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Genomic signatures of the unjamming transition 
in compressed human bronchial epithelial cells
Margherita De Marzio1,2*†, Ayşe Kılıç1†, Enrico Maiorino1, Jennifer A. Mitchel2, Chimwemwe Mwase2, 
Michael J. O’Sullivan2, Maureen McGill2, Robert Chase1, Jeffrey J. Fredberg2, Jin-Ah Park2, 
Kimberly Glass1,3‡, Scott T. Weiss1,2*‡

Epithelial tissue can transition from a jammed, solid-like, quiescent phase to an unjammed, fluid-like, migratory 
phase, but the underlying molecular events of the unjamming transition (UJT) remain largely unexplored. Using 
primary human bronchial epithelial cells (HBECs) and one well-defined trigger of the UJT, compression mimicking 
the mechanical effects of bronchoconstriction, here, we combine RNA sequencing data with protein-protein 
interaction networks to provide the first genome-wide analysis of the UJT. Our results show that compression 
induces an early transcriptional activation of the membrane and actomyosin network and a delayed activation of 
the extracellular matrix (ECM) and cell-matrix networks. This response is associated with a signaling cascade that 
promotes actin polymerization and cellular motility through the coordinated interplay of downstream pathways 
including ERK, JNK, integrin signaling, and energy metabolism. Moreover, in nonasthmatic versus asthmatic HBECs, 
common genomic patterns associated with ECM remodeling suggest a molecular connection between airway re-
modeling, bronchoconstriction, and the UJT.

INTRODUCTION
While performing its routine barrier and immune functions, the 
cellular collective that defines a confluent epithelial tissue is typically 
quiescent, solid-like, and nonmigratory. In a variety of circumstances, 
however, the epithelial collective undergoes an unjamming transi-
tion (UJT) to become dynamic, fluid-like, and migratory (1–14). For 
example, experimental data from both in vitro (1–3, 5, 7, 11, 15) and 
in vivo (2, 6) studies have shown that a UJT occurs spontaneously 
during physiological events such as embryonic development (2, 6, 9) 
and during pathophysiological events including wound repair (1, 16) 
and cancer metastasis (4, 8, 9, 17, 18). In addition, certain stimuli 
associated with lung pathology such as ionizing radiation (IR) (19) 
and mechanical compression (2, 11, 15) can also trigger the UJT. In 
the jammed phase, each cell becomes virtually frozen in place, trapped 
by its immediate neighbors, in a collective phase where intercellular 
rearrangements are rare. Conversely, in the unjammed phase, inter-
cellular rearrangements are frequent and the confluent cellular 
collective moves cooperatively, collectively, and vigorously in packs 
and swirls reminiscent of turbulent fluid flow (1, 20, 21).

Experimental studies to date have emphasized functional, mor-
phological, and, to a limited extent, molecular features that define 
the UJT (2, 9, 11, 17) and that distinguish it from the canonical 
epithelial-to-mesenchymal transition (EMT) (15). After the EMT, 
for example, cell-cell junctions become degraded, barrier function 
becomes compromised, apico-basal polarity is lost, and mesenchymal 
markers appear. After the UJT, by contrast, none of these events 
occur (15). Rather, cell shapes become more elongated and more 
variable, and these morphological changes coincide with increased 

motility and cellular cooperativity (11, 15). Hence, during the UJT, the 
cell layer becomes migratory while retaining its full epithelial character.

Recent insights have begun to elucidate the molecular events 
underlying the UJT. In a breast cancer model system, for example, 
RAB5A triggers unjamming by promoting internalization of the 
epidermal growth factor receptor (EGFR), leading to hyperactiva-
tion of the extracellular signal–regulated kinase 1/2 (ERK1/2) and 
phosphorylation of the actin nucleator WAVE2 (17). In well- 
differentiated primary human bronchial epithelial cells (HBECs), 
mechanical compression unjams the epithelial layer (11, 15); activates 
signaling pathways including EGFR (22–24), transforming growth 
factor– (TGF-) receptor (25, 26), ERK (15, 24), and procoagulant 
factors (27); and induces an asthma-like transcriptional pattern that 
involves inflammatory, fibrotic, and remodeling processes (28).

These results establish the UJT as a complex multifactorial pro-
gram. In doing so, they also emphasize the importance of performing 
a comprehensive molecular assessment of the UJT, but such an as-
sessment is difficult to achieve with single-gene–targeted approaches. 
The development of RNA sequencing (RNA-seq) technologies (29) 
now offers an opportunity to profile the genome-wide transcriptomic 
signature of the UJT. RNA-seq measures the total cellular content 
of RNA at the transcript-level, providing information on the key 
genes activated in a specific condition. This information can be fur-
ther expanded by integrating molecular interaction data (30), which 
can be used to infer the functional and causal relationships behind 
a genomic pattern (30).

Here, we report the first comprehensive genomic profiling of 
epithelial unjamming. We do so by performing RNA-seq of well- 
differentiated HBECs after compression, which is known to mimic 
the mechanical effects of bronchospasm and to trigger the UJT 
(10, 11, 15, 22, 26, 31, 32). We analyze the transcriptional patterns of 
compressed HBECs at three time points (baseline, 3 hours after 
compression, and 24 hours after compression) and integrate the 
RNA-seq data with protein-protein interaction (PPI) networks to 
identify the molecular pathways represented in these patterns. Our 
analysis shows that compression-induced UJT in HBECs is not the 
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result of a single biological process but rather the result of the coor-
dinated interplay of multiple downstream pathways involving actin 
repolymerization, ERK and c-Jun N-terminal kinase (JNK) signaling, 
and extracellular matrix (ECM) reorganization.

RESULTS
Compression-induced UJT activates three 
transcriptional regimes
To investigate the biological mechanisms driving the UJT, we har-
vested HBECs, grew them to confluence under air-liquid interface 
(ALI), and then exposed them to an apico-to-basal compressive 
pressure difference of 30-cm H2O (15, 27, 28, 33) (see Materials and 
Methods). Following the same experimental protocol described in 
Kılıç et al. (28), this pressure was maintained for 3 hours and then 
released (Fig. 1A). We assessed the gene expression profile of com-
pressed HBECs using bulk RNA-seq at two time points: immediately 
after pressure release (3-hour time point) and when cells had rested 
for an additional 21 hours after pressure removal (24-hour time point). 
For both time points, RNA-seq was also performed on noncom-
pressed control HBECs.

