
Protein−Protein Binding Free Energy Predictions with the MM/PBSA
Approach Complemented with the Gaussian-Based Method for
Entropy Estimation
Shailesh Kumar Panday and Emil Alexov*

Cite This: ACS Omega 2022, 7, 11057−11067 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Here, we present a Gaussian-based method for
estimation of protein−protein binding entropy to augment the
molecular mechanics Poisson−Boltzmann surface area (MM/PBSA)
method for computational prediction of binding free energy (ΔG).
The method is termed f5-MM/PBSA/E, where “E” stands for entropy
and f5 for five adjustable parameters. The enthalpy components of ΔG
(molecular mechanics, polar and non-polar solvation energies) are
computed from a single implicit solvent generalized Born (GB) energy
minimized structure of a protein−protein complex, while the binding
entropy is computed using independently GB energy minimized
unbound and bound structures. It should be emphasized that the f5-
MM/PBSA/E method does not use snapshots, just energy minimized
structures, and is thus very fast and computationally efficient. The
method is trained and benchmarked in 5-fold validation test over a
data set consisting of 46 protein−protein binding cases with experimentally determined dissociation constant Kd values. This data set
has been used for benchmarking in recently published protein−protein binding studies that apply conventional MM/PBSA and
MM/PBSA with an enhanced sampling method. The f5-MM/PBSA/E tested on the same data set achieves similar or better
performance than these computationally demanding approaches, making it an excellent choice for high throughput protein−protein
binding affinity prediction studies.

1. INTRODUCTION

Protein−protein interactions (PPIs) are involved in diverse
kinds of cellular processes, and any deviation from the wild-
type PPIs may be deleterious. Thus, aberrant PPIs have been
associated with various diseases, including cancer, neuro-
degenerative, and infectious diseases.1−3 Understanding the
nature of PPIs and responsible features lays a foundation for
studying their association with diseases and reveals the
molecular mechanism causing it.4−7 Revealing these assists
development of pharmaceutical interventions to modulate
disease-associated dysfunctional PPIs and restores the wild-
type function.1,8−15 However, only a tiny fraction of existing
PPIs has been experimentally explored mainly because of
sophisticated experimental setup, high cost, and labor-intensive
requirements.16−18 Cost-effective and less resource-demanding
computational methods provide an alternative by predicting
binding affinity (or binding free energy ΔG).19−23
Despite the efforts and advancement in the computational

methodologies, prediction of absolute protein−protein ΔG is a
very challenging venture; protein−protein ΔG predictions
show low correlation with experimentally determined ΔG.21−29
The poor correlation between predicted and experimental ΔG
stems from two factors: quality of experimental data30 and

accuracy of computational methods.31 One can frequently
observe that experimental ΔG values reported for the same PPI
by different researchers do not agree.32−35 Typically, this is due
to different experimental conditions or experimental techni-
ques32−36 which are not clearly reported in the corresponding
publication. On the other hand, computational methods suffer
from structural imperfections, insufficient sampling, an inability
to incorporate adequate experimental conditions,31,37 imper-
fections/shortcomings in the energy functions,38 and approx-
imations and idealizations made in the statistical mechanics
treatment.39

The protein−protein ΔG prediction methods can be broadly
grouped into two categories depending on the information
used for making the predictions: (i) sequence-based
methods21,25 and (ii) structure-based methods.22,23,27 The
sequence-based methods for predicting PPI affinity utilize the
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sequence information of the binding proteins by extracting
sequence features/patterns, evolutionary information, phys-
icochemical properties of amino acids, and so on, for the
proteins in the benchmarking data set. A subset of the
benchmarking data set called the training set is used to learn
the relationships between various features and ΔG. This
learning phase of model generation is called training. In the
next phase, the learned associations of features with ΔG are
used for benchmarking the predictions for the test set examples
in the data set.21,25 The second class of methods utilizes the
protein structure information for developing a model for ΔG
predictions, which can further be divided into two classes:
empirical methods22,27 and physics-based methods which vary
in physical plausibility, computational cost, and accuracy.23,26

Among the physics-based methods, the thermodynamic
integration (TI) and free energy perturbation (FEP) are
expected to have high accuracy but are computationally
costly40 and have thus been mostly used for receptor−ligand
binding free energy calculations.41 Alternatively, methods like
molecular mechanics Poisson−Boltzmann surface areas (MM/
PBSA),42 molecular mechanics generalized Born surface areas
(MM/GBSA),43 and linear interaction energy (LIE)44 are
computationally less demanding but are expected to be less
accurate.45 This inaccuracy stems from the traditional protocol
that (a) does not account for entropy and (b) neglects the
effect of explicit waters. With regard to entropy, the failures of
the MM/PBSA or MM/GBSA methods are considered to be
due to approximations made in the statistical mechanical
treatment,46,47 approximations and limitations of the entropy
methods,48 inability to do statistically converged sampling of
all of the relevant conformations of the systems, and so on.45,49

