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Abstract. As a clinically heterogeneous subtype of breast 
cancer, triple-negative breast cancer (TNBC) is associ-
ated with a poor clinical outcome and a high relapse rate. 

Conventional chemotherapy and radiotherapy are effective 
treatments for patients with TNBC. However, the prognosis 
of TNBC remains unsatisfactory. Therefore, a large volume 
of research has explored the molecular markers and onco-
genic signaling pathways associated with TNBC, including 
the cell cycle, DNA damage response and androgen receptor 
(AR) signaling pathways, to identify more efficient targeted 
therapies. However, whether these predicted pathways are 
effective targets has yet to be confirmed. In the present 
review, potentially carcinogenic signaling pathways in 
TNBCs from previous reports were considered, and ulti-
mately five tumorigenic signaling pathways were selected, 
specifically receptor tyrosine kinases and downstream 
signaling pathways, the epithelial-to-mesenchymal transi-
tion and associated pathways, the immunoregulatory tumor 
microenvironment, DNA damage repair pathways, and 
AR and coordinating pathways. The conclusions of the 
preclinical and clinical trials of each pathway were then 
consolidated. Although a number of signaling pathways 
in TNBC have been considered in preclinical and clinical 
trials, the aforementioned pathways account for the majority 
of the malignant behaviors of TNBC. Identifying the altera-
tions to different carcinogenic signaling pathways and their 
association with the heterogeneity of TNBC may facilitate 
the development of optimal precision medical approaches 
for patients with TNBC, potentially improving the efficiency 
of anticancer therapy.
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1. Introduction

Breast cancer is the leading cause of cancer-associated 
mortality for women. In 2012, 1.7 million people were diag-
nosed with breast cancer worldwide, and 521,900 succumbed to 
the complications (1). Given the varied prognosis and response 
to treatment of patients with breast cancer, the molecular clas-
sification of breast cancer has been examined to improve the 
understanding of this disease. Triple-negative breast cancer 
(TNBC), which was first reported in the literature in 2005, is a 
molecular subset of breast cancer. TNBC is characterized by the 
absence of estrogen receptor (ER), progesterone receptor (PR) 
and human epidermal growth factor receptor 2 (HER2) expres-
sion (2), and accounts for 16% of all breast cancer cases (3). 
Although TNBC tumors display relatively simple molecular 
phenotypes, they are inherently heterogeneous. In particular, 
TNBCs exhibit varying morphology, gene expression and 
signaling pathway activity (4); thus, they have complicated 
clinicopathological features, to the detriment of the prognosis 
of patients with TNBC. TNBC was compared with other 
breast cancer subtypes in a retrospective analysis; increased 
risks of distant relapse [hazard ratio (HR), 2.6; P<0.0001] and 
mortality (HR, 3.2; P<0.001) in the first five years were identi-
fied (5). As established endocrine and targeted therapies are 
ineffective against TNBC, chemotherapy remains the primary 
regimen for TNBC treatment (6). TNBC is highly sensitive to 
cytotoxic chemotherapy (7), but this treatment is associated 
with relatively low rates of pathological response (8,9). Thus, 
developing a more effective therapeutic method for patients 
with TNBC is necessary.

With this objective, a number of studies have investigated 
the molecular classification of TNBC to determine optimal 
individualized therapy strategies for TNBC. Lehmann et al (4) 
indicated that TNBCs could be classified into the following 
subtypes according to gene expression profiles: Basal-like 
subtypes 1 and 2, immunomodulatory subtype, mesen-
chymal subtype, mesenchymal stem-like subtype, and 
luminal androgen receptor (AR) subtype. Alternatively, 
Burstein et al (10) reported that TNBCs could be divided 
into four subtypes: Basal-like/immune-suppressed subtype, 
basal-like/immune-activated subtype, mesenchymal subtype 
and luminal/AR subtype. Patients with specific tumor molec-
ular abnormalities treated with molecularly matched targeted 
therapy respond better to therapy compared with those treated 
with non-matched targeted therapy (11). In the present review, 
the molecular markers and signaling pathways frequently 
dysregulated in TNBCs, and the targeted therapies in clinical 
trials and preclinical studies, will be summarized.

