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Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT
image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function,
in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully.
However, the parameter selection is typically performed in an ad hocmanner, which can cause the algorithms to converge slowly or
become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE)method is used, which
evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the
parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals
of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this
new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index.
Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images
together with a substantial noise reduction.

1. Introduction

While X-ray computed tomography (CT) enables ultrafast
acquisition of patient images obtained with excellent spatial
resolution, the dose needed to achieve diagnostic image
quality can result in a significant increase in the risk of
developing cancer [1]. Consequently, low-dose CT imaging is
clinically desired and has been under investigation for several
years. Lowering the radiation dose may seriously degrade
diagnostic performance or undermine physician confidence
by producing noisier images [2, 3]. Several different algorith-
mic approaches have been proposed to reduce the effect of
noise in the CT images, including projection data denoising
[4–6], optimizing the reconstruction algorithms to include
the noise statistics [7–9], and CT image denoising [10–12].
The latter is the focus of this paper, where an adaptively tuned
iterative CT image denoising algorithm is presented.

The main source of noise in X-ray projection data is
quantum noise caused by statistical fluctuations of X-ray
quanta reaching the detectors, so that the CT projection

noise follows the Poisson distribution [3]. However, because
of the use of different reconstruction algorithms and signal
processing steps in CT reconstruction, the noise statistics of
the processed CT images are usually unknown and hard to
model and are spatially changing.Moreover, directional noise
in the form of streak artifacts is present in many CT images.
As a result, incorporating accurate noise statistics into image-
basedCTdenoising can be very challenging.When denoising
is based on the projection data and its statistics, other
difficulties arise. Specifically, such denoising methods and
the associated iterative reconstructions require access to the
CT raw data, which is often unavailable. Furthermore, these
methods have a high computational complexity making it
challenging to obtain a final image in a reasonable length of
time, depending on the available computational resources.
On the other hand, image-based denoising methods are
fast and can be applied directly on the CT images without
changing the clinical workflow.

A simplified noise model is usually used in image based
denoising algorithms, in which, following the Central Limit
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Theorem (CLT) [13], the final noise in each voxel follows a
Gaussian distribution [11, 14–17]. The CLT can be used since
each voxel in CT images is computed by adding values from
many different projections.With this assumption, a noisy CT
image y can be modeled by

y = x +n, (1)

where x is the noiseless image and n is a zero mean additive
anisotropic Gaussian noise with variance of 𝜎2

𝑛
, which varies

with the pixel location and its value.
Different image based denoising algorithms have been

used to estimate the noiseless CT images, such as anisotropic
diffusion [10], total variation (TV) [18], bilateral filtering
[19], or wavelet-based techniques [11, 12, 20]. These methods
can usually be formulated as an unconstrained Lagrangian
multiplier optimization problem [18, 21–23], that is,

𝑥 = arg min
𝑥

1
2





𝑥 − y


2
2 +𝜆ℎ (𝑥) , (2)

in which 𝜆 is a regularization parameter that controls the
tradeoff between the data fidelity and the regularization term
ℎ(𝑥) and ‖𝑥‖

𝑞
= ∑

𝑛

𝑖=1 |𝑥𝑖|
𝑞. Different regularization terms,

ℎ(𝑥), lead to different denoising methods. For example, in
TV-based methods [24–26], ℎ(𝑥) = √𝛿

ℎ
𝑥

2
+ 𝛿V𝑥

2 where 𝛿
ℎ

and 𝛿V are the gradient in horizontal and vertical directions,
and inwavelet soft thresholdingmethods ℎ(𝑥) = ∑

𝑖
|Ψ2D(𝑥)𝑖|,

where Ψ2D(𝑥) is the 2D wavelet transform [27].
There is a strong dependence of the quality of the result

on the regularization parameter. It is a challenging task to
find the regularization parameter 𝜆 that provides the best
balance between signal smoothing and feature preservation
[26]. Specifically, if 𝜆 is not appropriately adjusted, the
optimization is trapped in a local minimum; that is, if 𝜆 is too
small, noise is only partially removed and, if it is too large, the
image may be oversmoothed [25]. Some methods have been
proposed to update the regularization parameters iteratively,
such as use of the discrepancy principle [28], generalized
cross-validation [26], and L-curve [29]. These methods fail
in certain situations, are problem specific, and generally
increase the computational complexity of the algorithms.

