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Abstract: In mammals, serotonin (5-HT) levels depend on the availability of tryptophan (TRP).
Low 5-HT concentrations have been linked to behavioural disorders in dogs. This study aimed at
investigating possible differences in dogs’ serum TRP and 5-HT concentrations according to their
behavioural response to a potentially stressful procedure. Thirty-nine physically healthy shelter
dogs, 15 females and 24 males, mean age = 5.6 years, were categorized by a certified veterinary
behaviourist according to their behavioural response to medical examination and blood collection,
in: relaxation, stress signals, tension without growling, tension with growling, escape attempts,
and aggression attempts. Extraction and quantification of 5-HT and TRP were performed using a
HLPC method. Data were statistically analysed, applying Chi-square and Spearman tests. Results
showed no significant difference in TRP (χ2 = 2.084, p = 0.555) nor 5-HT (χ2 = 0.972, p = 0.808)
serum concentrations among different categories of dogs; however, some categories were under-
represented (relaxation = 20.5%, stress signals = 30.8%, tension without growling = 43.6%, tension
with growling = 5.1%, escape attempts = 0%, aggression attempts = 0%). No correlation between
serum TRP and 5-HT concentrations was found ($ = 0.086, p = 0.602). Serum 5-HT levels do not
seem to be associated with dogs’ behavioural response to a stressful situation nor with serum TRP
concentrations. The relationship between serum TRP and 5-HT concentrations and behaviour needs
further research.
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1. Introduction

Serotonin (5-HT) is a monoamine neurotransmitter implicated in the regulation of a
variety of physiological processes, cognitive functions, emotional states and behaviours
in mammals [1–3]. For instance, low concentrations of 5-HT and its main metabolite,
5-hydroxyindoleacetic acid (5-HIAA), have been linked to aggressive and impulsive be-
haviour in rodents, humans and non-human primates [4–7]. On the contrary, in pigs and
humans, high blood levels of 5-HT and 5-HIAA, respectively, have been associated with
emotional aversive states, such as fear and anxiety [8,9].

Similar findings have been reported in dogs. In this species, low levels of serum
5-HT and CSF 5-HIAA have been linked to increased aggressive behaviour [10–13] and
impulsivity [14], whereas high 5-HT plasma concentrations have been linked to anxious
states [15].

Peripheral and central concentrations of 5-HT are strongly affected by the bioavail-
ability of tryptophan (TRP). TRP is an essential amino acid that can be found in most
protein-based foods and dietary proteins [16]. Alongside exerting a fundamental role in
the biosynthesis of proteins, TRP is the obligatory substrate for the production of 5-HT
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in the gut and in the brain [17]. In the latter, the synthesis of 5-HT consists of a two-step
process during which TRP is initially hydroxylated to 5-hydroxytryptophan by the enzyme
TRP-hydroxylase and subsequently decarboxylated to 5-HT by the enzyme aromatic amino
acid decarboxylase [18]. However, in order to pass the blood–brain barrier, TRP has to
compete with large neutral amino acids (LNAAs), such as leucine, isoleucine, valine, tyro-
sine and phenylalanine for the same carrier mechanism [19]. Therefore, diets that increase
the TRP/LNAAs ratio may have the power to increase TRP concentration in the brain
and consequently increase central 5-HT levels [20,21]. Ultimately, variation of 5-HT brain
concentration may affect an individual’s behaviour and emotional state.

In fact, there is some evidence that dietary TRP may reduce aggressive behaviour in
rats [22] and primates [23], reduce fear and increase exploration in silver foxes [24], decrease
self-injurious behaviour in primates [25], and positively affect the behavioural response
to stressful stimuli in pigs [26]. However, studies on the effects of TRP supplemented
diets on dog behaviour have led to inconsistent results. While some studies found TRP
supplemented diets to reduce dogs’ aggressive [27] and stress-related behaviours [28],
others found no behavioural effect on stereotypies [29] nor in anxious [30] or normally
behaving dogs [31].