Correction of the effects of explicit waters can be partially done
via appropriate modeling of the dielectric function,50−53

although this will not correct for specific water molecules’
interactions with the macromolecules. To partially address
these issues of the traditional MM/PBSA protocol, here we
report a single frame f5-MM/PBSA method complemented
with an estimator of entropy. It is important to note that the
method does not use snapshots taken from MD simulations;
rather, it uses only the energy minimized structures of the
complex and monomers.
The goal of this work is to develop a fast and accurate

protocol for computing the absolute ΔG via calculating the
average enthalpy and entropy associated with the binding. The
Boltzmann averaged enthalpy in the traditional MM/PBSA
method is calculated as the average of enthalpy over the frames
(snapshots) taken from the corresponding MD simulations.
This requires long MD simulations and sequential intensive
energy modeling. However, we have shown in several works
that energy minimized structures provide solvation energy
which is very similar to the solvation energy obtained over an
ensemble of MD snapshots.51,54,55 This is true for both
traditional two-dielectric PB and Gaussian-based PB.50−52 We
will use this observation in the current protocol and will model
the enthalpy using a single frame, the energy minimized X-ray
structure.
The second component of the method is the evaluation of

entropy change caused by the binding. This is important, since
proteins are not static molecules and, frequently, they
experience significant conformational changes upon the
binding. Thus, neglecting entropy in the protocol that predicts
ΔG could have a large effect on the accuracy of the method.26

However, the evaluation of the change of entropy due to

binding (or any other process) is not a trivial task. Most often,
the entropy estimation requires extensive phase space
sampling, through molecular dynamics (MD) simulations for
the complex and the unbound monomers with simulation
times often up to several microseconds.56−58

The application of parametric configurational entropy
methods, e.g., normal mode analysis59 (NMA), quasi-harmonic
analysis60 (QHA), and multiscale cell correlation61 (MCC),
requires comparably lesser conformational sampling (usually
several 100 ns to microseconds MD simulations); however,
they fail to account for anharmonicity and multimodality of
atomic fluctuations. Furthermore, these methods are still very
computationally intensive to be applicable for large-scale
calculations. Recently, a method called interaction entropy62

has also been reported which computes entropy from the
fluctuations of interaction energies, bypassing the diagonaliza-
tion of the Hessian matrix (in NMA) or coordinate covariance
matrix (in QHA). However, it also requires the MD
simulations to find the distributions of interaction energies.
In addition to the above-mentioned methods which utilize the
forces and fluctuation of atomic positions, a molecular-
geometry-based method, the “solvent-accessible-surface-area-
based method”, for estimating conformational entropy was also
reported.63 However, this method also requires conformational
sampling via MD simulations. The list of entropy estimation
methods can be further extended, but practically all existing
methods require significant simulation time. Here, we present a
method that does not require extensive conformational
sampling and thus is very fast. The proposed method uses
the energy minimized structure of the protein−protein
complex and corresponding unbound monomers. It is based
on the Gaussian-based PB approach, where the density of
protein molecules is modeled as a function of the atomic
packing. Thus, in the core of the solute, the density is high and
the ability of side chains to sample different conformations is
highly restricted. In contrast, in low density regions, the
residues are capable of sampling different conformations, since
there is room for side chain reorientation. Thus, in this work,
the entropy change upon complex formation is then estimated
via the change of accessible side chain rotamers evaluated with
Gaussian-based density calculations from unbound to bound
states.
The method, f5-MM/PBSA/E (where E stands for entropy

and f5 stands for five adjustable parameters), is benchmarked
against a set of experimental ΔG values frequently used to
assess the performance of ΔG predictors,23,26 and it is shown
that the inclusion of entropy greatly improves the accuracy of
predictions.

2. RESULTS AND DISCUSSION
To check the sensitivity of results with respect to enthalpic and
entropic contributions, we explored three energy formulas, as
described by eqs 1−3. This was done to see the sensitivity of
the results with respect to the different energy components,
emphasizing the entropy component. Furthermore, the
sensitivity of the results was tested for the solvation models,
and three generalized Born (GB) models were utilized. The
predictions done with each energy formula and GB model
were tested against the data set PPI-46 (see the Materials and
Methods section). Furthermore, the effects of other parame-
ters, the value of the internal dielectric constant and the
variance of the Gaussian distribution, were also tested by
systematically varying them and predicting ΔG compared with
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experimental ones. Here, we assess the performance via
comparing the performance of the three energy formulas via
multiple linear regression (MLR). In contrast to the standard
MM/PBSA model, these models are three-, four-, and five-
parameter fitted models as expressed in eqs 1−3. To reflect it,
we call these models f3-MM/PB (eq 1: model 1), f4-MM/
PBSA (eq 2: model 2), f5-MM/PBSA − TΔSGaussianEntropy, or
f5-MM/PBSA/E (eq 3: model 3).