One straight forward approach used in many algorithms
is to use a heuristic 𝜆 value combined with a criterion to stop
the algorithm before the estimated signal is oversmoothed.
Different stopping criteria have been proposed for iterative
denoising problems. For instance, Akkoul et al. [30] used
a switching median filter algorithm to stop the iterative
process when the number of changed pixels in the denoising
iterations is a minimum. In [20, 31] the statistical properties
of high frequency wavelet subbands were used to stop the TV
iterations. However, such methods are unable to differentiate
oversmoothed data from well-denoised data. As a result, to
avoid oversmoothing, the updating steps are typically chosen
to be small, which decreases the convergence speed.

In this paper, a noise confidence region evaluation
(NCRE) method is used to address the regularization selec-
tion and the algorithm stopping problems. It adaptively
updates the regularization parameters at the end of each

iteration by validating the result of that iteration. The algo-
rithm stops when the statistical properties of the denoising
residual resemble those of the additive white Gaussian noise.
Using NCRE, a new iterative block matching and 3D filtering
(BM3D)method is proposed, which outperforms BM3D [32]
itself. The proposed method is compared with anisotropic
diffusion denoising, which is generally regarded as a standard
denoising method in CT imaging [10], nonlocal mean [33–
35], and BM3D [32]. In addition, we study the noise prop-
erties of CT images and show that the noise in small image
blocks has an additive white Gaussian model, which justifies
the success of the nonlocal based denoising algorithms in
image based CT denoising [33, 36–39].

2. Problem Formulation and
CT Noise Properties

Recently, it has been shown that nonlocal patch based
algorithms outperform others in CT image denoising [33, 34,
36–41]. For example, in [41] a nonlocal means (NLM) based
method, which takes advantage of the presence of repeating
structures in a given image, was compared with a principle
component analysis based denoising method and a highly
constrained backprojection method. It was shown that the
NLM method outperformed both of the methods in terms
of the contrast to noise ratio, noise standard deviation, and
squared error. Another class of algorithms looks for similar
blocks in the whole 2D image and stacks them together in
3D arrays. Denoising is then performed through transform
domain shrinkage of the 3D arrays. An algorithm called K-
SVD [37, 38, 42] uses these 3D patches to train an optimum
dictionary. This method, which assumes that each 3D block
can sparsely be represented by the trained dictionary atoms,
uses shrinkage algorithms to denoise the patches.

Our proposed algorithmmakes use of the blockmatching
and 3D filtering (BM3D) technique [32, 36]. This is a nonit-
erative denoising method that currently outperforms many
newer algorithms [40]. It is composed of two major filtering
steps. In both stages collaborative filtering is utilized, which
itself has four stages: (1) grouping similar patches with a
reference patch, (2) calculation of the 3D wavelet coefficients
of each stack of patches, (3) denoising the wavelet coefficients
(thresholding in step (1) or Wiener filtering in step (2)),
and (4) recovering the denoised image by calculating the
inverse 3Dwavelet transformation.TheBM3Dapproach aims
to denoise the patches by Wiener filtering, which is done in
step (2). To find best match to similar patches in the step (2)
and to reliably estimate the Wiener coefficients, the method
requires a reliable estimate of the noiseless image, which is the
main purpose of step (1). The input for this step, which is a
hard thresholding block, is the 3D noisy wavelet coefficients
of similar patches located by block matching applied to the
available noisy image. A hard threshold with a heuristically
determined value of 2.7𝜎

𝑛
is used in step (1). The resulting

denoised coefficients are then transformed back to a spatial
domain to be used as the initial estimate of the noiseless data
used for calculating the Wiener filter coefficients.
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To denoise the images, patch basedmethods generally use
a model based on

y
𝐺𝑗
= x
𝐺𝑗
+n
𝐺𝑗
, 𝑗 ∈ [1, . . . , 𝑚] , (3)

in which 𝐺 is the patch grouping information, 𝑚 is the
number of 3D patches, y

𝐺𝑗
denotes the noisy patches, x

𝐺𝑗

denotes the noiseless 3D patches, and n
𝐺𝑗

∼ N(0, 𝜎2
𝐺𝑖
)

is the noise at each 3D patch. Conventional BM3D uses
an independent identical additive Gaussian noise model in
which the noise variances 𝜎2