2. Receptor tyrosine kinases and downstream signaling 
pathways

RTKs are important components of signal transduction path-
ways in the regulation of proliferation, and are associated 
with two downstream signaling pathways in particular: The 
Ras/mitogen-activated protein kinase (MAPK) pathway, and 
the phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target 
of rapamycin (mTOR) pathway. The RTKs include epidermal 
growth factor receptor (EGFR), vascular endothelial growth 
factor receptor (VEGFR) 1-3, platelet-derived growth factor 

receptor (PDGFR) α/β, insulin-like growth factor receptor 
(IGFR), fibroblast growth factor receptor (FGFR), c-Met, 
and transforming growth factor receptor-β (TGFR-β), all of 
which are potential targets for TNBC therapy (4,12-16). EGFR 
dysregulation is the most commonly identified in TNBC 
tumors; 60-80% of TNBC tumors demonstrate EFGR overex-
pression (17,18). However, the applicability of anti-RTK drugs 
against TNBC are limited on account of biochemical multi-
plicity and toxicity (19). For example, lapatinib, a dual EGFR 
and HER2 TK inhibitor, is ineffective in patients with TNBC, 
although it is clinically effective against HER2-positive breast 
cancer. The mechanism of lapatinib resistance in TNBC may 
be associated with interleukin-6 expression (20). The inhibi-
tion of Src homology phosphotyrosyl phosphatase 2 (SHP2), 
an important molecule in EGFR/FGFR1/c-Met signaling (21), 
was reported to suppress TNBC tumorigenesis and metastasis 
in vitro (22), indicating the potential anti‑tumor efficiency of 
RTK inhibitors in TNBC treatment. A number of RTK inhibi-
tors have also exhibited promising anticancer therapeutic 
efficacy in a clinical setting. For example, bevacizumab is an 
anti-VEGF monoclonal antibody. In a single-arm and phase 
II multicenter study of bevacizumab, docetaxel, and carbopl-
atin-based neoadjuvant treatment for patients with stage II/III 
TNBC, the results demonstrated a relatively high pathological 
complete response rate (42%) with a low risk of adverse 
events (23); additionally, adding bevacizumab to neoadjuvant 
chemotherapy regimens improved the pathological complete 
response rate among patients with TNBC (39.3 vs. 27.9%; 
P=0.003) (24).

Ras/MAPK pathway. The Ras/MAPK pathway promotes cell 
proliferation, cell differentiation and angiogenesis (25). Ras 
family members, including H-Ras, K-Ras and N-Ras, can 
be activated by RTKs to transmit growth signals from the 
cell membrane to the nucleus via a series of phosphorylated 
proteins, including Raf, MAPK kinase 1 (MEK) and extracel-
lular signal-regulated kinases (ERK) 1/2 (26). Although the 
frequency of mutations in the Ras/MAPK signaling pathway 
is <2% in TNBC, copy number variations of certain genes 
from the Ras/MAPK pathway have been demonstrated to be 
associated with TNBC (26). For example, the overexpression 
of ERK is associated with a higher mortality rate in patients 
with TNBC (27). The MEK inhibitor selumetinib inhibited the 
motility and invasiveness of the MDA-MB-231 and SUM149 
TNBC cell lines in vitro. In addition, selumetinib had a 
significant effect on the prevention of lung metastasis in a 
TNBC‑bearing mouse xenograft model (25). These findings 
may provide evidence of the applicability of MEK inhibitors 
in TNBC treatment. However, certain genetic defects along the 
Ras/MAPK pathway, including the loss of negative regulators 
of MAPK signaling, such as phosphatase and tensin homolog 
(PTEN) and certain regulatory micro (mi)RNAs, such as the 
let-7 family, are also proposed to serve an important role in 
TNBC development (26). The Ras/MAPK pathway negatively 
regulates tumor immunogenicity by affecting the process of 
tumor antigen presentation in TNBC cells; compared with 
solo therapy, combining MEK inhibition and programmed 
death-1 (PD-1)/programmed death ligand 1 (PD-L1) immune 
checkpoint inhibitors increased the therapeutic efficiency in a 
murine syngeneic TNBC model (28).
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PI3K/AKT/mTOR pathway. PI3K family members are 
activated by RTKs. Activated PI3Ks phosphorylate 
phosphatidylinositol-4,5-diphosphate (PIP2) to phospha-
tidylinositol-3,4,5-triphosphate (PIP3), resulting in the 
downstream phosphorylation of AKT (29). Phosphorylated 
AKT then activates mTOR, a serine/threonine protein kinase, 
through the intermediary tuberous sclerosis complex 1/2 to 
promote protein synthesis and cell growth (30,31). PTEN 
serves an important tumor suppressor role in the process by 
inhibiting the dephosphorylation of PIP3 to PIP2 (32). The 
PI3K/AKT/mTOR pathway mediates a range of processes, 
including cell growth, survival and migration, and tumor 
formation and angiogenesis (33). The dysregulation of the 
PI3K/AKT/mTOR pathway occurs frequently in TNBC. 
PI3KCα-activating mutations are observed in 23.7% of TNBC 
patients (34), and PTEN loss mutations, including promoter 
silencing and functional suppression, are detected in 25-30% 
of TNBC cases (32,35,36). With regards to outcome, the 
hyperactivation of AKT and mTOR are associated with 
the poor prognosis of patients with TNBC, and based on 
success in preclinical experiments, dual inhibition of these 
molecules may represent a promising strategy for TNBC 
treatment (37-39).