G c c G c Gpredicted
1 2 MM 3 PBΔ = + Δ + Δ (1)

G c c G c G c Gpredicted
1 2 MM 3 PB 4 non polarΔ = + Δ + Δ + Δ ‐

(2)

G c c G c G c G

c T S

predicted
1 2 MM 3 PB 4 non polar

5 GE

Δ = + Δ + Δ + Δ

+ Δ

‐

(3)

Additionally, we used all three energy models over the PPI-46
data set for all three GB models for 5-fold repeated cross-
validation, where 80% of the cases are randomly selected as a
training set and the remaining are held for testing the model
performance. The process is repeated 25 times, and the
analysis results are discussed.
2.1. Benchmarks for the PPI-46 Data Set. We have

evaluated the three energy models, f3-MM/PB, f4-MM/PBSA,
and f5-MM/PBSA/E, over the PPI-46 benchmarking data set.
The GBneck2 minimized structures performed best (for
modeling enthalpy components) in terms of the Pearson
correlation coefficient (PCC) and root mean squared error
(RMSE) for all three models shown in Figure 1. Therefore,

here we will discuss results only for the GBneck2 energy
minimized structures set in the data set in detail for modeling
enthalpy. At the same time, the effect of all three GB models
will be presented in the case of entropy.
We observe that model 1, which considers only ΔGMM and

ΔGPB energy terms shows the lowest PCC = 0.429 and largest
RMSE = 3.044 kcal/mol for solute dielectric constant ϵin = 1.
Here slight improvement in the performance is observed when
ϵin is varied from 1 to 10, as PCC goes to 0.436 from 0.429 and
RMSE comes down to 3.034 kcal/mol from 3.044 kcal/mol.
However, when the non-polar solvation energy term ΔGnon‑polar
is also included in it, i.e., model 2, not only does the
performance of the model improve (increases the PCC to 0.51
and decreases the RMSE to 2.934 kcal/mol), but the effect of
variation of solute dielectric constant is also absorbed. After

that, we investigated the performance of model 3 which
includes Gaussian-based binding entropy along with ΔGMM,
ΔGPB, and ΔGnon‑polar. We found that after the inclusion of
entropy the prediction accuracy improves significantly, as PCC
increases to 0.658 kcal/mol and RMSE decreases to 2.60 kcal/
mol (Table 1). The constant coefficients in the models are

summarized in Table 2. This implies that Gaussian-based
entropy captures important information about the protein−
protein binding which is missing in the conventional MM/
PBSA. In this data set, we did not find any influence of
variation of salt concentration on the performance of models
evaluated in terms of PCC and RMSE (we varied the salt
concentration from 0 to 0.3 M in increments of 0.02 M).
We compare our results with other studies using the MM/

PBSA protocol for the same data set64 to assess the
performance of our method. Fu Chen et al. reported a MM/
PB(GB)SA study over the same data set (PPI-46) using ff99,
ff02, ff03, and ff14SB force fields, various ϵin values of 1, 2, 4,
and 6, and implicit water and explicit water minimization and
MD simulations and assessing the performance using a linear
regression where the total binding energy predicted from their
method is regressed against the experimental binding energy.
This study found that MM/PBSA gives the best PCC value of
0.523, when the force field is ff03 and minimization is done in
implicit water.64 We achieved a higher value of PCC = 0.658
over the same data set from single energy minimized structures
using MM/PBSA combined with the Gaussian-based binding
entropy (see Figure 2). However, here we used a different
variation of standard MM/PBSA, which we denote as f5-MM/
PBSA/E. All benchmarking results are summarized in Table 1.
It should be noted that Gaussian entropy does not depend

on solute dielectric and salt concentration, as it depends only
on the local mean Gaussian densities. However, it depends on
the Gaussian variance σ of the Gaussian dielectric model which
is implemented in the Poisson−Boltzmann equation (PBE)
solver DelPhi,65 the cutoff radius used to define the local
region around the atoms, and the decay rate parameter r in
exponential interpolation which controls the curvature of the
interpolation curve (Figure 7a). The σ and cutoff radius
parameters affect the mean Gaussian density computation,
while r influences the number of effective conformations
during the interpolation step of the method. Therefore, we also
investigated the influence of parameters related to the
Gaussian-density-based method of binding entropy estimation.
The three related parametersσ, the cutoff radius for defining

Figure 1. Summary of the performance of the three energy models
(model 1, f3-MM/PB, i.e., eq 1; model 2, f4-MM/PBSA, i.e., eq 2;
model 3, f5-MM/PBSA−TΔSGE, i.e., eq 3) with varying internal
dielectric constant for the GBneck2 energy minimized set of
structures of the PPI-46 benchmarking data set. (a) PCC vs internal
dielectric constant value; (b) RMSE vs internal dielectric constant
value.