𝐺𝑖
are similar in all patches. Using

this assumption, its regularization term is a nonlocal wavelet
ℓ1-norm ℎ(𝑥) = NLW(𝑥, 𝐺), where [43]

NLW (𝑥, 𝐺) =

𝑚

∑

𝑗=1








Ψ3D (𝑥𝐺𝑗)





1
, (4)

in which Ψ3D is the 3D wavelet transform. Using this reg-
ularization in (2), BM3D solves the following optimization
problem in its first step:

x̂ = arg min
𝑥

1
2





𝑥 − y


2
2 +𝜆
𝑚

∑

𝑗=1








Ψ3D (𝑥𝐺𝑗)





1
. (5)

In our approach, we modify the BM3D formulation for
CT image denoising by incorporating a more realistic noise
model, to include the nonstationarity of the noise and its
dependence on the position and value of the pixels. Our
proposed method uses the noise properties of the patches
x
𝐺𝑗
, studied in the Appendix, to improve the performance of

BM3D for CT image denoising.

2.1. Noise in CT Images. Although a reasonable statistical
model for the CT projection data is the independent Poisson
distributions [3], it has been shown that the corrected polyen-
ergetic X-ray projections can be modeled more accurately
by a Gaussian distribution with the following relationship
between its mean and variance:

𝜎

2
𝑖,𝑛
=
√
(𝐽
𝑖
× exp(𝜉 (𝑖, 𝑛)

𝑠

))

2

+ (𝜎

2
𝑒
)

𝑖,𝑗
,

(6)

where 𝜉 is the mean and 𝜎2
𝑖,𝑛
is the variance of the projections

at the 𝑖th projection angle (𝜑
𝑖
) and the 𝑛th detector bin whose

distance is 𝑙
𝑛
from the detectors center, 𝑠 is a scaling factor,

𝜎

2
𝑒
is the electronic noise variance, and 𝐽

𝑖
is a parameter

adaptive to different detector channels [6]. During the recon-
struction process the noise distribution is changed by the
reconstruction algorithm and filters. As a result, due to the
complicated dependencies of noise on scan parameters and
on spatial position, the noise distribution in the reconstructed
CT images is usually very difficult to determine (a detailed
study of the noise model in CT can be found in [44, 45]).
Using the discrete filtered back projection relation,

𝑓 (𝑥, 𝑦) =

𝜋Δ𝑡

𝑁
𝜋𝑔

𝑁𝜋𝑔

∑

𝑖=1

𝑁𝑔

∑

𝑛=1
𝑐 (𝑥 cos𝜑

𝑖
−𝑦 sin𝜑

𝑖
− 𝑙
𝑛
) 𝑔
𝑖,𝑛
, (7)

the noise variance in the reconstructed images can be
described by [38]

𝜎

2
𝑛
(𝑥, 𝑦)

= (

𝜋Δ𝑡

𝑁
𝜋𝑔

)

2 𝑁𝜋𝑔
∑

𝑖=1

𝑁𝑔

∑

𝑛=1
𝑐

2
(𝑥 cos𝜑

𝑖
−𝑦 sin𝜑

𝑖
− 𝑙
𝑛
) 𝜎

2
𝑖,𝑛
,

(8)

where Δ𝑡 is the distance between the center of two adjacent
detectors, 𝑔

𝑖,𝑛
is the parallel projection at the 𝑖th angle and

the 𝑛th detector bin, and 𝑐(⋅) is the ramp filter in the spatial
domain. This can be interpreted as the backprojection of the
projection noise variances, making it nonstationary, object
dependent, and correlated. Moreover, since the variance of
each voxel is the summation of the variances from many
angles, if the variance in one direction is significantly larger
than that at another direction, then the variances along
that direction will be more correlated than that for other
directions [46] producing what is known as a streak artifact
in the reconstructed images. It should be noted that this
effect is not included in our model. In (8), the ramp filter 𝑐(⋅)
is symmetric about the center of rotation and 𝜎

2
𝑖,𝑛

depends
on the attenuation of the media through which the X-ray
beams pass. Therefore, we assert that the noise variances of
small neighborhoods with similar attenuations and similar
radial distances from the center of rotation should be very
similar. The results of experimental tests of this assertion are
presented in the Appendix.