We selected this experimental protocol for three reasons. First, 
the magnitude and duration of compression applied to HBECs mimic 
that experienced by the airway epithelium during asthmatic bron-
choconstriction (22, 31, 32). Second, the exposure of HBECs to this 
mechanical stress has been linked to pathologic responses such as 
asthmatic airway remodeling (32). Last, this level of compression 
triggers a distinct UJT that has been thoroughly characterized bio-
physically and morphologically through a combination of immuno-
fluorescence imaging, live imaging, and computational analysis (11, 15), 
as described below.

Recent studies (11, 15) have investigated the morphological 
features of postcompression HBECs under the same experimental 
conditions as our system. In the absence of compression, control 
HBECs are arrayed in a disordered cobblestone pattern and are 
essentially frozen in place, exhibiting only rare and small local re-
arrangements as in a solid-like, jammed phase. Beginning at 8 hours 
after compression, cells become more elongated and more variable 
in shape (11, 15) and the epithelial layer becomes more fluid-like, 
displaying swirling and collective patterns of migratory behavior 
(11, 15). At 24 hours after compression, HBECs show all the cardinal 
features of an unjammed epithelium (11, 15, 34), followed by pro-
gressively increasing migration and elongation up to 72 hours after 
compression (15). These structural and dynamic changes have been 
explained in terms of a compression-induced UJT arising from 
increased cellular propulsion and cooperativity (11, 15).

In addition to these structural and dynamic changes, our RNA-seq 
data showed that compression activated a complex transcriptional 
response. We assessed this response by performing differential ex-
pression analysis of postcompression HBECs at 3 and 24 hours with 
respect to control samples at the same time points.

At the 3-hour time point, differential expression analysis identi-
fied 283 differentially expressed (DE) genes [fold change (FC) > 1.5 
and false discovery rate (FDR)–adjusted P < 0.05]; this included 89 
down-regulated and 194 up-regulated genes (table S1). At the 24-hour 
time point, we observed 42 genes underexpressed and 171 genes 
overexpressed (table S2).

DE genes at 3 hours versus 24 hours revealed notable differences 
in their postcompression transcriptional responses. To characterize 

these differences, we computed the z scores of the normalized 
expression values and performed hierarchical clustering on the DE 
genes identified at each time point (see Materials and Methods). On 
the basis of the clustering results, we focused on groups of DE genes 
that exhibited three characteristic transcriptional responses: transient, 
long term, and increasing.

A substantial portion of the DE genes at 3 hours (233 of 283, 82%) 
returned to their baseline expression level at 24 hours (Fig. 1B and 
table S3, A and B). As a quantitative confirmation of this observa-
tion, we calculated the Pearson correlation coefficient of the FC values 
between 3 hours versus control and 24 hours versus 3 hours ( = −0.84). 
These transcriptional changes suggest the activation of a transient 
regime that reflects the immediate, but temporary, response of cells 
to mechanical stimulus.

For 109 of the 213 DE genes at 24 hours (table S4), transcriptional 
activity was unchanged at 3 hours but increased only at 24 hours 
(Fig. 1B). We note that these genes were identified as DE at 24 hours 
after compression with respect to both the 3- and 24-hour control 
samples, excluding the possibility that this behavior is due to changes 
over time in control gene expression. These results indicate that 
mechanical stimulus causes a delayed effect on HBEC gene expres-
sion and activates a specific, long-term transcriptional program. This 
transcriptionally active program at 24 hours corresponds to the 
beginning of a large and sustained increase in cellular unjamming, 
which continues to at least 72 hours (15).

Last, 42 genes (table S5), which included both overlapping genes 
and DE genes at 24 hours, exhibited a persistent increase in their 
expression levels (Fig. 1B). This reflects the activation of an increasing 
transcriptional regime where the alterations generated by compres-
sion increase at each time point.

Overall, the compression triggered a response where transient 
effects at 3 hours were accompanied by both increasing and delayed 
effects over time. To identify the signaling pathways associated to 
these transcriptional patterns, we performed a pathway overrepre-
sentation test on cellular component (CC) and biological process 
Gene Ontology (GO) annotations (35) using the R package Cluster 
Profiler (36); results were selected on the basis of an FDR-adjusted 
P value threshold of 0.05 (see Materials and Methods).

Enrichment analysis using CC annotations revealed that, at 
3 hours, DE gene products were localized mainly in the cell mem-
brane and cytoplasm (Fig. 1C), with actin cytoskeleton (FDR = 
1.6 × 10−9) and cell leading edge (FDR = 6.3 × 10−5) among the most 
enriched components. At 24 hours, the effects of the mechanical 
stress shifted from the cellular surface to the endoplasmic reticulum 
and the ECM space, exhibiting high enrichment in the endoplasmic 
reticulum lumen (FDR = 2.1 × 10−8), complex of collagen trimers 
(FDR = 1.4 × 10−8), and basement membrane (FDR = 5.5 × 10−6).

In addition, the transient, increasing, and long-term regimes seg-
regated into different GO BPs, highlighting distinct functions for 
each gene subset. We identified the major categories enriched in each 
response by visualizing enriched pathways through a network rep-
resentation (Fig. 2). Transiently down-regulated genes at 3 hours 
were exclusively annotated to developmental and differentiation path-
ways (Fig. 2A and table S6A). The temporary suppression of cell fate 
decision and cell cycle functions in response to stress has been ob-
served in several studies (37), and this behavior is directly related to 
the capacity of cells to adapt to environmental conditions.

Conversely, transiently overexpressed genes at 3 hours were mapped 
to five main BP (Fig.  2A and table S6B): actomyosin structure 
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organization (FDR = 1.7 × 10−4), tissue migration (FDR = 8.1 × 10−4), 
ERK1/2 cascade (FDR = 4.4 × 10−4), regulation of mitogen-activated 
protein kinase (MAPK) activity (FDR = 3.7 × 10−3), and wound 
healing (FDR = 3.7 × 10−3).

