organogenesis
using immature cotyledon explants obtained from 9-day-old axenic seedlings. Callus
formation occurred on callus induction medium containing MS fortified with 1.07 µM NAA
for 2 weeks. Subsequently, the callus was co-cultivated with A. tumefaciens (harboring
the binary plasmid with uidA and hpt genes) and cultured on MS augmented with BAP
(8.9 µM), NAA (1.07 µM), and acetosyringone (200 µM) for 2 days. These cultures were
then transferred onto MS containing BAP (8.9 µM), NAA (1.07 µM), hygromycin (20 mg/L),
and cefotaxime (250 mg/L) for multiple shoot induction, followed by transfer to shoot
elongation MS medium containing BAP (4.40 µM), hygromycin (15 mg/L), and cefotaxime
(200 mg/L). Putatively transformed microshoots were rooted on MS medium containing
BA (2.85 µM) in combination with hygromycin (20 mg/L), after dip treatment of the distal
ends of P. marsupium for 24 h in MS medium fortified with IBA (19.60 µM). Tippani, Yarra,
Bulle, Porika, Abbagani, and Thammidala [145] validated the gene transfer into putatively
regenerated plants through RT-PCR and GUS assay. Interestingly, Jube and Borthakur [333]
proposed that the rate of transformation in woody species is meager because excised
explants produce several harmful phenolic compounds. On a contrary note, there are
many reports published on A. tumefaciens-mediated transformation in leguminous woody
trees [330,331].

6. Conclusions and Future Prospects

The commercial productivity of tree plantations could be increased by reducing the
genetic diversity of forest species and achieving greater homogeneity of tree phenotypes.
Currently, many factors, such as increasing demand from pharmaceutical companies
and timber-based industries and the overall decline of the global forest cover, as well as
the impacts of climate change, have all motivated forestry decision-makers to raise the
productivity of natural forests. There is also an increasing demand for aromatic and herbal
drug yielding plants because natural products are seen to be non-toxic and have fewer
side effects. Our comprehensive survey of the literature revealed that knowledge of the
pharmacognosy, ethnobotany, and micropropagation of P. marsupium—a species of high
value globally and in India—is rather limited and has only appeared in the past three
decades. Plant biotechnology has opened new avenues for the generation of novel genetic
variability, and techniques in this field now offer greater selection and are increasingly
more precise and reproducible. Such techniques have broad applications in a number of
important areas, for example, genetically modified food, feed, and fiber.

Micropropagation of P. marsupium can offer great advantages over traditional meth-
ods. Such advances can help researchers meet their goals in numerous specialties: plant
breeding, plant biotechnology, germplasm conservation, rapid propagation of genetically
modified plants, secondary metabolites biosynthesis, germplasm exchange, extensive col-
lection within minimum space, supply of important planting material for wild population
recovery, and molecular and ecological studies. Moreover, before developing any regen-
eration protocol, information on actual genetic variability and the cryptic number of the
differentiated genetic resources are essential for both the genetic improvement of the species
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and its conservation. Before developing an effective method to maintain the genetic diver-
sity of any targeted species, it must first be quantified. A promising method in regeneration
programs is the use of DNA-based molecular markers.

Advances in DNA barcoding will help in the authentication of key forest species
such as P. marsupium and may eventually lead to the formulation of legislation ensuring
the public’s access to this plant at a reasonable cost. There are several substituted for
P. marsupium wood on the market, and they can be less effective as medicines and, in
some circumstances, fatal due to the toxicity of the substituted plant material as an open
access, worldwide library of reference barcode sequences continues to be collected, DNA
barcoding may be a viable answer to species authentication, allowing non-taxonomists to
identify specimens. In vitro propagation and genetic diversity analysis of P. marsupium
can be used effectively to select superior populations of the species for breeding programs
aimed at improving productivity, wood quality, and chemical constituents, thereby helping
to inform plans for conservation and sustainable use of this valuable plant species. More
importantly, critical elements of an effective conservation strategies need to be discussed.
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sis as affected by exogenous cytokininN6-(m-hydroxybenzyl)adenosine. Biol. Plant. 1996, 38, 511–518. [CrossRef]
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