2.2. Modified Formulation. Based on the above discussion
and our experimental results, presented in the Appendix, it
can be assumed that the noise in 3D similar patches of the CT
images follows a white additive Gaussian distribution, with
different variances for different 3D patches 𝜎2

𝐺𝑖
. Using (3), the

modified optimization problem used in this paper is given by

𝐽 (y, 𝐺, Λ) = x̂

= arg min
𝑥

1
2





𝑥 − y


2
2

+

𝑚

∑

𝑗=1
𝜆
𝑗








Ψ3D (𝑥𝐺𝑗)





1
,

(9)

in which Λ = [𝜆1, 𝜆2, . . . , 𝜆𝑚] is a set of regularization
parameters that are functions of 𝜎

𝐺𝑖
. To improve the regu-

larization parameter selection, we used an adaptive updating
method based on an evaluation of the noise statistics. It
automatically avoids the oversmoothing without lowering
the convergence speed. The NCRE method validates the
statistical properties of the error residuals at the end of each
iteration and categorizes the result as well denoised, partially
denoised, or oversmoothed. This information is then used
to update the parameters in the next iteration or to stop the
algorithm at the end of the iteration for which the similarity
between error residual and Gaussian noise is satisfied.
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3. Proposed Denoising Method: BM3D-NCRE

If x̂
𝑖
denotes the signal recovered at 𝑖th iteration, the denoising

residual at the end of 𝑖th iteration can be expressed by
Δy
𝑖
= y − x̂

𝑖
which, ideally, should be the noise (3), n =

{n
𝐺𝑖
, ∀𝑖 = 1, . . . , 𝑚}. Here, we provide a quantitativemeasure

that verifies the similarity between the structure of Δy
𝑖
and

that of n.

3.1. Noise Confidence Region Evaluation (NCRE). In [47] it
was shown that the following function of zero mean white
Gaussian noise, n, with length 𝑛, and for any given scalar
value of 𝑧:

G (𝑧,n) = 1
𝑛

𝑛

∑

𝑗=1
G (𝑧,n

𝑗
) ,

G (𝑧,n
𝑗
) =

{

{

{

1 if 



n
𝑗







≤ 𝑧

0 if 



n
𝑗







> 𝑧;

(10)

is equivalent to sorting the absolute value of the noise ele-
ments n

𝑗
. The expected value of this function is 𝐸(G(𝑧,n)) =

𝐹(𝑧) and its variance is var(G(𝑧,n)) = 𝐹(𝑧)(1−𝐹(𝑧))/𝑛, where
𝐹(𝑧) = 2𝜙(𝑧/𝜎

𝑛
) − 1 and 𝜙(⋅) is the cumulative distribution

function (CDF) of a Gaussian distribution.Therefore,G(𝑧,n)
is bounded by the following lower (𝐿

𝑛
) and upper (𝑈

𝑛
) values:

𝐿
𝑛
(𝑧) = 𝐹 (𝑧) − 𝜁

√

1
𝑛

𝐹 (𝑧) (1 − 𝐹 (𝑧)),

𝑈
𝑛
(𝑧) = 𝐹 (𝑧) + 𝜁

√

1
𝑛

𝐹 (𝑧) (1 − 𝐹 (𝑧))

(11)

with probability of Pr{|G(𝑧,n) − 𝐹(𝑧)| ≤

𝜁√(1/𝑚)𝐹(𝑧)(1 − 𝐹(𝑧))} ≈ 2𝜙(𝜁) − 1. If the sorted absolute
values of a signal lie between these two boundaries for a
large enough 𝜁, that signal will follow a white Gaussian
distribution with a confidence probability close to one.

As shown in Figure 1, these boundaries divide the
[𝑧,G(𝑧,n)] space into three regions. At the end of each
iteration G(𝑧, Δy

𝑖
) the sorted absolute value of the residual

is calculated. If this sequence falls into Region II (in our
proposed algorithm being a subset of a region is evaluated by
having a high fraction ofG(𝑧, Δy

𝑖
) in that region; for example,

in our simulations this fraction is 90%), it means that the
residual has a Gaussian-like structure and denoising stops.
On the other hand, if the denoising at the 𝑖th iteration has
removed not only the noise but also parts of the noiseless data
itself, Δy