Table 1. Performance of Tested Energy Models and GB
Model Combinations over the PPI-46 Data Seta

model 1b model 2c model 3d

GB modele PCCf RMSEg PCC RMSE PCC RMSE

OBC-II 0.423 3.054 0.498 2.957 0.593 2.779
GBneck 0.425 3.051 0.503 2.948 0.631 2.678
GBneck2 0.429 3.044 0.510 2.934 0.658 2.600

aResults of benchmarking the performance of three energy models
(eqs 1−3) and the GB model used in energy minimizations are
summarized for the PPI-46 data set with ϵin = 1; all of the RMSEs are
reported in kcal/mol. bf3-MM/PB model (eq 1). cf4-MM/PBSA
model (eq 2). df5-MM/PBSA/E model (eq 3) with parameters σ =
1.20, r = 0.8, and cutoff radius 4.0 Å. eGeneralized Born model used in
energy minimization of the structures. fPearson correlation coefficient.
gRoot mean squared error.
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the local region around the atoms, and the decay rate
parameter rare varied. The results of the variation of these
parameters on the performance of model 3 are presented in
Figure 3.
In the PPI-46 data set, the performance of model 3 improves

with increasing values of the Gaussian variance parameter,
which was varied from 1.0 to 1.30 in increments of 0.05. We
obtained best results when σ = 1.20 (Figure 3a,b). Similarly, on
varying the cutoff radius from 3.0 to 8.0 Å in steps of 0.5 Å, we

observe improvement in the performance of model 3 which
increases initially and after 3.5−4.0 Å starts decreasing with
increasing cutoff radius (Figure 3c,d). The decay rate
parameter for the exponential interpolation curve r used to
infer the number of effective conformations as a function of the
mean Gaussian density of the relevant atoms of a given side
chain torsion χi of some residue j which is an amino acid AA is
also systematically varied and the performance is tested. We
obtained the best correlation at r = 0.8, when we varied it from

Table 2. Parameter Constant Coefficients in Models 1−3a

constant coefficient parameter

GBb EMc c1 c2 c3 c4 c5

OBC-II model 1d −9.515405 0.000148 −0.001327
model 2e −7.151102 0.000159 −0.000811 0.283298
model 3f −12.505926 0.000182 −0.001518 0.971501 0.738526

GBneck model 1 −9.525939 0.000155 −0.001369
model 2 −7.129749 0.00016 −0.000882 0.288981
model 3 −11.449473 0.000184 −0.001839 0.897985 0.680234

GBneck2 model 1 −9.511868 0.000153 −0.0013835
model 2 −7.038626 0.000161 −0.000852 0.296255
model 3 −12.070194 0.000147 −0.001632 1.049871 0.777386

aConstant coefficient parameters of three energy models (eqs 1−3) and the GB model used in energy minimizations are summarized for the PPI-
46 data set with ϵin = 1. bGB model. cEnergy model. dMM/PB model (eq 1). eMM/PBSA model (eq 2). fMM/PBSA/E model (eq 3) with
parameters σ = 1.20, r = 0.8, and cutoff radius 4.0 Å.

Figure 2. Summary of the performance of the three energy models at ϵin = 1 for the GBneck2 energy minimized set of structures of the PPI-46
benchmarking data set. Scatter plots are shown of predicted vs experimental for (left panel) model 1, (middle panel) model 2, and (right panel)
model 3.

Figure 3. Influence of variation of the parameters Gaussian variance σ (a and b), cutoff radius for atom surrounding (c and d), and decay rate r (e
and f) for Gaussian binding entropy on the PCC (a, c, and e) and RMSE (b, d, and f) of model 3 for the PPI-46 data set.
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0.5 to 1.2 in increments of 0.1 (Figure 3e,f). In summary, we
reached the optimal parameters for Gaussian-density-based
binding entropy for the PPI-46 data set which are σ = 1.20,
cutoff radius = 4.0 Å, and decay rate of interpolation curve r =
0.8. The best GB model for the PPI-46 data set is GBneck2;
however, the effect on performance is small and PCC and
RMSE are comparable among the GB models.
2.2. 5-Fold Cross-Validation of Models. After discussing