The mTOR inhibitor everolimus has been approved by 
the US Food and Drug Administration (FDA), and can be 
combined with the aromatase inhibitor exemestane for patients 
with metastatic homologous recombination (HR)-positive 
breast cancer (40). The therapeutic effect of everolimus has 
been confirmed for patients with TNBC; mTOR activation 
may lead to platinum therapy resistance (41), and so evero-
limus combined with carboplatin has been proposed as an 
effective therapy for patients with metastatic TNBC (42). 
Phase I trials have also demonstrated that patients with meta-
static TNBC who received a combination of chemotherapy 
and PI3K/AKT/mTOR inhibitor-based targeted therapy had 
a significantly prolonged median PFS time compared with 
patients who did not receive the targeted therapy (43). Another 
study reported that PI3K inhibition causes HR impairment and 
increased sensitivity to poly(ADP-ribose) polymerase (PARP) 
inhibition in TNBC without breast cancer associated (BRCA) 
1/2 mutations. Therefore, PI3K inhibition can improve the 
therapeutic efficiency of PARP inhibition in BRCA‑wild type 
TNBC (44). Based on this observation, a clinical trial with 
BKM120 (buparlisib) and olaparib was initiated, as presented 
in Table I (45-67).

A high level of crosstalk between the Ras/MAPK and 
PI3K/AKT/mTOR pathways has been detected in basal-like 
breast cancer models (68), and an approach that inhibits both 
pathways may be feasible. However, the high toxicity levels 
of such an approach are concerning (69), so a greater under-
standing of the cross-talk mechanisms between pathways is 
required before effective targeted therapy of this type with 
improved tolerability can be developed.

3. Epithelial‑to‑mesenchymal transition and associated 
pathways

EMT is an essential biological process that also assists the 
migration and invasion of malignant tumor cells. Thus, eluci-
dating the molecular mechanism of the EMT process and its 

association with the occurrence, development and metastasis 
of cancer is of great significance.

During EMT, epithelial cells lose the expression of 
E-cadherin and acquire mesenchymal markers, including 
vimentin (70). There is evidence to indicate that a number 
of RTKs, including EGFR, IGF1R, hepatocyte growth factor 
receptor and c-Met, non-RTKs, including Src, and embryonic 
transcription factors, including Twist and Slug (71-77), can 
induce EMT. Diverse signaling pathways, including MAPKs, 
PI3K and nuclear factor-κB, also promote EMT (76,78). Other 
pathways, including Notch and Wnt/β-catenin signaling 
pathways, are also associated with EMT (79). Tumor cells 
undergoing EMT may acquire stem cell-like phenotypes 
and migratory abilities (80). Previous studies have indicated 
that the genes involved in EMT and conversion to the cancer 
stem cell phenotype are activated in TNBC (4,81). Additional 
studies have demonstrated that EMT may induce the resis-
tance to chemotherapy and radiotherapy (82), and may thus 
have potential as a therapeutic target in TNBC.