𝑖
will have some of the image informationmaking its

samples larger than Gaussian noise. Therefore, for a specific
value of 𝑧, G(𝑧, Δy

𝑖
) (average number of Δy

𝑖
s with absolute

values smaller than 𝑧) is smaller than G(𝑧, 𝑛) and falls in
Region III. This will enforce continuation of the denoising
to the (𝑖 + 1)th step with changing of the regularization
parameters 𝜆

𝑗
such that the denoising algorithm extracts less

noise in the next iteration, that is, decreasing ∀𝜆
𝑗
= 𝜆
𝑗
/𝑠,

𝑠 > 1. If G(𝑧, Δy
𝑖
) falls in Region I, it indicates that the noise

is partially removed. In this case the algorithm continues to
the (𝑖+1)th step and changes the regularization parameters 𝜆

𝑗
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Figure 1: Three possible regions for the residual at the end of each
iteration. If it lies in Region II (noise confidence region), denoising
is stopped.

such that more noise is extracted by the denoising algorithm,
that is, increasing ∀𝜆

𝑗
= 𝑠 × 𝜆

𝑗
, 𝑠 > 1. In summary, at

each iteration when G(𝑧, Δy
𝑖
) is in either Region I or III,

the regularization parameter is updated such that it moves
toward Region II. The value of 𝑠 can be tuned as a fixed or an
adaptively changing variable based on the euclidean distance
between G(𝑧, Δy

𝑖
) and 𝐹(𝑧), 𝑑

𝑖
= ‖G(𝑧, Δy

𝑖
) − 𝐹(𝑧)‖

2. In
our proposed method to update Λ = [𝜆1, . . . , 𝜆𝑚] a global
𝑠 is used (similar to [33, 41]), which is updated based on
the placement of the denoising residual of the patches in
different Regions I–III. The algorithm is stopped when the
denoising residual of the soft tissue around the lung is placed
in Region II. An example of a soft tissue mask for a thoracic
phantom, denoted by M, is shown in Figure 2. The pixels in
this region have very similar CT# and have almost the same
radial distances from the center of the rotation. Therefore, it
could be assumed that the noise in this region has a white
Gaussian distribution.

3.2. Summary of the Proposed Method: BM3D-NCRE.
Algorithm 1 shows the proposed iterative Λ updating
scheme, in which ⋅ denotes an element-wise multiplication.
The updating method uses a memory strategy for recovery
of possible lost edges and fine details. This process is
represented by

y
𝑖
= (1−𝛼

𝑘
) y +𝛽

𝑘
x̂
𝑖
+ (𝛼
𝑘
−𝛽
𝑘
) x̂
𝑖−1, (12)

in which 𝑘 ∈ [1, 2] and 𝛼
𝑘
and 𝛽

𝑘
are positive scalars,

chosen based on the conditions given in [48].This stage of the
algorithmwas inspired by the second order iterative methods
[48, 49] that improve the convergence rate of the iterative
methods.

To denoise CT images the fundamentals of BM3D were
used in an iterative scheme: the output of theWiener filter is a
better estimate of the original image than the input ofWiener
filter from the first step. Therefore, this output can be fed
into the first step to provide better Wiener coefficients in the
second iteration.Themodified BM3D formulation (9) is used
iteratively in Algorithm 1 to denoise the CT images, where
NCRE adjusts the threshold values applied on 3D wavelet
coefficients of the first step. The parameters of the BM3D
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Figure 2: Noise statistics of the soft tissue region surrounding the lung. (a) Top: the thoracic phantom which is used to evaluate the noise
characteristics and bottom: the soft tissue region of the phantom (denoted byM in Algorithm 1). (b) The statistical distribution of the noise
in the soft tissue region is shown by the blue experimental values and these are compared with Gaussian distribution with the same variance
(red dashed line).