DE genes annotated to cytoskeleton reorganization included the 
actin genes ACTA1 and ACTG1 and actin-binding and regulating 
genes such as CDC42EP2, RHOB, FHDC1, LCP1, PLS3, and RASSF1. 
In addition, genes annotated to cell migration included the soluble 
factors HBEGF, F3, and SRF, as well as genes involved in actin and 
myosin regulation such as HMOX1, EGR3, MYH9, and MYADM.  

These proteins are known to induce collective movement by promoting 
actin repolymerization and formation of focal adhesion complexes (38). 
The enrichment analysis also highlighted multiple genes involved in the 
ERK cascade signaling, such as sprouty proteins SPRED1, SPRED2, and 
SPRY2 and the focal adhesion kinase (FAK) subfamily gene PTK2B.

Pathways associated with wound healing included angiogenesis, 
blood coagulation, and platelet aggregation. These pathways are active 
during development and repair processes and require reorganization 
of the cytoskeleton along the leading edge of the cell to facilitate 
either tissue growth or wound closure (39).

Fig. 1. Overall scheme of the transcriptional patterns activated by compression. (A) The experimental setup: Mechanical compression was applied to well-differentiated HBECs for 
3 hours and subsequently released. RNA-seq was extracted from postcompression HBECs immediately after pressure release (3-hour time point) and after an additional 
21 hours (24-hour time point). (B) Top: Heatmaps of the normalized expression values at each time point [control (ctrl), 3, and 24 hours] for DE genes at 3 hours (left), DE genes 
at both 3 and 24 hours (center), and DE genes at 24 hours (right). Rows are z score–normalized for visualization purposes. (B) Bottom: Boxplots of the genes’ z scores in the 
three transcriptional regimes identified by clustering the data shown on top. Each transcriptional regime is noted at the bottom of the heatmap through a specific color: transient 
down-regulated (pink), transient up-regulated (purple), increasing (teal), and long term (blue). (C) Log(P value) of a merged subset of Gene Ontology cellular components (GO 
CC) enriched at 3 and 24 hours. At 3 hours (left), terms associated with the cytoskeleton and cellular membrane are highly enriched compared to the terms associated with 
the extracellular space. At 24 hours (right), this trend is inverted, and GO terms related to collagen complexes and ECM become highly overrepresented.
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While DE genes at 3 hours were mainly annotated to biological 
processes regulating the actomyosin network, genes involved in 
the long-term transcriptional response were mainly annotated to 
TGF- receptor and ECM signaling processes (Fig. 2B and table S6C). 
Extracellular structure organization and collagen fibril organiza-
tion were enriched in matrix metalloproteinases such as MMP2 and 
MMP10 and in multiple collagen  chain genes, including collagens 
type I, III, IV, and V. Overexpression of these genes points to a 
possible reorganization of the ECM at 24 hours, a key process to 
maintain cell movement by allowing flexible attachment of cells 
to the substratum (39). GO terms associated with TGF receptor were 
annotated to target genes of TGF-1 signaling such as NOX4, THBS1, 
and PMEPA1.

Last, enrichment analysis of the increasing genes revealed anno-
tations to molecular processes involving cell-substrate adhesion, actin 
filament bundle organization, and extracellular structure organiza-
tion (Fig. 2C and table S6D). Among these genes, TGF-1–induced 
transcript 1, TGFB1I1, as well as actin-binding genes FLNA, CNN1, 
and MYL9 showed fold increases larger than two at both the 3- and 
24-hour time points. Increased coexpression of these proteins has been 

recently connected to the formation of Rho-associated kinase (ROCK)–
dependent actin fibers downstream of TGFB1I1 induction, sug-
gesting a potential role of this gene in regulating cell migration (40).

Our analysis highlights a transcriptional reprogramming of the 
active regulators of cell shape and motility at the 3-hour time point 
and of the active regulators of cell-substratum interactions at the 
24-hour time point. In a confluent monolayer of Madin-Darby canine 
kidney-II (MDCKII) cells, it has been recently shown that the struc-
tural and dynamical changes of cells undergoing the UJT are accom-
panied by increased glycolytic activity and larger mitochondrial 
membrane potential (41). This work led us to investigate the po-
tential role of metabolic processes in our model system. We found 
that GO terms enriched at 3 hours included the regulation of lipid 
metabolic process (FDR = 7 × 10−3), the regulation of small-molecule 
metabolic process (FDR = 8.5 × 10−3), and the regulation of cellular 
carbohydrate metabolic process (FDR = 2.8 × 10−2). These processes 
involve oxidization of fatty acids that are subsequently metabolized 
in mitochondria to produce adenosine triphosphate (ATP) (42). 
Genes annotated to the enriched pathways included known gluco-
regulators and transporters such as SNCA, SESN2, and SLC7A11 
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Fig. 2. Pathways enriched in the three transcriptional regimes triggered by compression. For each transcriptional regime, we visualized enriched GO BP using 
a network representation where each node represents a pathway, and edges between pairs of nodes represent common DE genes annotated to both pathways. For 
visualization purposes, we showed only edges with more than three common DE genes. Node size and color are based on the number of DE genes annotated to 
the pathway and its adjusted P value, respectively. (A) GO BP enriched in the transient response, (B) GO BP enriched in the long-term response, and (C) GO BP enriched in 
the increasing response.



De Marzio et al., Sci. Adv. 2021; 7 : eabf1088     23 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 15

(table S7) (43–45). The mitochondrial carrier protein SLC25A25 
was also highly up-regulated at 3 hours (FC = 4.9), suggesting in-
creased mitochondrial activity in support of ATP production (45). 
Notably, we did not observe any enrichment in metabolic processes 
at 24 hours. These results hint at a potential mechanism linking UJT 
with energy metabolism.