the performance of the protocol on the whole PPI-46 data sets,
we would like to discuss the validation of the protocol. The
whole data set must be split into disjoint training and testing
data sets for performance assessment. Considering the small
size of the PPI-46 data set, we start by splitting the PPI-46 data
set into the training set (80% randomly selected) and the
remaining as the testing set. The process is repeated 25 times
to give 25 different training and associated testing sets. The
cases in the training set are used to find the parameter values
for the f3-MM/PB, f4-MM/PBSA, and f5-MM/PBSA/E
models for all three sets of GB energy minimized structures
(using OBC-II, GBneck, and GBneck2), and these parameter
values are used for making predictions for testing set cases. The
PCC and RMSE values over the training and testing sets are
recorded for each repetition, and average and standard
deviations of values are tabulated (Table 3) and discussed
hereafter.
As shown in Table 3, the f3-MM/PB (model 1) shows the

mean PCC between 0.440 and 0.447 for all three GB
minimized structure sets for the training sets, RMSE is
between 3.065 and 3.053 kcal/mol, and there are similar
average values of PCC and RMSE also for the testing sets
(Table 3). The four-parameter model f4-MM/PBSA (model
2) shows better performance in terms of PCC (higher) and
RMSE (smaller). After inclusion of entropy as in the f5-MM/
PBSA/E (model 3), we consistently observe a significant
increase in PCC and decrease in RMSE for all three sets of GB
minimized structures across the training and testing sets
(Table 3). The improvement for both the training and testing
set performance implies that Gaussian entropy provides
important information about the binding which is missing in
f4-MM/PBSA, and thus, the improvement is not merely due to
the increased number of parameters used in the model.
2.3. Computation Time. To analyze the computational

requirements of the Gaussian-based method of entropy
reported here, we recorded the execution time for all of the

protein−protein cases in the PPI-46 data set. The
computations are performed on compute nodes of the
Palmetto Cluster of Clemson University. The nodes used for
computation have Intel Xeon E5520 processors which have 8
MB cache and 2.26 GHz frequency. All of the jobs are run on a
single core of a node, and the maximum memory reserved for a
job was 24 GB. The computations were run three times for
each case, and the average times taken in minutes vs the
number of residues in the protein−protein complex are shown
in Figure 4. Each of these involves running three DelPhi runs
and associated Gaussian-based entropy computation for the
complex, and the corresponding two unbound proteins.

As shown in Figure 4, the data set contains a very wide range
of sizes of protein−protein complexes varying from 116 to
1107 residues. For all of the cases, the total computation time
taken in minutes is linearly related to the size of the complex.
These computations do not require parallel processing and are
very computation time and memory efficient. Thus, these can
be performed even on standard desktops, in contrast to other
entropy methods which require significantly higher computa-
tion resources and time.

3. MATERIALS AND METHODS
3.1. Overview of the Method. The proposed method

combines MM/PBSA with an estimator of entropy. It does not

Table 3. Summary of Cross-Validation Results of the Combinations of Three Energy Models and the GB Model Used for
Energy Minimizationa

training testing

GBb EMc PCC RMSE PCC RMSE

OBC-II model 1d 0.440 ± 0.045 3.065 ± 0.104 0.496 ± 0.241 3.245 ± 0.672
model 2e 0.513 ± 0.044 2.968 ± 0.094 0.519 ± 0.178 3.295 ± 0.832
model 3f 0.596 ± 0.040 2.818 ± 0.098 0.651 ± 0.151 2.958 ± 0.894

GBneck model 1 0.442 ± 0.045 3.061 ± 0.106 0.495 ± 0.242 3.246 ± 0.678
model 2 0.520 ± 0.044 2.955 ± 0.098 0.522 ± 0.182 3.313 ± 0.867
model 3 0.653 ± 0.042 2.657 ± 0.151 0.609 ± 0.205 3.175 ± 1.130

GBneck2 model 1 0.447 ± 0.045 3.053 ± 0.106 0.503 ± 0.241 3.255 ± 0.694
model 2 0.527 ± 0.044 2.941 ± 0.010 0.529 ± 0.180 3.306 ± 0.884
model 3 0.675 ± 0.040 2.586 ± 0.135 0.653 ± 0.151 3.091 ± 1.103

aSummary of PCC and RMSE over training (randomly selected 80%) and testing (remaining 20%) of the PPI-46 data set for the three energy
models (eqs 1−3) and the GB model used in energy minimizations with ϵin = 1, repeated 25 times; mean and standard deviation are provided. bGB
model. cEnergy model. dMM/PB model (eq 1). eMM/PBSA model (eq 2). fMM/PBSA/E model (eq 3) with parameters σ = 1.20, r = 0.8, and
cutoff radius 4.0 Å.