Initialize: 𝑖 = 1,M: Soft tissue mask,
x̂0 = 𝐽(y, 𝐺𝑖, Λ 𝑖), Δy0 = y − x̂0,G0 = sort(|M ⋅ Δy0|),
while M ⋅G

𝑖
̸⊆ Region II and 𝑖 <maxiter do,

if G
𝑖
⊂ Region I then

increase ∀𝜆
𝑗
∈ Λ, 𝑗 = [1, . . . , 𝑚] towards Region II,

x̂
𝑖
= 𝐽(y
𝑖
, 𝐺
𝑖
, Λ
𝑖
),

y
𝑖
= (1 − 𝛼1)y + 𝛽1x̂𝑖 + (𝛼1 − 𝛽1)x̂𝑖−1,

end if
if G
𝑖
⊂ Region III then

decrease ∀𝜆
𝑗
∈ Λ
𝑖
, 𝑗 = [1, . . . , 𝑚] towards Region II,

x̂
𝑖
= 𝐽(y
𝑖
, 𝐺
𝑖
, Λ
𝑖
),

y
𝑖
= (1 − 𝛼2)y + 𝛽2x̂𝑖 + (𝛼2 − 𝛽2)x̂𝑖−1,

end if
Δy
𝑖
= y − x̂

𝑖
,G
𝑖
= sort(|M ⋅ Δy

𝑖
|), 𝑖 ← 𝑖 + 1,

end while

Algorithm 1: Proposed Iterative Regularization Parameter Updat-
ing.

algorithm are chosen based on the ones that resulted in the
best performance in [50].The initial value forΛ is 2.7𝜎

𝐺𝑖
with

noise variances estimated independently for each 3D stack,
using the median-absolute deviation method as described
in [51]. In each iteration, if the sorted absolute value of the
denoising residual of the soft tissues around the lung,M ⋅Δy

𝑖
,

falls into Region I, the threshold value will be increased and,
if it falls into Region III, the threshold values are decreased, so
that in the next iteration the residual moves towards Region
II.

4. Results and Discussion

Three test methods were used to evaluate the performance
of the proposed algorithm. The first method consisted of
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Figure 3: Squared error (blue line) and the Structural Similarity
Index (SSIM) (green dashed line) showing the changes with each
iteration when using BM3D-NCRE. The shading colors show the
region in which Δy

𝑖
’s are placed after each iteration. The algorithm

stops when Region II is reached.

a simulated Shepp-Logan phantom corrupted by adding
Poisson noise to the fan beam X-ray projections. The images
were reconstructed using the ifanbeam command in Matlab.
The number of unattenuated photons in each projection was
taken to be 1×1013, which led to a noise variance similar to the
images reconstructed from the tube current of 50mAs and
peak voltage of 120 kVp. White Gaussian noise with standard
deviation of 100 was added to all the projections to simulate
the presence of electronic noise. The second method used a
CATPHAN phantom (Phantom Laboratory, Greenwich, NY,
USA). This is a standard phantom widely used for CT image
quality evaluation and contains spheres of differing contrast
as well as line pairs with differing spacing that can be used to
test the spatial resolution. Ideally, the denoising algorithms
should enable us to distinguish between smaller spheres with
lower contrasts in the low contrast slice and should keep the
line pair resolution unchanged. The third method uses axial
chest CT images froma clinical patient. All three testmethods
used the following parameters in the Algorithm 1: 𝜁 = 6,
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(a) (b) (c) (d)

Figure 4: Shepp-Logan phantom simulations: (a) original phantom, (b) noisy reconstructed phantom, (c) denoised by BM3D, and (d)
denoised by BM3D-NCRE.

Figure 5: Top: line pair slice of the CATPHAN phantom scanned with 50mAs and 120 kVp (window width/window level = 400/60HU).
Bottom: red rectangular ROI of the images with the red line showing the cut-off line pair resolution (window width/window level =
400/500HU). Left to right: image reconstructed with FC52 (STD = 64HU) and reconstructed with AIDR3D (STD = 41HU), FC52 denoised
with the proposed method (STD = 22HU), FC52 denoised with nonlocal mean (STD = 34HU), and FC52 denoised with BM3D method
(STD = 27HU).