Integrins, ERK, and JNK signaling pathways drive 
the epithelial cell response to compression
Different transcriptional patterns observed at 3 and 24 hours after 
compression raise the question of which signaling pathways underlie this 
genomic response in the 21 hours following pressure release. To identify 
these processes, we first determined which pathways of the Kyoto 
Encyclopedia of Genes and Genome (KEGG) (46) database were en-
riched in a merged set of DE genes at 3 and 24 hours (see Materials 
and Methods). We set the FC threshold of the differential expression 
analysis to 1.2 and the FDR-adjusted P value threshold to 0.05, 
which resulted in a total of 1512 DE genes across the two time points.

Among the 29 statistically significant KEGG pathways (fig. S1), 
focal adhesion and MAPK signaling were the most enriched (FDR- 
adjusted P = 4.74 × 10−5 and 9.95 × 10−5, respectively). Similar path-
ways also emerged using the Reactome database (47) (table S8). 
Given the predominant role of focal adhesions in cytoskeleton re-
organization and cell migration, we analyzed the DE genes associated 
with the focal adhesion pathway at each time point in greater detail 
(table S9A). At the membrane localization, compression altered the 
expression of several alpha and beta integrin subunits (Fig. 3A). 
While ITGB3 and ITGB6 were overexpressed at both time points, 
other integrin chains were selectively induced either at 3 hours 
(ITGA2 and ITGA5) or at 24 hours (ITGA4, ITGB5, and ITGAV).

In addition to these transmembrane receptors, we found up- 
regulation of the small guanosine triphosphatase protein encoded 
by RAP1B (3 hours) and of multiple actin-binding adaptor genes 
such as VCL (3 hours), ZYX (3 and 24 hours), SRC (24 hours), and 
FLNA (24 hours); these genes are known to transmit mechanical 
forces between the ECM and the actin cytoskeleton (48). Multiple 
collagen chains were overexpressed only at 24 hours, while the ECM 

gene tenascin C (TNC) was highly overexpressed at both time points. 
These findings highlight the recruitment of several integrin-ECM 
adhesive complexes, suggesting a possible reorganization of the acto-
myosin network and of the ECM downstream to the integrin signal-
ing (48). Western blots of Tenascin C secreted into the basolateral 
conditioned media collected from HBECs at 24 hours after pressure 
confirmed a significant increase of this protein’s levels, supporting 
a potential remodeling of the microenvironment due to exposure of 
HBECs to compression (fig. S2).

The MAPK signaling pathway was also highly enriched (table S9B). 
Multiple components involved in the ERK1/2 pathways were strongly 
overexpressed (Fig. 3B), including genes encoding growth factors; 
Ras-family proteins RAP1B (3 hours), RASA2 (3 hours), and mRAS 
(24 hours); and the transcription factors FOS (3 and 24 hours), ATF4 
(3 hours), and SRF (3 hours). Compression also activated several 
molecules related to the JNK signaling pathway, such as MAP3K1 
(3 hours) and MAP3K8 (3 hours), and the proto-oncogenes JUND 
(3 hours) and JUN (3 and 24 hours). These results, combined with 
the overexpression of genes in the dual-specificity phosphatase (DUSP) 
family at 3 and 24 hours, which are known counterregulators of 
MAPK (49), hint at a differential fine-tuning of MAPK signaling.

In contrast to the consistent overexpression of integrins, other 
growth factors and receptors—such as FGFR3 (3 and 24 hours), 
ANGPT1 (24 hours), and PDGFA/D (3 and 24 hours, respectively)—
were down-regulated. Similarly, the expression of the cytosolic 
phospholipases PLA2G4D, PLA2G4E, and PLA2G4F was reduced 
at 24 hours.

To extract additional information on the active signaling cascade 
involving these focal adhesion and MAPK components, we combined 
our RNA-seq data with known protein interactions contained in PPI 
databases. PPIs can be represented as a network made up of proteins 
(nodes) that are linked to each other based on physical binding in-
teractions (edges) (30). The PPI network represents a powerful tool to 
infer information on the cell signaling pathways occurring in a spe-
cific process. In particular, analysis of network paths, defined by the 
sequences of edges that connect two nodes, can be used to identify 
the molecular processes that transmit signal between two proteins.

A
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Following a procedure similar to the one proposed in (50), we 
modeled a signal transduction process as a sequential path on the 
network that starts from a receptor, connects the receptor to multiple 
kinases, and leads to a transcription factor (TF) (Fig. 4A). This 
receptor- kinase-transcription factor (RKT) path representation mimics 
the typical pattern of signaling cascades, where the signaling trans-
mission is triggered by membrane-bound receptors, propagates via 
intracellular kinases, and ultimately regulates the activity of TFs (51). 

We used the databases developed in (52) and (53) for the selection 
of receptors and kinases, respectively. To focus our analysis on the 
RKT paths that have a major impact on the long-term transcriptional 
response, we selected TFs that specifically target DE genes at 24 hours 
(see Materials and Methods).

Starting from a recently proposed PPI (54) (see Materials and 
Methods), we filtered the network to derive two subgraphs that con-
tained the receptors/kinases annotated to the focal adhesion and 
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Fig. 4. RKT analysis. (A) Overview of the network analysis used to identify the RKT paths. First, the PPI network is filtered for receptors, kinases, and transcription factors 
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at 3 hours. (B) Top-ranked RKT paths containing nodes annotated to the focal adhesion pathway. (C) Top-ranked RKT paths containing nodes annotated to the MAPK 
signaling pathway. Note that PPI edges do not have directionality, and, hence, the placement of the nodes in (B) and (C) has been chosen on the basis of biological con-
siderations associated with the RKT paths.



De Marzio et al., Sci. Adv. 2021; 7 : eabf1088     23 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 15

MAPK signaling pathway, respectively, as well as the set of TFs 
described above. We assumed a one-to-one correspondence be-
tween genes and their protein products in the entire analysis. For 
each signaling subgraph, we computed all the shortest paths con-
necting each receptor TF pair (see Materials and Methods). We then 
ranked these RKT paths based on the fraction of DE genes in each 
path and used the average expression of the path’s nodes at 3 hours 
to break the ties (Fig.  4A). The top selected paths represent the 
most active downstream processes induced by compression 
[for a detailed list of all the network paths identified, see table S10 
(A and B)].