Figure 4. Number of residues in the protein−protein complex vs total
computation time for running DelPhi and computing entropy from
the Gaussian-density map data.
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use multiple structures obtained via MD simulations, but
rather, it deals with a single structure (Figure 5). Thus, the
enthalpy components, the MM/PBSA energies, were com-
puted using the energy minimized 3D structure of the
protein−protein complex and utilizing a rigid-body approach;
i.e., the structures of unbound monomers were taken from the
energy minimized 3D structure of the complex. Thus, the
bonded energy cancels out and is not calculated (Figure 5a). In
parallel, we tested a protocol that does independent energy
minimization of separated monomers. However, the results
were found to be less accurate (data not shown) than the rigid-
body approach, and thus, in the rest of the paper, we present
only the results obtained with enthalpy components modeled
with the rigid-body protocol. In the case of entropy estimation,
it was found that the rigid-body protocol does not perform
well, and thus, the structures of the monomers were energy
minimized independently from the energy minimization of the
complex and used for entropy change calculations (Figure 5b).
Further discussion is provided in the conclusions section of the
manuscript.
3.2. Benckmarking Data Set. In the present work, we will

be using a binding affinity benchmarking data set of 46
protein−protein experimental ΔG values published by Kastritis
et al.28,66 This data set lists the PDB ID of the structure, chains
of protein 1 and protein 2, equilibrium dissociation constant
Kd, experimental temperature, and pH for most of the cases.
The PDB IDs, chains of proteins, and pKd values are provided
in the Supporting Information (Table S1). This data set has
been used for benchmarking MM/PBSA and MM/GBSA
methods in combination with several force fields.64 We will
refer to this data set as PPI-46 from now on. This data set

covers a broad range (10 orders of magnitude) of experimental
binding affinities.

3.3. Structure Preparation and Minimization. The
structures of the protein−protein complexes in the PPI-46 data
set were downloaded from the RCSB Protein Data Bank,67,68

and chains mentioned in the data set were extracted. All of the
water and hetero atoms were deleted from the structures. All
titratable residues were protonated according to the neutral pH
state, and all of the histidine residues were kept neutral by
placing a proton at the epsilon position. The charges and
parameters were kept consistent with the AMBER ff14SB69

force field. For structure minimizations, we have used three
OBC-II,70 GB-neck,71 and GB-neck272 implicit solvent
generalized Born (GB) models implemented in AMBER.73

The parameter+topology (.prmtop) and starting coordinate
(.inpcrd) files were created using the LEaP program in
AmberTools18.73 The starting structures were energy mini-
mized using each of the three GB models to yield three sets of
structures for protein−protein complexes. The energy
minimization is performed in two stages first while restraining
all of the heavy atoms using a 10 kcal·mol−1·Å−2 harmonic
potential for 8000 steps of steepest descent (SD) and 2000
steps of conjugate gradient (CG) followed by 8000 steps of SD
and 2000 CG without restraint. We have used the rigid-body
protocol for the computation of enthalpy components of the
MM/PBSA approach, and the unbound protein structures
were extracted from the energy minimized complex structures.
However, the entropy component of the binding energy which
has great sensitivity to conformational changes upon complex
formation24,74,75 was estimated from separately minimized
unbound proteins and complexes. The unbound protein

Figure 5. Schematic representation of protocols used for computing enthalpy and entropy components of protein−protein binding free energy. (a)
The enthalpy energy components are computed over the energy minimized complex structure, and monomers are extracted from it. (b) The
entropy estimation is done in a protocol that the complex and two monomers are energy minimized independently.
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structures were extracted from each complex in the data set
prior to energy minimization of the complex. These structures
were also prepared and energy minimized using the same
protocol to yield three sets corresponding to the above-
mentioned three GB models.
3.4. Binding Free Energy Computation (Enthalpy

Component).

G G G G T Sbind MM polar non polarΔ = Δ + Δ + Δ − Δ‐ (4)

G G GMM bonded non bondedΔ = Δ + Δ ‐ (5)

G G Gnon bonded electrostatic vdWΔ = Δ + Δ‐ (6)

Here, the molecular mechanics (MM) part of the binding
energy (ΔGMM) is computed using the rigid-body protocol so
ΔGbonded = 0. The unbound protein structures are extracted
from the energy minimized structure of the complex by
removing the partner protein. The nonbonded terms of the
binding energy (ΔGnonbonded) and polar solvation energy
(ΔGpolar) are computed using the popular numerical
Poisson−Boltzmann equation solver DelPhi65,76 employing
the traditional two-dielectric model using charge and radii
from the AMBER ff14SB69 force field, a grid spacing of 0.5 Å,
the longest solute dimension filling of 70% of the grid box, and
a solvent dielectric constant of 80; hence, it will be referred to
as ΔGPB hereafter. The traditional two-dielectric model was
applied instead of the Gaussian-based model50,52,77 because the
Gaussian-based atomic density model is used to estimate the
entropy as outlined below. The solute dielectric constant and
the salt concentration are varied to study the influence of these
parameters on the prediction accuracy of the method. The
non-polar solvation energy (ΔGnon‑polar) is estimated from the
change of the solvent accessible surface area (SASA) (eq 7).