In preclinical trials, miRNAs have been demonstrated to 
regulate tumor EMT and metastasis by inhibiting the expres-
sion of certain genes (83). For example, a previous study 
indicated that miR-200b-3p and miR-200b-5p synergize to 
suppress TNBC cell migration by inhibiting EMT (84). This 
finding may provide a novel strategy for clinical treatment. 
Furthermore, protein tyrosine kinase 6 (PTK6) is an intracel-
lular non-receptor kinase that can promote EMT and regulate 
the metastasis of TNBC cells by modulating E-cadherin 
expression. PTK6 inhibition may prevent the metastasis of 
TNBC cells, and thus exhibits clinical potential for improving 
the treatment strategies for patients with mesenchymal 
TNBC (85). Considering the association of EMT with breast 
cancer stem cells (80), aldehyde dehydrogenase 1 (ALDH1) 
inhibitors were proposed as a therapeutic alternative in TNBC 
therapy, targeting the characteristic ALDH1 phenotypic 
marker of breast cancer stem cells (86,87). A preclinical study 
confirmed that LBH589, a histone deacetylase inhibitor, could 
inhibit the metastasis of TNBC cells by partially reversing 
EMT (88).

Wnt/β‑catenin pathway. Aberrant regulation of the Wnt 
signaling pathway serves an important role in tumori-
genesis (89). This regulation is associated with EMT and 
self-renewal in breast cancer, as it regulates the transcription 
factors Twist and Slug (90,91).

During tumorigenesis, the Wnt ligand binds to Frizzled 
(Fz), a seven-pass transmembrane surface receptor, and its 
co-receptor, low-density lipoprotein receptor-related 5/6 
(LRP5/6), to form a Wnt-Fz-LRP6 complex. The combina-
tion of this complex with the protein Dishevelled can elicit 
the phosphorylation of LRP6 and the recruitment of the axin 
complex, which is composed of axin, anaphase-promoting 
complex, casein kinase 1 and glycogen synthase kinase 3. 
These events ultimately stabilize β-catenin, which is degraded 
by the axin complex without Wnt. The β-catenin protein is 
transferred to the nucleus where it activates the transcription 
of Wnt target genes (92).

Lehmann et al (4) demonstrated that TNBC has a unique 
Wnt/β-catenin pathway gene expression. Other studies 
have indicated that the activation of the Wnt pathway is 
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associated with poor prognosis and metastasis in patients 
with TNBC (93). Thus, the Wnt/β-catenin pathway could 
be utilized as a target for TNBC therapy. Substantial 
efforts targeting the Wnt pathway have been made, but 
few have reached the clinical trial stage thus far. LGK974, 
a molecular inhibitor of Wnt secretion, has been evaluated 
in stage I trials in several types of cancer, including TNBC 
(http://www.clinicaltrials.gov). In preclinical trials, a previ-
ously FDA-approved anti-helminthic drug niclosamide, 
which can reduce LRP6 and β-catenin levels in vitro, was 
reported to suppress the growth of basal breast cancer xeno-
grafts in vivo (94,95). Thus, niclosamide may be a promising 
drug for clinical trials. Another FDA-approved, anti-leprosy 
drug, clofazimine, was observed to suppress the growth of 
TNBC cells through the inhibition of the Wnt/β-catenin 
pathway (94). Notably, the multipurpose drug suramin can 
inhibit the Wnt signaling pathway and the proliferation of 
TNBC cells in vitro and in vivo. Such findings may pave the 
way for the discovery of novel targeted therapies against 
Wnt-dependent TNBC tumors (96).

TGF‑β/Smad pathway. In addition to the Wnt pathway, the 
TGF-β/Smad pathway can also regulate cell proliferation, 
invasion, apoptosis and metastasis, and induce EMT, and thus 
has potential in targeted strategies against TNBC (97). When 
secreted from cells, TGF-β remains as an inactive, latent 
homodimeric polypeptide (98). TGF-β can be activated by 
hydrolyzing the latent complex. The TGF-β then binds to and 
activates its receptors, TGF-β receptor type II (TβRII) and I 
(TβRI), which are transmembrane serine/threonine kinases. 
This induces two TβRI and two TβRII molecules to form a 
heterotetramer, and TβRII triggers the cross-phosphorylation 
of TβRI, allowing the activation of substrate Smad proteins (99). 
Smads include receptor-regulated Smads (R-Smads), common 
mediator Smads (Co-Smads) and inhibitory Smads (I-Smads). 
Among the Smad types, Smad-2 and Smad-3, as R-Smads, are 
the direct substrates of TβRI. The activated R-Smads combine 
with Smad-4, a Co-Smad, where they induce the activation of 
specific genes. Inversely, Smad‑7, as an I‑Smad, can inactivate 
the TGF-β/Smad pathway by disrupting the combination of 
R-Smad with TβRI (100).