The top RKT paths within the focal adhesion subgraph were ini-
tiated by integrins ITGA and ITGB (Fig. 4B), showing a predominant 
role of these ECM receptors compared to receptor tyrosine kinases. 
The integrin-induced paths emphasized three main downstream 
signaling directions: (i) the engagement of SRC and MYLK kinases, 
both implicated in actin contractility (55); (ii) the activation of acti-
vator protein 1 (AP-1) transcription factors such as JUN, JUNB, 
and ATF3 via the ILK-AKT1/GSK3B signaling path, known to reg-
ulate AP-1 activity through phosphorylation of AKT1 and GSK3B 
by the kinase ILK (56); and (iii) the activation of multiple FOS 
and JUN homodimers via MAPK1 and MAPK8, highlighting 
the role of ERK2 and JNK signaling in the transmission of the 
mechanical stimulus.

A detailed view of the MAPK signaling RKT paths (Fig. 4C) re-
vealed the engagement of various growth factor receptors—including 
NTRK1, TGFBR1, TEK, and ERBB2—and cytokine receptors (FAS). 
In agreement with the results in the focal adhesion subnetwork, the 
active RKT paths in the MAPK subgraph suggested the downstream 
regulation of the ERK1/2 pathway via the cascade MAP3K1, MAPK1, 
and MAPK3 and of the JNK pathway via MAPK8. In addition, the 
overrepresentation of RKT paths including PRKCA, CHUK, IKBKB 
and the nuclear receptors NR4A1 and RORA highlighted the partic-
ipation of the nuclear factor B pathway in the signal transmission.

The focal adhesion and MAPK RKT paths pointed to the down-
stream engagement of 16 TFs. To determine the main processes 
regulated by these TFs, we performed a pathway overrepresentation 
test using the 24-hour DE genes that are targeted by these 16 TFs 
(see Materials and Methods). Top GO BP (table S11 and fig. S3) 
included extracellular structure organization (FDR = 1.3 × 10−8), 
response to TGF- (FDR = 2.6 × 10−8), and positive regulation of 
cell migration (FDR = 2.6 × 10−6). Notably, we found a large over-
representation of metabolic processes involving the biosynthesis of 
cholesterol and alcohol, supporting the activation of specific meta-
bolic programs during the UJT.

The RKT analysis predicted signaling pathways that are con-
sistent with the morphological changes observed during the UJT.  
Reorganization of the actomyosin network and activation of AP-1 
transcription factors are both essential mechanisms to regu-
late cellular shape and motility. Since these processes involve mul-
tiple components that are not only receptors, kinases, or TFs, 
we further investigated our network analysis considering the 
entire PPI.

Flow centrality predicts key genes mediating 
the transcriptional response of HBECs to compression
We expanded our network analysis to determine, at a genome-wide 
level, which genes have a major role in mediating the molecular pro-
cesses triggered by compression. To achieve this goal, we considered 

a recently proposed “betweenness” centrality measure called flow 
centrality (57).

In network theory, the betweenness centrality of a node is defined 
as its frequency among all the shortest paths that traverse a network. 
Flow centrality extends this definition, encompassing only the shortest 
paths connecting any node in a specific source subset to any node in 
a specific target subset. The flow central score (FCS) quantifies the 
significance of the flow centrality of each node by comparing its 
value to a null distribution obtained by randomizing source and 
target node sets (see Materials and Methods). In the PPI network, 
genes with high FCS, called “flow central genes,” are more likely to 
be involved in the interactions connecting source and target gene sets 
of interest, constituting a topological bottleneck in the communica-
tion between the two subsets.

In our study, we chose the DE genes at 3 and 24 hours as source 
and target sets, respectively, and applied flow centrality to select the 
genes involved in the interactions between these two gene sets. A total 
of 556 flow central genes with FCS > 2 were identified (see Material 
and Methods and table S12).

To determine potential functional similarities among the flow 
central genes, we clustered them based on their shared source and 
target genes and investigated the network properties of each of the 
resulting clusters (see Materials and Methods). For each flow cen-
tral cluster, we calculated a “connectivity score”   f  S/T  c    . This quantity 
is defined as the average fraction of flow central genes connected to 
at least one source or target gene (see Materials and Methods). High 
values of   f  S/T  c     imply high connectivity of the flow central cluster with 
respect to the source/target set.

Our clustering analysis identified five main clusters (Fig. 5A and 
table S13). Except for one cluster that had low connectivity with 
both source and target gene sets, the identified four clusters exhib-
ited markedly different connectivity features with respect to the 
source and target genes. Cluster 1 and cluster 4 were highly connected 
to the source and target set, respectively (Fig. 5B). In contrast, cluster 2 
and cluster 3 exhibited   f  S/T  c     > 0.5 both for the source and target genes.

The connectivity score is proportional to the number of shortest 
paths connecting a cluster to the source/target and, hence, indirectly 
provides information on the functional affinity of the clusters to the 
DE genes at the two time points. Since the DE genes at 3 hours were 
mainly associated with membrane proteins, and DE genes at 24 hours 
were mainly associated with ECM and collagen proteins, the decreasing 
source connectivity and increasing target connectivity from clusters 
1 to 4 suggested a gradual propagation of the signal from the mem-
brane to the cellular nucleus, transmitted via the flow central clus-
ters. To test this hypothesis, we looked at the relative abundance of 
each cluster in three main GO CC: the membrane (GO: 0016020), 
the cytosol (GO: 0005829), and the nucleus (GO: 0005634). The 
fraction of genes localized in the membrane decreased from clusters 
1 to 4 as source connectivity decreases, while proteins localized in 
the cytosol and nucleus increased (Fig. 5C). This suggests that 
the flow central genes in cluster 1 represent the first mediators of 
the signal, while the remaining clusters represent the gradual signal 
transduction to the proteins responsible for the late transcriptional 
response observed at 24 hours.