Overall, while a correlation between central TRP and 5-HT concentrations has been
established [32], the mechanisms underlying the relationship between central and pe-
ripheral concentrations of these two molecules are still unclear, and so is the relationship
between TRP and 5-HT levels in circulating blood. Indeed, if a correlation between TRP
and 5-HT peripheral concentrations was to be confirmed, less invasive, less expensive,
and less time-consuming procedures could be implemented to measure the effects of this
amino acid on an individual’s hormonal status. Unfortunately, those few studies on dogs
that simultaneously assessed TRP and 5-HT concentrations have led to different results.
In a pilot study on phobic dogs fed with a carbohydrate dissociated diet—a diet in which
one of the daily meals is composed of only carbohydrates with the aim of stimulating
insulin secretion and consequently increasing the muscle uptake of LNAAs other than the
albumin–bound fraction of TRP—Gazzano et al. [33] found no correlation between TRP
and 5-HT serum concentrations over time. On the contrary, DeNapoli [27] found a positive
correlation between these two molecules in aggressive dogs’ blood.

Considering the conflicting findings on the relationship between TRP and 5-HT pe-
ripheral levels, as well as the evidence on the effects of 5-HT on dog behaviour, the aim of
this study was twofold: (1) to investigate the possible correlation between TRP and 5-HT
serum concentrations in dogs that, differently from similar previous studies, were on a nor-
mal feeding regimen; (2) to assess potential differences in dogs’ TRP and 5-HT peripheral
concentrations in relation to their behavioural response to a potentially stressful procedure,
which in this case was represented by a veterinary examination [34,35].

2. Materials and Methods
2.1. Subjects

Thirty-nine mix-breed dogs, 15 females (11 spayed) and 24 males (all intact), their age
ranging from 7 months to 14 years (mean age = 5.6 years), participated in the study.
Recruited subjects had been living in a shelter for a minimum of 1 month to a maximum of
9 years (median = 12 months). All dogs were recruited from two different facilities: 10 of
them were housed at the Pisa public shelter, while 29 were housed at the Lucca public
shelter. General management and routine procedures did not substantially differ between
facilities, since they were both run by the same non-profit organization. All dogs were
housed in either single or double kennels, with both indoor and outdoor spaces available
and were fed twice a day, at 8 a.m. and 4 p.m., with commercial dry food. None of the dogs
underwent a comprehensive behavioural evaluation prior to the experiment; however,
those dogs that displayed aggressive behaviour towards humans—that could jeopardize
the safety of the people involved in the study and/or that would require sedation in order
to be examined—as well as those presenting signs of physical disorders (i.e., neurological,
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orthopaedical, dermatological) or injuries that could affect their behavioural response to
manipulation, were excluded from the study. All dogs had undergone at least one prior
medical evaluation, since they would be examined at the time of their arrival and, in the
absence of diseases, before annual vaccination.

2.2. Experimental Setting and Procedure

The study was carried out over a 5-week period between November and December
2019. On the day of the procedure, the selected dog was taken out of the kennel by a shelter
volunteer and brought to the examination room within the facility, where a veterinarian
immediately performed a general medical exam to ensure the dog was in good health.
The same veterinarian performed all examinations in both facilities. The whole proce-
dure was part of the periodical medical check-up to assess the dogs for parasitic diseases
and general health status. It lasted approximately 10 min for every dog and consisted
of the following steps: putting a muzzle on the dog, placing the dog on the examination
table, evaluation of conjunctival mucosa, palpation of lymph nodes, evaluation of ear
canals, measurement of rectal temperature, auscultation of heart and lungs. After the
examination, a venous blood sample was collected. A certified behaviourist, which was
the same for all dogs, observed and scored their behavioural response to containment,
manipulation and blood collection, starting the observation when the muzzle was put
on until the moment it was taken off, right after the blood sampling. Dogs were scored
based only on the behaviours displayed during this time interval, since the actual exam-
ination has been reported to be the most frightening phase of the veterinary visit [36],
and therefore the most likely to provoke a response. Each dog could receive one of the
following scores: 1 = relaxation, 2 = stress signals (lip-licking, head-turning, crouched
posture, trembling), 3 = tension without growling, 4 = tension with growling, 5 = escape
attempts, and 6 = aggression attempts. In case dogs displayed behaviours belonging to
two different categories (i.e., stress signals and aggression attempts), the veterinary be-
haviourist classified them based on their highest score. The scoring system was based on
and modified from Mills et al. [37].