G bSASAnon polar γΔ = Δ +‐ (7)

The change in SASA (ΔSASA) is computed as the difference
of the SASA of unbound proteins from complex in Å2; the
surface tension γ = 0.00542 kcal·mol−1·Å−2 and the correction
term b = 0.92 kcal/mol are used. The SASA with a solvent
probe radius of 1.4 Å is computed using Visual Molecular
Dynamics.78

3.5. Estimation of Entropy Change upon Binding. The
basic idea is to estimate the change of the side chain entropy
change upon the binding by evaluating the accessible rotamers
of the corresponding amino acids in monomeric versus bound
states. To avoid the complexity associated with continuum
conformation space, each amino acid side chain is considered
to have a finite number of rotamers taken from Dunbrack
library of rotamers.79 When an amino acid is free in the water
phase, it is considered that its side chain can sample all
rotamers provided in the Dunbrack library79 (see the left panel
in Figure 6). When it is part of the bound structure (protein−
protein complex) or unbound structure (protein structure
obtained after removing the binding partner structure from the
complex), not all rotamers are accessible because of the
presence of atoms of neighboring residues (right panel in
Figure 6b). Thus, the change of accessible rotamers from
unbound to bound states for each amino acid of the proteins
forming a complex is used to estimate the entropy change
upon the binding. Below, we outline the details about (i)
modeling atomic density (which will be used to decide if a
rotamer is accessible or not), (ii) building a reference library of

atomic densities for free amino acids, and (iii) estimation of
accessible rotamers.
(i) Modeling Atomic Density: Here we build upon our

previously proposed Gaussian-density-based model of
atoms.50,52 In the Gaussian-based model of an atom, an
atom is represented as a probability density ρi(r)⃗ at any
arbitrary point r ⃗ in space due to the ith atom, the ρi(r)⃗ is
maximum, i.e., 1 at its center, and it decreases according to a
Gaussian distribution as we move away from it (eq 8 and
Figure S1). In a multiatomic molecule, the Gaussian density at
any point in space r ⃗ is resultant of atomic densities due to all of
the atoms (eq 9)
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r r
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where Ri is the van der Waals radius of the ith atom and σ is
the variance of the Gaussian distribution.

r r( ) 1 (1 ( ))
i

imol ∏ρ ρ⃗ = − − ⃗
(9)

The Gaussian density varies from 0 to 1 in space and expresses
the extent of atomic packing; a value of 0 corresponds to a
point where there are no atoms of the molecule and 1
corresponds to centers of atoms of the molecule, with any
other value in the range corresponding to a higher density of
atoms for a higher Gaussian density.
(ii) Building a Reference Gaussian Density Library: The ability

to occupy different conformational states for each side chain
torsion angle of each amino acid (AA) is hindered due to
spatial packing around the corresponding atoms. Thus, the first
step is to identify atoms that participate in the side chain
torsion angles of each of 20 standard amino acids (Table S2 in
the Supporting Information). Then, the average Gaussian
density is computed using the 3D structure of the isolated
amino acid and applying the Gaussian subroutine implemented
in the PBE solver DelPhi.65 The mean Gaussian density is
computed as the average of Gaussian densities on all of the
grid points in a cutoff radius (say 5 Å) from the center of all
relevant atoms (as described above) to χi of a given AA and
averaged to obtain the mean Gaussian density (ρ̅χi,AA). The

ρ̅χi,AA computed from the isolated amino acid structure is called

the minimum mean Gaussian density minρ̅χi,AA. The maximum
number of conformations to a given χi of amino acid AA, i.e.,
nConfχi,AA, is obtained from the Dunbrack rotamer library.79

The pair of minρ̅χi,AA and nConfχi,AA for each χi of each amino
acid AA is saved in the library for later use for obtaining the
effective number of conformations via interpolation.