The identified flow central genes were consistent with the signal-
ing pathways highlighted in the previous section. To show this, we 
compared the FCS distribution of the genes annotated to focal 
adhesion and MAPK signaling pathways to the FCS distribution 
of the remaining genes in the PPI. For both pathways, the FCS of 
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annotated genes was statistically higher (Mann-Whitney U test, P = 
1.3 × 10−15 for focal adhesion and P = 6 × 10−9 for MAPK signaling) 
than the FCS of other genes (fig. S4). It follows that flow centrality 
supports a leading role of focal adhesion molecules and MAPKs in 
the communication between the two transcriptional responses at 3 
and 24 hours.

Flow central genes included multiple genes identified in the 
RKT analysis. Flow central genes annotated to either the focal adhe-
sion or MAPK signaling pathway overlapped significantly (hyper-
geometric P < 1 × 10−3) with genes in the RKT paths—including 
PTK2, AKT1, MAPK1, and MAPK8—as well as additional com-
ponents, thus confirming and extending by an independent 
methodology the network predictions obtained through the RKT 
path analysis.

Several integrins showed high FCS, including ITGAV, ITGB3, 
ITGB4, ITGB5, and ITGB6 (Fig. 6A). These molecules bind to ECM 
proteins with their extracellular head region and to the actin cyto-
skeleton via intracellular proteins that attach to their cytoplasmic 

domain (58). In agreement with this mechanism, both matrix pro-
teins SPP1 and FN1 and adapter proteins FLNB and FLNA displayed 
high FCS (Fig. 6A). Additional flow central genes included PTK2, 
PAK4, and CAPN2, central bottlenecks for the regulation of actin 
polymerization and for the propagation of downstream signaling 
pathways within the cell (59).

Among these pathways, we found high FCS of the JNK-associated 
components MAP2K7, MAPK8/9/10, MAPK8IP1, and JUND and of 
the ERK2-associated proteins BRAF and MAPK1. Notably, MAPK1 
showed a high FCS of 6.83 (Fig. 6B), implying a potential pivotal 
role of this gene in driving collective migration during the UJT. The 
overrepresentation of genes involved in the ERK and JNK signaling 
pathways corroborated the crucial contribution of these processes 
to mechanical stimulus transduction in HBECs. In addition, the high 
FCS of AKT1, GSK3B, and CTNNB1, known to modulate cellular 
apoptosis via regulation of -catenin activity (Fig. 6A) (60), provided 
a possible explanation for the inhibition of cell proliferation previ-
ously observed in our system (11, 15).

DE genes 3 hours

Cluster 1

Cluster 2

Cluster 3

Cluster 4

DE genes (24 hours)

A Flow central genes

B C
Connectivity to Source Connectivity to target Membrane Nucleus Cytosol

Fig. 5. Flow centrality analysis. (A) Network visualization of the flow central clusters identified using flow centrality. Edges between each pair of source/target-flow 
central nodes indicate that the two nodes are connected via a network shortest path. For visualization purposes, we showed only a random 10% of total number of edges. 
(B) Connectivity score of each flow central cluster with respect to the source (left) and the target (right) gene sets. (C) Relative fraction of genes in each cluster that are 
annotated to the membrane, nucleus, and cytosol GO terms.
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We also observed a high FCS for multiple fibroblast growth factors 
and their corresponding receptors. This result may imply a parallel 
activation of the ERK pathway via signal transmission to adaptor 
proteins such as GRB2, SOS, and Ras (61).

Overall, this analysis showed that the morphological and migra-
tory changes that are hallmarks of the UJT are accompanied at the 
molecular level by transcriptional activation of genes involved in 
actin repolymerization, JNK- and ERK-mediated regulation of cell 
motility, and -catenin reorganization. This suggests that cells 
undergoing the UJT trigger a specific transcriptional program that 

allows remodeling of the cytoskeleton network and of the adhesive 
interactions with the ECM.

Flow centrality identifies ECM remodeling proteins as key 
regulators of the structural changes induced by compression 
of asthmatic HBECs
Park et al. (11) showed that unjamming not only is relevant in the 
context of mechanotransduction but also has implications for aberrant 
airway remodeling, a cardinal feature of asthma. Compared with 
HBECs derived from nonasthmatic donors, HBECs derived from 

Focal adhesion flow central genes

MAPK signaling flow central genes

A

B

Fig. 6. Role of the flow central genes in the focal adhesion and MAPK signaling pathway. Flow central score of genes associated with the (A) focal adhesion and 
(B) MAPK signaling pathways. For each pathway, the FCSs of the top flow central genes are shown in the left panel. In the right panel, the location of each of the flow 
central genes within the KEGG (46) pathway representation is highlighted.
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asthmatic donors exhibit phenotypic characteristics of unjammed 
tissues, with more elongated shapes and prominent collective migra-
tory behavior (11). At the transcriptional level, a recent study has 
shown that asthmatic HBECs and nonasthmatic HBECs at 24 hours 
after compression exhibit similar transcriptional patterns as genes 
associated with airway remodeling and ECM reorganization (28).

Similarities between asthmatic HBECs at baseline and nonasthmatic 
HBECs postcompression can be traced back to the effect of asthmatic 
bronchoconstriction on the airway. During bronchoconstriction, 
airway smooth muscle contracts, this contraction narrows the airway, 
and this airway narrowing compresses the airway epithelial layer 
(22, 31, 32). Even in the absence of inflammatory stimuli, this com-
pression is sufficient to recapitulate key anatomic and pathophysio-
logic changes observed during asthmatic bronchoconstriction (26, 32). 
Therefore, we investigated the potential existence of common 
molecular components involved in the unjamming of both asthmatic 
and compressed normal epithelial cells. To achieve this task, we as-
sessed the transcriptional profile of ALI-cultured HBECs from four 
asthmatic donors through bulk RNA-seq. RNA-seq data were ex-
tracted at baseline, consistent with the experimental setup of com-
pressed normal HBECs (see Materials and Methods). We performed 
differential expression analysis on the asthmatic HBECs versus 
the control (unperturbed HBECs at baseline) using the R package 
DESeq2. By choosing a threshold of FC > 1.5 and FDR-adjusted 
P <0.05, we identified 253 DE genes (see Materials and Methods 
and table S14).