Figure 6: Low contrast study using CATPHAN low contrast slice. Top: images scanned with 50mAs/120 kVp and bottom: scanned with
300mAs/120 kVp. Left to right: image reconstructed with FC52, reconstructed with AIDR3D, reconstructed with FC52 and denoised by
BM3D-NCRE, reconstructed with FC52 and denoised by nonlocal mean, and reconstructed with FC52 and denoised by BM3D. In all images
window width/window level = 100/70HU.
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Figure 7: Comparison of the effects of anisotropic diffusion, nonlocal mean, BM3D, and BM3D-NCRE. (a) In the original image, the circular
regions show the area from which the noise variance is measured, the dashed rectangular region is the area which is shown in (d)-(e), and
average noise of the three regions is around 55HU. (b) Denoised by anisotropic diffusion, noise is around 25HU. (c) Denoised by BM3D-
NCRE, noise is around 25HU. (d) Denoised by nonlocal mean, noise is around 21HU. (e) Denoised by BM3D, noise is around 28HU.
((f)–(j)) The zoomed-in region shown by dashed rectangle in image (a). The difference between original image and the image denoised by
(k) anisotropic diffusion, (l) BM3D-NCRE, (m) nonlocal mean, and (n) BM3d are shown. The window width/window level in (a)–(j) is
1600/−300HU and is 100/0HU in (k)–(n).

𝛼1 = 0.9, 𝛽1 = 0.8, 𝛼2 = 0.4, and 𝛽2 = 0.3. The parameters
of BM3D are chosen similar to the ones proposed in [50]: the
size of the blocks is 8 × 8, sliding step to process every next
reference block is 3, maximum number of similar blocks is
16, and the size of the search neighborhood for full-search
blockmatching is 39 × 39.

Figure 3 shows the mean square error (MSE) and the
structural similarity index (SSIM) [52] resulting from succes-
sive iterations of BM3D-NCRE applied to the reconstructed
noisy Shepp-Logan phantom images. The first iteration is
equivalent to the result of BM3D. As shown, the MSE
decreases and the SSIM increases in successive iterations to
a point where the algorithm is stopped by falling into Region
II. The results of denoising the Shepp-Logan phantom with
BM3D and BM3D-NCRE are shown in Figure 4. As can be
seen, the noise is removed more effectively by BM3D-NCRE.

However, the streak artifacts are still visible in both denoised
images.

In the second test, the CATPHAN phantom was scanned
using a lowdose (50mAs, 120 kVp) and a high dose (300mAs,
120 kVp) protocol. Image reconstructions were performed
with a Toshiba Aquilion One CT using the proprietary lung
kernel FC52 and the proprietary iterative reconstruction
algorithm Adaptive Iterative Dose Reduction 3D (AIDR3D)
[53].The latter uses anisotropic diffusion denoising as its base
to improve the image quality at each iteration. Our proposed
denoising method was applied to the images reconstructed
with the high spatial resolution filter algorithm, FC52. These
are compared to the images reconstructed with AIDR3D,
and the FC52 reconstructed images denoised by nonlocal
mean and BM3D. The nonlocal mean package provided by
Gabriel Peyre on Mathwork File Exchange was used here
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Figure 8: Phantom scanned with eight different X-ray source currents with the same peak voltage: top left to right 5, 10, 25, and 50mAs and
bottom left to right 100, 150, 200, and 250mAs.
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Figure 9: Comparison of the noise distribution in the six regions of the phantom shown in Figure 8 with white Gaussian noise. Blue dots are
the measured values and the red dashed lines are the fitted Gaussian distributions.
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Figure 10: Showing the noise variance changes for the background
and the five circular regions of the phantom as the dose was
increased from 5mAs to 250mAs.

(http://www.mathworks.com/matlabcentral/fileexchange/
13619-toolbox-non-local-means). This package is based on
the method described in [35]. The BM3D code is also based
on the package provided by Alessandro Foi on his homepage
(http://www.cs.tut.fi/∼foi/GCF-BM3D/). It should be noted
that the parameters of nonlocal mean and BM3D were
heuristically adjusted to achieve the best performance,
based on visual inspection of the results. In addition, the
parameters are adjusted to keep the spatial resolution in
the line pair resolution slice the same. Figure 5 shows the
line pair slice reconstructed by FC52, AIDR3D, and FC52
denoised by BM3D-NCRE, nonlocal mean, and BM3D.
As can be seen, all these methods have the same spatial
resolution as the original image whose resolution was not
improved by the proprietary iterative reconstruction method
used (AIDR3D).

Figure 6 shows that the detectability of low contrast
objects is improved with our method and outperforms that
achieved by AIDR3D, nonlocal mean, and BM3D. Visibility
of the spheres with higher contrasts in the images denoised
by BM3D is very close to the ones denoised by BM3D-NCRE.
However, the visibility is significantly less for the spheres with
lower contrasts. Both BM3D and BM3D-NCRE outperform
AIDR3D and nonlocal mean, while the number of visible
spheres is almost the same as in the images denoised by
nonlocal mean and the images reconstructed by AIDR3D.