Smad-2 or Smad-3 overexpression, when combined with 
Smad-4, can induce EMT. Inversely, the reduced expression 
of Smad-2, Smad-3 and Smad-4, or the overexpression of 
Smad-7, can constrain EMT (101). Clinical evidence suggests 
that ~40% of human breast cancer tumors have high TGFβ1, 
TGFβ2, Smad-3 and Smad-4 expression levels, although the 
positive TGFβ gene signature occurs primarily in ER-positive 
breast tumors and lung metastases (102). In addition, a 
high TGF-β1 expression level was detected in TNBC cells 
(MDA231, Hs578T, HCC1806) compared with non-TNBC 
(BT474, ZR75-1, SKBR3) (103). Treatment with zerumbone 
may inhibit the tumorigenicity of TNBC cells by suppressing 
the TGFβ/Smad pathway, and thus has a potential as a targeted 
drug for TNBC. LY2109761, another selective TβRI/II dual 
inhibitor, can also suppress the invasion and motility of TNBC 
cells (103). The antidiabetic agent metformin can hinder the 
TGF-β/Smad pathway by disrupting the activation of Smad-2 
and Smad-3 in TNBC (104). This finding may offer a novel 
perspective for the clinical treatment of TNBC patients.
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Although chemotherapy is the central treatment meth-
odology against TNBC, patients with TNBC are likely to 
eventually develop drug resistance and disease recurrence, 
which is contributed to by cancer stem-like cells. The TβRI 
inhibitor LY2157299 can constrain the development of 
stem-like cells, indicating the potential combination of chemo-
therapy and TGF-β targeted drugs in clinical trials (105).

4. Androgen receptor and coordinating pathways

ER and PR are widely accepted molecular markers in the 
occurrence, development and prognosis of breast cancer. 
TNBC tumors lack ER and PR expression. An association 
between TNBC and AR, another hormone receptor, has been 
observed (4). Lehmann et al (4) classified cases of TNBC 
according to gene expression profiling, in which a luminal 
AR subtype, featuring increased gene expression in the AR 
signaling pathway, was identified. In another study of 593 
TNBC cases, a luminal AR subtype was also identified based 
on the expression profiles and histopathological features of 
primary TNBC tumors (106).

As a member of the steroid hormone receptor family, 
AR is expressed in ~77% of breast cancer tumors (107), and 
serves an important role in regulating cell proliferation (108). 
Testosterone, particularly dihydrotestosterone, is the main acti-
vator of AR (109). Subsequent to ligand binding, AR is usually 
bound to chaperone proteins, including heat shock proteins, 
before forming a homodimer. The homodimer translocates to 
the nucleus and promotes the transcription of target genes (110).

Anti-androgens are the most common drugs for treating 
AR-positive cancer, including AR-positive TNBC. In recent 
research, bicalutamide (150 mg daily) was prescribed to 
424 patients with AR-positive, ER and PR-negative meta-
static breast cancer. The six-month clinical beneficial rate 
was 19% [95% confidence interval (CI), 7-39%], and the 
median progression-free survival time was 12 weeks (95% CI, 
11‑22 weeks). These findings provided evidence in favor of the 
application of anti-androgen therapy in ER/PR-negative and 
AR-positive breast cancer (111). In a phase II clinical trial of 
enzalutamide, another AR antagonist, considerable beneficial 
therapeutic efficiency was demonstrated in AR‑positive TNBC 
patients, indicating the potential efficacy of anti‑AR therapy in 
clinical settings (clinicaltrials.gov: NCT01889238).