We compared DE genes in nonasthmatic HBECs at 24 hours 
after compression to DE genes in asthmatic HBECs at baseline 
(no pressure) using the same FC threshold (FC > 1.5). The two sets 
significantly overlapped (hypergeometric P = 4.6 × 10−12), and the 
sign of the FC of the DE genes at 24 hours after compression and in 
asthmatic HBECs was positively correlated (correlation coefficient 
 = 0.4, P = 1.8 × 10−9) (see Materials and Methods and fig. S5). 
Next, we applied flow centrality. We selected the DE genes at 3 hours 
after compression in normal HBECs as the source gene set, and we 
considered two different sets of genes as targets: (i) the DE genes at 
24 hours after compression in normal HBECs and (ii) the DE genes 
in asthmatic cells without any perturbation. To remove potential 
similarities due to the same source genes, the FCS was computed by 
randomizing only the target module (see Materials and Methods). 
The two resulting sets of FCS, displayed in Fig. 7, represented the 
specificity of each gene in the PPI in connecting the source to the 
target modules as compared to a random set of target genes.

While multiple genes showed different values of FCS between 
the two datasets, a statistically significant subset of 57 flow central 
genes (table S15) appeared to mediate both the transcriptional re-
sponse of nonasthmatic HBECs at 24 hours after compression and 
asthmatic HBECs at baseline. Many of these common flow central 
genes are implicated in the regulation of ECM, cell-matrix interac-
tions, and cell-cell adhesive junctions. High values of FCS were as-
signed to both ECM proteins such as COL16A1, FN1, MATN2, and 
FBLN2 and to focal adhesion proteins such as ITGAV and FLNB.  
Common flow central genes also included MAPKBP1, MAPK1, and 
JUND, highlighting the potential role of JNK and ERK signaling 
cascades in both phenomena. In both asthmatic and compressed 
normal HBECs, flow centrality identified molecules such as VEZT, 
a component of the cadherin-catenin complex critical to the forma-
tion of adherens junctions (62), and the metalloproteinases ADAM12 
and MMP9, proteins known to be involved in the degradation of 

the ECM (63), as key mediators of the signal transmission. Not only 
are the common flow central genes involved in the structural re-
organization of the intercellular and ECM-interactions, but also 
they have been shown to be associated with the airway remodel-
ing processes observed in asthmatic airways as a consequence of 
bronchoconstriction (26).

DISCUSSION
This analysis shows that the HBEC transcriptional response to com-
pression is characterized by transient and long-term effects involving 
different molecular regulators of the mechanical properties of the 
epithelium. Immediately after pressure release (3-hour time point), 
HBECs transcriptionally reprogram cytoskeletal genes regulating the 
structure of the actomyosin network; at 21 hours after pressure re-
lease (24-hour time point), HBECs activate a delayed transcriptional 
response involving the ECM and its interaction with the cellular 
basal membrane. By using a network-based approach, we show that 
these genomic patterns are associated with multiple, coordinated 
signaling pathways that induce cell shape changes via actin repo-
lymerization processes and increased cell motility via ERK- and 
JNK-mediated activation of AP-1 transcription factors. This analysis 
points to possible links at the genomic level between HBECs com-
pression, the UJT, and airway remodeling (31).

These RNA-seq data and network analyses highlight a central 
role of integrins. Integrins are heterodimeric proteins consisting of 
 and  chains that can be combined to give rise to 24 unique inte-
grin molecules (58). By binding to cytoskeletal and matrix proteins, 
these transmembrane receptors serve both as signaling centers and 
as loci for exertion of the traction forces that propel cell migration 
(58). Force transmission mechanisms mediated by integrins have 
been extensively described (14, 64). Nevertheless, limited knowledge 
has been achieved on the systematic relationship between these 
receptors and cellular motion. Our study revealed that integrins 
were DE up to 24 hours after pressure exposure and were involved in 
multiple signaling pathways, suggesting a role of these heterodimers 

Fig. 7. Flow centrality in asthma. The FCS of each PPI node was calculated by 
applying flow centrality to DE genes at 3 hours versus DE genes at 24 hours (x axis), 
as well as DE genes at 3 hours versus genes DE in asthma (y axis). Common flow 
central genes (FCS > 2 in both analyses) are highlighted in red.
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as more than simple mechanoreceptors. This result, together with 
the delayed overexpression of several ECM genes, hints at the 
potential activation of a positive feedback between the epithelial 
genetic response and the mechanical properties of the substratum, 
where cell-ECM adhesion components are steadily recruited by 
integrins to assist and stabilize cellular unjamming.

In agreement with this scenario, our analysis shows that these 
receptors are involved in both actin polymerization processes via 
SRC and the focal adhesion kinase PTK2, as well as additional down-
stream signals activating the transcription factors JUN and FOS via 
ERK1/2 and JNK pathways. Although these pathways are known to 
be triggered in response to mechanical stress (24), the picture that 
emerges from our study indicates that ERK1/2 and JNK are active 
regulators of cell motility as early as several hours after the initial 
application of pressure. Notably, both these signaling pathways have 
been previously associated with the collective migration of cells in 
epithelial sheets (15, 65, 66). We recently showed (15) that, after 
blocking ERK activity using the pharmacological inhibitor U0126, 
compressed HBECs exhibit significantly reduced motility and 
cooperativity with an average cellular speed that is comparable to 
uncompressed HBECs. Propagation of ERK1/2 waves has been also 
observed to be correlated with collective cell movements in a wound 
healing assay of MDCK cells (65). In addition, the JNK pathway has 
been connected to the regulation of collective migration of several 
cell types in wound healing and developmental processes (66).

Mechanotransduction processes do not necessarily require the 
differential expression of their involved genes and can be activated 
as early as seconds after an external stimulus (67). It follows that the 
signaling pathways identified by our study likely represent the 
molecular processes sustaining the UJT, leaving room for speculation 
on what is the initial trigger that induces this phenomenon. Previous 
studies performed by us and by others have shown that mechanical 
compression on HBECs stimulates downstream ERK signaling by 
activating EGFR and its ligands only 20 min after pressure applica-
tion, suggesting the possible preexistence of latent forms of these 
growth factors in the epithelial tissue (22). In addition, our RNA-seq 
data are compatible with the possible activation of cell receptors via 
conformational changes or physical aggregation of these molecules, 
irrespective of their specific ligand. For example, compression and 
stretch can directly induce structural changes in integrins (68), growth 
factor receptors (69), and ion channels (70). These alterations have 
been reported together with rapid activation of downstream intra-
cellular pathways, including phospoinositide 3-kinase, ERK, and 
JNK signaling (68–70). Given the pronounced transcriptional re-
sponse we observed at the 3-hour time point, it is conceivable that 
similar events occur in vivo in compressed airway epithelial cells 
during asthmatic bronchospasm.