Thefinal comparisonwasmade using a lowdose (50mAs,
120 kVp) lung CT of a patient reconstructed using FC52
and processed by anisotropic diffusion denoising, BM3D-
NCRE, nonlocal mean, and BM3D. A single axial slice of
the images is shown in Figure 7. As can be seen, anisotropic
diffusion removes some fine details and reduces the contrast
of the small features. Nonlocal mean, BM3D, and BM3D-
NCRE outperform anisotropic diffusion denoising in sense
of preserving the small structures. Comparing the results
of nonlocal mean with BM3D-NCRE, it can be seen that
the low contrast features are kept perfectly unchanged in
BM3D-NCRE, while they are removed or their contrasts are
reduced in the image denoised by nonlocalmean. In addition,
the noise is not homogeneously removed from the image.
Comparing BM3D with BM3D-NCRE, it can be seen that

the image denoised by BM3D-NCRE has less noise and the
removed noise is more homogeneous. It should be noted
that the parameters of the anisotropic diffusion denoising
are adjusted in such a way that the noise variance in the
reconstructed images is the same as the images denoised by
BM3D-NCRE.

5. Conclusions

An iterative denoising scheme was proposed for low dose
CT images, which adjusts the denoising parameters at each
iteration based on the effect of the denoising method in
the previous iteration. Noise confidence region evaluation
(NCRE)was used to compare theGaussian noisewith denois-
ing residual to determine if the denoising was effectively,
weakly, or strongly executed. Based on this information the
denoising parameters were adjusted for the next iteration.
BM3D was used in the new proposed iterative scheme. The
phantom study showed that our proposed method improved
low contrast detectability. The patient study demonstrated
that the image was efficiently denoised and the visibility of
small objects was preserved. However, it should be noted that
the modified optimization model is not accurate when the
electronic noise dominates the photon fluctuations as could
occur for very low doses. In addition, the streak artifacts
would still be present in images denoised by the proposed
method.

Appendix

Phantom Study of the Noise Statistics in
Reconstructed CT Images

Thenoise statistics in CT images were studied using a Toshiba
phantom containing five circular regions of differing CT#
[−1000, −100, 100, 150, 350] (HU) and a Toshiba Aquilion
One CT scanner (this should be applicable to other scanners
and can be easily tested in a similar way). As shown in
Figure 8, six regions are considered in the phantom: a
region in the background (with CT# of 0HU) and the five
regions inside the circles. Scanning was performed with
eight different doses controlled by changing the tube current
[5, 10, 25, 50, 100, 150, 200, 250] (mAs) and with a fixed peak
voltage of 120 kV. The noise distribution in each region was
compared with white Gaussian additive noise. As can be seen
in Figure 9, the noise distribution matches white Gaussian
noise with high accuracy, provided that the dose is sufficiently
high, that is, greater than 50mAs, as in our experiments.
The noise distribution of four selected X-ray tube currents is
shown in Figure 9. Figure 10 summarizes the noise variance
changes for each region with different CT#’s as a function
of the dose. When tube current is less than 10mA, the
electronic noise dominates the photon fluctuations causing
the measured CT# to be inaccurate. Moreover, the noise
variances of the six regions differ, even for the same tube
currents.More realistically, we also studied the noise statistics
of soft tissue surrounding the lung in a commercially available
adult thoracic anthropomorphic phantom (Lungman, Kyoto
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Figure 11: Two small soft tissue regions in the lung of a thoracic anthropomorphic phantom are shown.The noise distribution of these regions
(blue dots), which could be used in patch based denoising, is compared to that of the fitted Gaussian distribution (dashed red lines).

Kakagu, Japan). These pixels have very close CT# values and
almost the same radial locations. It was observed that the
noise of these regions follows a Gaussian distribution with
an acceptable accuracy. Two examples are shown in Figure 11.
Based on these results, we assume that the noise in small
neighborhoods of the image with similar CT# follows a white
Gaussian distribution. This assumption enables patch based
methods, such as BM3D and K-SVD, to use a Gaussian noise
model in the similar patches of the image and to perform the
denoising on each 3D stack independently.
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