2.3. Blood Collection, Storage and Analysis

Blood was collected from the cephalic vein after 3–4 h from the dog’s morning meal
in order to determine the levels of 5-HT and total TRP. Blood samples (4 mL) were left to
coagulate at room temperature for 30/60 min, then centrifuged in ALC 4237R Refrigerated
Centrifuge (ALC International S.r.l., Milan, Italy) at 7000 rpm for 20 ◦C to 4 ◦C to obtain
the serum. The serum was divided into aliquots from 200 µL and frozen until the time of
analysis, which was performed 6 months after the sampling, at the latest.

The extraction and quantification of 5-HT and TRP in serum samples were per-
formed following an HPLC method, based on fluorimetric detection, with the same meth-
ods described in Gazzano et al. [33]. This method was based on Bearcroft et al. [38]
and Atkinson et al. [39] and slightly modified as follows: 200 µL HCLO4 4% v/v con-
taining 2 mM EDTA was added to 200 µL of serum or standard solution to precipi-
tated proteins; the extract was mixed and centrifuged at 13,000 rpm in micro centrifuge
(microCENTRIFUGETTE® 4214, ALC International S.r.l., Milan, Italy) for 3 min. Then,
50 µL of Supernatant was taken with MICROLITER™ Syringes #705 and 20 µL injected
into HPLC for analysis.

HPLC analyses were performed using an RP Gemini C18 column (250 mm × 4.6 mm,
5 µm) (Phenomenex, Torrance, CA, USA) and a Jasco HPLC apparatus (Jasco Corporation,
Ishikawa-Machi Hachioji-Shi, Tokyo, Japan) equipped with 2 gradient pumps (PU-1580),
a mixer unit (HG-2080-03) and a fluorescence detector (FP-920).

The mobile phase consisted of methanol (CH3OH) and ammonium acetate
(CH3COONH4) 100 mM (20:250 v/v), pH 4.5, degassed and filtered with 0.2 µm diameter
filters and eluted at a flow rate of 0.800 mL/min.
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The fluorescence detector was set at 290 nm excitation wavelength and 337 nm emis-
sion wavelength. Data were acquired using Jasco Borwin 1.5.0 software (Jasco Corporation,
Ishikawa-machi Hachioji-shi, Tokyo, Japan). The interface between chromatography in-
struments and a PC based data acquisition is the JMBS electronic interface box HERCULE
2000 VI.0.

Serotonin Creatinine sulfate monohydrate and L-tryptophan (TRP) were purchased
from Sigma-Aldrich Inc. (Saint Louis, MO, USA).

Stock solution (10 mM) of 5-HT and stock solution (100 mM) of TRP were prepared
in 10 mL HClO4 10%, divided in aliquots of 1 mL and stored at −20 ◦C. Diluted standard
solutions in HClO4 4% were prepared daily and employed to identify chromatographic
peaks and to calculate calibration curves.

2.4. Statistical Analysis

Data were statistically analysed by using SPSS® STATISTICS 17.0. Spearman Rho
test was performed to analyse the possible correlation between TRP and 5-HT serum
concentrations in the whole sample of dogs. Chi-square test was applied to analyse possible
differences in both TRP and 5-HT concentrations among groups of dogs with different
behavioural scores in response to the experimental procedure.

3. Results

Based on the behavioural classification, 9 dogs (23.1%) remained relaxed during the
procedure, 12 (30.8%) displayed stress signals, 16 (41.0%) appeared tense, but did not growl,
and 2 (5.1%) appeared tense and growled. None of the subjects attempted to escape or
manifested overt aggression towards the veterinarian performing the examination and the
blood collection.

Serotonin serum concentrations ranged from 29.928 to 430.186 ng/mL, with a me-
dian value equal to 183.3845 ng/mL. Tryptophan concentrations ranged from 58.335 to
157.304 µg/dL, with a median value of 106.836 µg/dL.