A previous study indicated that the concomitant admin-
istration of the anti-androgen bicalutamide with a EGFR, 
PDGFRβ or Erk1/2 inhibitor significantly decreased the 
AR expression level when compared with the single admin-
istration of the inhibitors (112). Another study reported that 
activating PIK3CA mutations are enriched in AR-positive 
TNBCs, potentially providing a basis for the concomitant use 
of AR antagonists with PI3K/mTOR inhibitors (4). In addi-
tion, enhanced therapeutic effects of bicalutamide combined 
with the PI3K inhibitor GDC-0941 (pictilisib) or the mTOR 
inhibitor GDC-0980 (apitolisib) have also been also observed 
in MDA-MB-453 and CAL-148 luminal AR subtype cell xeno-
grafts, indicating that the inhibitors targeting the PI3K/mTOR 
signaling pathway also notably decrease the amount of AR 
protein (113). It was concluded that AR expression can be 
regulated post-transcriptionally by activating the RTK, PI3K 
or Erk1/2 signaling pathways (113). The combination of 

anti-androgen therapy with targeted therapy against the RTK, 
PI3K and Erk1/2 signaling pathways may be a promising alter-
native treatment for AR-positive TNBC.

5. DNA damage repair pathways

The DNA damage response has recently attracted consider-
able attention in cancer research. Three major pathways 
operate in this process: DNA repair mechanisms that remove 
DNA lesions, cell cycle checkpoints that prevent the growth of 
cells with DNA damage and apoptotic pathways that eliminate 
cells with irreparable DNA lesions (114). Among the various 
types of DNA damage, DNA double-strand breaks (DSB) are 
of particular interest on account of their function in genomic 
instability, which promotes tumorigenesis (115). DSB repair is 
accomplished through the HR or non-homologous end-joining 
pathways (116). BRCA1 and BRCA2 are critical genes modu-
lating DSB repair through HR (117).

TNBC is commonly associated with BRCA1/2 mutations. 
A germline mutation in BRCA1 or BRCA2 is present in ~15% 
of patients with TNBC; TNBC cases account for 70% of cases 
of breast cancer with BRCA1 mutation, and 16-23% of those 
with BRCA2 mutation (118). TNBC also has similar clinical 
and pathological features as breast cancer with a BRCA1/2 
mutation. For instance, the patients are more likely to be 
young and present with a high grade and lymph node invasion 
ratio (119,120). In addition, BRCA1/2 mutations have been 
confirmed to be indicators of a poor TNBC prognosis (121). 
In a study of 182 women with TNBC, >50% were carrying 
inherited BRCA1 mutations, thus demonstrating the close 
association between TNBC and BRCA1 (122).

Polyadenosine 5'-diphosphoribose produced by PARP 
enzymes serves an important role in the repair of DNA 
damage (123). Where there is a defect in DNA repair genes, 
such as BRCA in TNBC, a PARP inhibitor may be a desirable 
choice for therapy. In an open-label phase II clinical study, 
results indicated that the combination of PARP inhibitor 
iniparib and conventional chemotherapy drugs, including 
gemcitabine and carboplatin, could produce significant clin-
ical benefit rates (from 34 to 56%; P=0.01) and a high overall 
response rate (from 32 to 52%; P=0.02) in patients with TNBC. 
The median progression-free and overall survival times were 
also prolonged, with an extension from 3.6 to 5.9 months 
(progression HR, 0.59; P=0.01) and from 7.7 to 12.3 months 
(mortality HR, 0.57; P=0.01), respectively (124). In addition, 
in a phase I trial of the oral PARP inhibitor olaparib for meta-
static TNBC, 7 (37%) out of 19 patients receiving olaparib in 
combination with weekly paclitaxel had confirmed partial 
responses (125). Data regarding the safety of PARP inhibitor 
treatment for advanced TNBC and/or BRCA-mutated breast 
cancer from clinical trials is summarized in Table I; the side 
effects of PARP inhibitors are well tolerated. Interestingly, in 
the TNBC patients with BRCA downregulation, the sensitivity 
to PARP inhibitor treatment was enhanced when combined 
with PI3K inhibition, as the blockade of PI3K impaired HR, 
inducing sensitization to PARP inhibitors (44), providing 
a theoretical basis for the combination of PI3K with PARP 
inhibitors for these patients.