Figure 6. A schematic representation of the idea of Gaussian-based
entropy. An ILE residue of a protein is shown in black and white ball
and stick. Neighboring atoms in radius 4 Å are shown with
semitransparent cyan spheres. Left panel: all possible side chain
conformations of ILE in unbound protein. Right panel: only one
rotamer of the same ILE is accessible due to the presence of
neighboring atoms of the binding partner.
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(iii) Computation of Ef fective Number of Conformations: The
corresponding protein structure (the bound and unbound
structures/structure of protein obtained after removing the
binding partner structure from the complex; see Figure 5b) is
energy minimized using the protocol described above. The
mean Gaussian density ρ̅j,χi,AA for each χi of each residue j is
computed. Then, an effective number of conformations is
obtained by the exponential interpolation scheme (Figure 7b)

having two boundary points: (a) the maximum number of
conformations (maxnConfχi,AA) that are available in isolated
residue AA for side chain torsion χi and the yield associated
mean Gaussian density termed “minimum mean Gaussian
density” and (b) the minimum number of conformations
(minnConfχi,AA), i.e., 1 when the mean Gaussian density is the

maximum possible value of 1. The increase in ρ̅j,χi,AA in protein

w.r.t. minρ̅χi,AA due to more compact “dense” surrounding
relevant atoms causes a decrease in the effective number of
conformations as expressed in eq 10

a k dnConf log( )j
r

, ,AAi
= − ·χ (10)

where d = (ρ̅j,χ i,AA − minρχ i,AA)/(1 − minρχ i,AA), k =

log(maxnConfχi,AA/
minnConfχi,AA), a = 1/exp(−k), and r is the

decay rate parameter of the interpolation curve (Figure 7a).
The effective number of conformations of every side chain

torsion χi of the residue j which is amino acid AA are
multiplied to obtain the effective number of conformations of
the residue in the protein (eq 11).

nConf nConfj
i

j,AA , ,AAi
∏= χ

(11)

Finally, we take the logarithm of the effective number of
conformations nConfj,AA of the residue j to get its entropy Sj in
the protein (eq 11). The sum of the entropy of all of the
residues in the protein yields the entropy of the protein (eq
13).

S log(nConf )j j ,AA= (12)

S S
j

j
protein

protein

∑=
∈ (13)

S S S S( )bind complex protein1 protein2Δ = − + (14)

Thus, the entropies of the protein−protein complex Scomplex

and unbound proteins Sprotein1 and Sprotein2 are computed and
then the binding entropy (ΔSbind) is obtained via subtracting
the sum of entropy of unbound proteins from that of the
complex (eq 14).

4. CONCLUSIONS
In this work, we presented a Gaussian-density-based method
for estimation of the entropy change caused by protein−
protein binding. This method hypothesizes that isolated amino
acid side chains are free to rotate and occupy all of the
accessible conformations equiprobably; however, this ability is
restricted to a certain extent due to increased atomic packing
(estimated via Gaussian density) when the amino acid is a part
of a protein or a protein−protein complex. Thus, the change of
accessible conformers from unbound to bound states is used to
estimate the entropy change induced by the binding.
Combining the entropy change with MM/PBSA enthalpic
components resulted in the f5-MM/PBSA/E method which
was tested on a popular data set PPI-46. It is important to
mention that the MM/PBSA/E method uses energy
minimized structures of the complex and unbound monomers
only, not snapshots obtained via MD simulations, and thus, it
is fast and less computationally demanding than traditional
MM/PBSA methods. Despite that, the f5-MM/PBSA/E
method achieves a similar or better performance than other
methods, as benchmarked against experimentally determined
ΔG values from the PPI-46 data set.
The protocol, the f5-MM/PBSA/E, considers both enthalpic

and entropic contributions to the free energy of binding.
However, the optimal conditions for modeling enthalpic and
entropic components were found to be different: the best
performance was obtained with the rigid-body protocol for
enthalpic component calculations, while the optimal perform-
ance for the entropic component was achieved when bound
and unbound structures were independently energy minimized.
The main reason why the rigid-body approach worked better
for enthalpic components modeling was the cancellation of
bonded interactions. Our attempt to use independently
minimized bound and unbound structures for enthalpic
calculations resulted in large “bonded interaction” energies
which dominated all other components. In contrast, the best
performance in estimating the entropy change caused by the
binding was found when one uses independently minimized
bound and unbound structures. This observation reflects the
nature of the Gaussian-based method for entropy estimation,
which is geometry-based. Thus, small structural changes
caused by independently minimizing bound and unbound
structures have a significant effect on the entropy change
calculations. This indicates that further improvement may be
expected if one extends the Gaussian-based entropy estimator
method to include backbone changes from unbound to bound
states.
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*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.1c07037.

Figure S1, the variation of Gaussian density around an
atom as a function of distance from the center and the
impact of the change of the Gaussian variance parameter
on the modeled atom density; Table S1, the table of

Figure 7. Illustration of the interpolation scheme. (a) The effect of
the value of the decay rate parameter, r, on the curvature of the
exponential decay curve. (b) Illustration of obtaining the number of
effective conformations for an example case where the maximum
conformations is 3 at a minimum mean Gaussian density of 0.5, with
the number of effective conformations (≈2) corresponding to a mean
Gaussian density of 0.7 shown.
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