Statistical analysis revealed no correlation between TRP and 5-HT serum concen-
trations ($ = 0.086, p = 0.602). Figure 1 shows the different serum concentrations of
both TRP and 5-HT found in dogs with different scores. In no category of dogs can
a common trend between the analytes be observed. Furthermore, no significant differ-
ences in either TRP (χ2 = 2.084, p = 0.555) nor 5-HT (χ2 = 0.972, p = 0.808) serum con-
centrations were found between dogs that remained relaxed (TRP: median = 99.52800,
min–max = 70.385–115.660; 5-HT: median = 181.37201, min–max = 73.103–320.319), dogs
that displayed signs of stress (TRP: median = 115.56432, min–max = 65.483–139.347; 5-HT:
median = 156.12664, min–max = 29.928–392.737), dogs that appeared tense but did not
growl (TRP: median = 108.06257, min–max = 58.335–157.304; 5-HT: median = 185.62264,
min–max = 56.950–430.186), and those that were tense and did growl
(TRP: median = 97.22486, min–max = 62.545–131.905; 5-HT: median = 227.85393,
min–max = 14.994–314.714).
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may reflect in a reduction in total TRP (free + albumin-bound) [41]. Different values of 
their absolute concentrations and their relative percentages may have a different physio-
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Figure 1. Tryptophan (TRP) (striped boxes) and serotonin (5-HT) (dotted boxes) concentrations (TRP: µg/cL, 5-HT: ng/mL)
in dogs showing the following behavioural scores: relaxation (1), displaying stress signals (2), showing tension without
growling, (3) and showing tension with growling (4) during the medical examination.

4. Discussion

In the present study, no significant correlations were found between TRP and 5-HT
serum concentrations in our sample of shelter dogs. This result is in accordance with
findings from a previous pilot study by Gazzano et al. [33]. Considering that positive
correlation reported between TRP and 5-HT in the brain has been demonstrated [32],
a possible explanation for this lack of correlation at peripheral level may lie in the role that
the blood-brain barrier plays in regulating the passage of TRP from peripheral to central
circulation and that of 5-HT in the opposite direction.

As for TRP, approximately 70–90% of this amino acid in blood circulation is bound to
albumin [17,19]. In order to cross the hematoencephalic barrier, TRP must not be bound
to albumin [17,40]. Therefore, while circulating free TRP may directly bind to the blood–
brain barrier for its transportation to the brain, the albumin-bound fraction must first be
released from the protein binding sites. This latter process occurs because of TRPs greater
affinity to the binding sites of the hematoencephalic barrier than those of albumin [41].
As equilibrium mechanisms are rapidly activated, an increase in free TRP and brain
intake may reflect in a reduction in total TRP (free + albumin-bound) [41]. Different
values of their absolute concentrations and their relative percentages may have a different
physiological significance [41,42]. Furthermore, TRP competes with other LNAAs for
its transportation across the barrier by means of a carrier protein [19]. This is likely the
reason why a non-specific increase in protein intake does not produce consistent effects
on dog behaviour [20,27,43], whereas a diet aimed to increase the TRP/LNAAs ratio,
by either TRP supplementation or through dissociated carbohydrate-based diets [19],
seems to be effective at increasing 5-HT central concentrations [21], and ultimately at
modifying behaviour. Therefore, the link between peripheral TRP and 5-HT may be better
understood by measuring both free and total TRP serum concentrations and TRP/LNAAs
ratio, rather than just one of the formers [41,42], as was performed in this and other studies.

As for the relationship between 5-HT central and peripheral levels, studies per-
formed on humans and laboratory animals led to conflicting findings. For instance,
Pietraszek et al. [32] found no correlation between brain and blood 5-HT levels in lab-
oratory mice, whereas other studies reported good correlations between 5-HT levels in CSF
and peripheral matrices, such as plasma [44,45], whole blood [46], platelets [44], in rats,
humans and non-human primates. For a long time, it was accepted that central 5-HT could
not cross the blood-brain barrier [47]. Therefore, peripheral 5-HT was believed to origin
from synthesis in peripheral sources, mainly the enterochromaffin cells in the gut [47].
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On the contrary, more recent studies have been able to identify serotonin transporters on the
endothelial cells of blood vessels [48–50] in the hematoencephalic barrier and demonstrate
that 5-HT can actually translocate from the brain into the blood flow [47]. Although these
findings suggest that peripheral 5-HT may partially have central origin, there may not be a
linear and direct correlation between fluctuations of central and peripheral 5-HT levels.

In the present study, we observed no significant differences in TRP serum concentra-
tions between dogs displaying different behavioural responses to a potentially stressful
procedure, which in this specific case was represented by medical examination and blood
sampling. Low serum TRP concentrations have been linked to aggressive behaviour in
several mammal species, including dogs [23,27,51,52]. Previous studies, however, majorly
rely on the supplementation or depletion of TRP through diet manipulation. In our case,
no special diet was given to the dogs; hence, variation in TRP levels may have not been
substantial enough to affect behaviour. Overall, it is generally accepted that TRP’s effect
on behaviour is strictly dependent on its capability to cross the blood–brain barrier and
increase 5-HT brain levels [17]. According with the results obtained by Rayment et al. [53]
in a recent investigation on the correlation between 5-HT and behaviour, and consistently
with our findings on TRP, in this study we did not observe any significant difference in the
serum levels of this neurotransmitter among dogs showing distinct behavioural responses.