In addition to the aforementioned BRCA1/2 genes, other 
breast cancer predisposition genes, including RAD51D, 



WU et al:  POTENTIAL CARCINOGENIC SIGNALING PATHWAYS IN TRIPLE-NEGATIVE BREAST CANCER 4991

MRE11A, checkpoint kinase 2, mutL homolog 1, mutS 
homolog 6 and partner and localizer of BRCA2, have 
been confirmed to be associated with the development and 
progression of TNBC (126). It was previously reported that 
the cytoplasmic expression and lack of nuclear expression of 
RAD51 were associated with TN phenotypes, the aberrant 
expression of BRCA1 and a poor prognosis for patients (127), 
indicating that RAD51 may be a promising biomarker 
for selecting patients who are suitable for treatment with 
DNA-damaging agents.

6. Immunoregulatory tumor microenvironment

An increasing number of studies have demonstrated that 
the tumor microenvironment, particularly the immune 
microenvironment, is associated with the development and 
progression of breast cancer (128). Lehmann et al (4) and 
Burstein et al (10) reported that a subtype of TNBC displayed 
upregulated immunological responses, immune cell markers 
and immune transcription factors, implying the dysregulation 
of immune pathways in TNBC, and that the immunothera-
peutic approach may be a valuable treatment strategy for 
patients with TNBC (4,10).

Tumor infiltrating lymphocytes. High levels of stromal 
lymphocytic infiltration was confirmed to be associated with 
improved TNBC prognosis in two adjuvant phase III trials. 
Results of one trial indicated that compared with the patients 
who had a lower level of stromal lymphocytic infiltration, 
patients with high lymphocytic infiltration had a 14% reduced 
risk of recurrence (P=0.02), an 18% reduced risk of distant 
recurrence (P=0.04) and a 19% reduced risk of mortality 
(P=0.01) for every 10% increase in stromal lymphocytic infil-
tration (129). Another phase III randomized adjuvant breast 
cancer trial reported similar results, indicating that an increase 
in lymphocytic infiltration was associated with an improved 
prognosis in node-positive and ER-negative/HER2-negative 
breast cancer, regardless of chemotherapy (130). In addition, 
the presence of tumor‑infiltrating lymphocytes predicted a 
better clinical response to neoadjuvant chemotherapy (131). 
Therefore, the existence of tumor‑infiltrating lymphocytes can 
be regarded as a prognostic parameter for the prediction of the 
response to clinical treatment of patients with TNBC.

Immune checkpoint system. Tumor cells can evade the 
recognition and destruction by the host immune system 
through the immune checkpoint system; blocking the immune 

Figure 1. Molecular mechanisms of TNBC. RTKs promote tumorigenesis through the Ras/mitogen-activated protein kinase and PI3K/Akt/mTOR pathways. 
The phosphorylation of ERK, the Wnt/β-catenin pathway and the TGF-β/Smad pathway activates EMT, and regulates the migration and invasion of tumor 
cells. In the AR pathway, AR can bind to chaperone proteins to promote the transcription of target genes in the nucleus. At the genetic level, BRCA1/2 mutations 
can also promote the development of TNBCs. In the tumor microenvironment, tumor‑infiltrating lymphocytes and the immune checkpoint system can allow 
evasion from recognition by the host immune system. TNBC, triple negative breast cancer; RTK, receptor tyrosine kinase; PI3K, phosphoinositide 3-kinase; 
mTOR, mechanistic target of rapamycin; ERK, extracellular signal-regulated kinase; TGF, transforming growth factor, EMT, epithelial-mesenchymal transi-
tion; AR, androgen receptor; BRCA, breast cancer-associated; PD-(L)1, programmed death (ligand) 1; EGFR, epidermal growth factor receptor; PDGFR, 
platelet‑derived growth factor receptor; VEGFR, vascular endothelial growth factor receptor; FGFR, fibroblast growth factor receptor; IGFR, insulin‑like 
growth factor receptor; LRP, LDL receptor-related protein; Frz, Frizzled; TβR, transforming growth factor β receptor; miRNA, microRNA; GSK3β, glycogen 
synthase kinase 3β; HSP, heat shock protein; MEK, mitogen-activated protein kinase kinase 1; PIP2, phosphatidylinositol 4,5-bisphosphate; PTEN, phospha-
tase and tensin homolog; Dvl, Dishevelled; CDKs, cyclin-dependent kinase; HR, homologous recombination; PARP, poly(ADP-ribose) polymerase.
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checkpoint system is a promising treatment for achieving 
effective antitumor immunity. PD-1 is a well-established 
immune checkpoint protein and cell-surface receptor that 
disrupts the T-cell response by triggering inhibitory path-
ways (132). Notably, PD-1 is expressed in 20% of TNBC 
tumors (133). PD-L1 is the ligand of PD-1, and is expressed 
in 58.6% of TNBC tumors (66,134). PD-L2 is expressed on 
the surface of dendritic cells, macrophages, mast cells and B 
cells (135). Antibodies to inhibit PD-1 signaling are currently 
being assessed for clinical use. For example, pembrolizumab, 
a monoclonal antibody against PD-1, has demonstrated an 
overall response rate of 18.5% in a phase Ib study (n=32) of 
patients with PD-L1-positive TNBCs (66). Furthermore, a 
preliminary phase I trial study suggested that the monoclonal 
anti-PD-L1 antibody MPDL3280A prolonged progression-free 
survival time and produced durable therapeutic effects in 
certain patients with TNBC (136).

In addition, there is an association between the immune 
response and the Ras/MAPK pathway in TNBC. A study 
has indicated that the Ras/MAPK pathway negatively regu-
lated antitumor immunity by affecting antigen presentation, 
including that of MHC-I, MHC-II and PD-1, and it was veri-
fied that a combination of MEK inhibition and PD‑1/PD‑L1 
antibodies increased the effect of treatment in murine synge-
neic tumor models (26). An additional study identified that an 
oncolytic viral therapy (NV1066) eliminated >70% of the cells 
from all the TNBC cell lines tested by day 7, and effectively 
reduced the tumor size compared with control treatment 
groups (57 vs. 438 mm; P=0.002) through downregulating the 
Ras/MAPK pathway (137).

7. Conclusion

TNBC is attracting increasing attention on account of 
its unique clinical pathology and molecular features. 
Chemotherapy remains the exclusive effective systemic treat-
ment for patients with TNBC. These patients exhibit varied 
therapeutic responses and prognoses. Thus, individualized 
treatment and prognostic analysis in patients with TNBC can 
be difficult, particularly when this depends on conventional 
clinical and pathological features, including the histological 
grade, primary tumor size, lymph node metastasis status and 
ER/PR/HER2 expression. With the emergence of targeted 
therapy, screening more reliable molecular markers is 
imperative, and comprehensively understanding the signaling 
pathways that regulate biological behaviors may facilitate the 
establishment of a precise molecular classification for TNBC 
and effective therapeutic regimens.

In the present review, TNBC-associated tumorigenic 
signaling pathways were summarized in five categories, 
specifically RTKs and downstream signaling pathways, epithe-
lial-to-mesenchymal transition and associated pathways, 
immunoregulatory tumor microenvironment, DNA damage 
repair pathways, and AR and coordinating pathways. These 
pathways are illustrated in Fig. 1 to demonstrate the interac-
tions across the entire network, and the relevant drugs against 
specific pathways are summarized in Table I. Enhancing the 
understanding of the molecular heterogeneity of TNBCs can 
lay the foundation for the individualized treatment of patients 
with TNBC.

It is worth noting that a study concerning the efficacy 
of a number of biological agents, including bevacizumab, 
sunitinib, sorafenib, lapatinib, iniparib and cetuximab, in 
metastatic TNBCs indicated that a significant PFS improve-
ment was obtained following treatment with bevacizumab 
or cetuximab, indicating the importance of targeted therapy. 
Regrettably, the impact of the other agents in the study on 
patient survival was not significant (138), possibly due to 
concurrent abnormalities occurring in a number of the 
patients. If that is correct, the concurrent inhibition of 
tumorigenic pathways may inhibit the cancer process (45). 
Therefore, the understanding of the signaling crosstalk and 
feedback among the TNBC-associated tumorigenic signaling 
pathways needs to be improved to allow effective treatments 
with tolerable side effects to be developed.
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