On the contrary, some previous studies found different serum 5-HT concentrations
between normally behaving dogs and dogs displaying fearful and aggressive
behaviours [10–12,15]. As Rayment et al. [53] suggest, methodological factors may explain
different results. Firstly, all of these studies involved dogs with aggressive or anxiety
behaviour problems that were severe enough to require behavioural consultation. This is
particularly important as previous research suggests that 5-HT levels may significantly
affect behaviour only in those subjects that are susceptible to mood disorders [54]. Instead,
in our study, none of the dogs displayed intense aggressive or fearful behaviours (even in
a potentially stressful situation), nor did they show any response that could suggest an
underlying behavioural disorder. The lack of overt display of aggressive behaviour may be
due to our decision to exclude dogs with known history of aggressive behaviour towards
people for both safety and procedural reasons. Furthermore, it must be pointed out that
none of the dogs involved in the present study underwent a comprehensive behavioural
evaluation, which may have helped draw a clearer picture on their general behavioural
characteristics beyond the specific context of the experimental procedures. Having a more
heterogeneous sample of dogs in terms of behaviour may be necessary in order to reveal
possible differences in 5-HT concentrations.

Furthermore, 5-HT concentrations may vary substantially in relation to the matrix used
for its quantification. In fact, plasma 5-HT levels have been found to be up to 40 times lower
than those reported for serum in dogs [55]. Serum serotonin median concentration found
in this study (183.4 ng/mL) falls within the reference range of median 5-HT serum values
previously observed in clinically healthy dogs with no reported history of behavioural
disorders (32.5–509.8 ng/mL) [10–12,56,57]. However, this range is very broad and un-
likely to be useful in clinical applied settings [58]. As suggested by Alberghina et al. [56],
the width of this range may be explained by the lack of standardization of preanalytical
factors across studies, such as feeding regimen of the experimental subjects [59], time of the
sampling [59–61], storage duration of the sample and temperature fluctuations during stor-
age [58], which have been reported to affect serotonin concentrations in mammal species.

This study has limitations that need to be addressed. Firstly, our sample of dogs
was not heterogeneous enough to represent all possible behavioural categories. Specif-
ically, we did not observe any severe fearful or aggressive behaviour. This, of course,
may have affected our findings, although it may more closely mirror the situation in most
of the canine population. Secondly, although veterinary medical examination has been
demonstrated to produce an acute stress response in dogs [62,63], in this study we did
not assess physiological parameters of stress, such as cortisol, for instance. This may have
provided us with additional and relevant information on the hormonal picture induced by
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the experimental procedure, especially considering the effects of corticosteroids on TRP
metabolism, and consequently on 5-HT concentrations [33,53,64].

5. Conclusions

In the present study, no correlation between serum TRP and 5-HT levels were found
in our sample of shelter dogs. Since it is widely accepted that TRP and 5-HT concentrations
are correlated in the brain, our negative finding may be at least partially explained by the
role of the blood-brain barrier, regulating the passage of TRP from peripheral to central
circulation and that of 5-HT in the opposite direction. Considering the conflicting literature
on the topic, further research is needed to clarify the kinetics of both molecules across
the hematoencephalic barrier, as well as the relationship between each molecule’s central
and peripheral levels. Furthermore, in this study no differences were found in dogs’
serum TRP and 5-HT concentrations in relation to their behavioural response to medical
examination and blood collection. Considering the differences in some methodological
aspects (e.g., behavioural features of the experimental subjects, behavioural assessment
methods, peripheral matrices for 5-HT quantification, 5-HT storage time and procedure)
across previous studies on 5-HT, as well as earlier findings on the link between low serum
5-HT and behavioural disorders in dogs and other mammal species, our results should
not suggest that such link is instead non-existent. However, they do suggest that greater
consistency on the methodological approach across studies may be necessary in order to
be able to draw clearer conclusions on the relationship between peripheral 5-HT levels in
dogs and their behaviour.
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