Limitations of this study include a small sample size. The inte-
gration of additional types of -omics data and a larger sample size 
would allow us to further investigate undetected molecular processes, 
such as epigenetic and posttranslational modifications. A larger 
number of subjects would also allow us to compare with asthmatic 
cells, given the heterogeneity of this disease. Another limitation is 
the RNA isolation process, which prevents the epithelial tissue from 
being sequenced and analyzed through live imaging at the same time 
and in the same sample. We have had to rely on separate experiments 
under the same conditions to make the inferences described here.

A variety of mechanical and nonmechanical stimuli are now 
known to promote the UJT in HBECs including compression (15), 

asthma (11), and IR (19). Hence, our current study raises the ques-
tion of whether we are identifying the broad molecular response of 
HBECs to compression versus the subset of events that specifically 
underlie the UJT. To investigate this, we used IR in the context of a 
candidate gene approach and performed real-time quantitative poly-
merase chain reaction (RT-qPCR) on four candidate genes that were 
highlighted in both our differential expression and network analysis: 
ACTB, FLNA, DUSP7, and NEDD9. ACTB and FLNA are known 
regulators of integrin-induced actin repolymerization (58), DUSP7 
is a known regulator of ERK and JNK pathways (49), and NEDD9 is 
a known regulator of cellular motility both via integrin-induced 
focal adhesion stabilization and via JNK pathways (71). Our results 
support a potential role of DUSP7 and NEDD9 in mediating radiation-
i nduced unjamming, but not ACTB or FLNA (fig. S6). The universality 
of the UJT across stimuli remains to be comprehensively investigated, 
and our analysis of transcriptomics and molecular interactions in the 
case of compression of HBECs is only the first step toward better 
characterizing the UJT at the genome- wide level. Nevertheless, these 
findings establish that compression- induced responses of HBECs 
involve the coordinated interplay of downstream pathways, including 
development, energy metabolism, and cytoskeletal and ECM re-
organization, consistent with the morphological and dynamical 
changes observed during the UJT.

By highlighting the value of a system biology approach in studying 
the UJT, our study motivates the investigation of novel biological 
hypotheses and suggests new experimental directions. On the one 
hand, the design of targeted experiments will be crucial for elucidating 
the functional mechanisms and causative impact of the candidate 
genes identified in our work. On the other hand, our results raise 
questions about the universality of the UJT transcriptional program 
across different physiological and pathophysiological contexts. 
Future bulk and single-cell RNA-seq experiments, as well as spatially 
resolved transcriptomic experiments, will be critical for answering 
these important questions.

MATERIALS AND METHODS
Experimental design
Primary HBECs and mechanical compression
Primary HBECs were derived from four donors with no preexisting 
chronic lung disease and four asthmatic donors following the same 
protocol as described previously (11). HBECs were grown for 5 to 
6 days to reach confluency and subsequently cultured in ALI condi-
tions (11). For each donor, two independent replicates were intro-
duced into the polarization process.

On ALI day 14, well-differentiated nonasthmatic HBECs were 
exposed to 30-cm H2O apical-to-basal mechanical compression for 
3 hours as described in (11), and after this time, pressure was released. 
Compressed nonasthmatic HBECs were harvested both immediately 
after pressure release, referred in the text as the 3-hour time point, 
and after a further incubation period of 21 hours, referred in the text 
as the 24-hour time point. Control and asthmatic noncompressed 
HBECs were also harvested at the same reference time points. 
Harvested cells were used for isolation of RNA.
RNA isolation, library preparation, and RNA-seq
Total RNA was isolated organically using QIAzol lysis reagent and 
the QIAGEN miRNeasy Kit (QIAGEN). Quality was assessed using 
the NanoDrop 8000 spectrophotometer. Sequencing libraries were 
constructed with the TruSeq Stranded Total RNA Library Prep Globin 
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Kit (Illumina). Sequencing was performed using a HiSeq 2500 in-
strument (Illumina). Raw reads were trimmed with Skewer (72) and 
then mapped to the GRCh38 reference genome using STAR (73). 
Read counts were computed with HTSeq (74). Data were normal-
ized using DESeq2 (75).

Statistical analysis
Differential expression analysis
Differential expression analysis was performed using the R package 
DESeq2 (v.1.22.2) (75). Three separate DE analyses were performed: 
nonasthmatic compressed HBECs at 3 hours versus nonasthmatic 
uncompressed HBECs at 3 hours, nonasthmatic compressed HBECs 
at 24 hours versus nonasthmatic uncompressed HBECs at 24 hours, 
and asthmatic versus nonasthmatic uncompressed HBECs. Genes 
with zero counts across all the different conditions were removed. 
For the first two DE analyses, the design matrix was built to take 
into account batch effects in cells derived from the same donor. In 
the third DE analysis between uncompressed asthmatic versus non-
asthmatic HBECs, both the 3- and 24-hour time points were included, 
and thus, the design matrix was implemented to remove temporal 
batch effects. In all the DE analyses, we applied DESeq2-independent 
filtering, and P values were corrected for multiple hypothesis testing 
by using the Benjamini-Hochberg (BH)–FDR adjustment.
Hierarchical clustering to identify the  
three transcriptional regimes
The three transcriptional regimes (transient, long term, and increasing) 
described in the main text were identified by performing hierarchical 
clustering on the z scores of the normalized expression counts. Spe-
cifically, raw counts were normalized and transformed for variance 
stabilization using the DESeq2 function VST (variance stabilizing 
transformation). We then performed a hierarchical clustering on 
the counts’ z scores using the Euclidean distance and the com-
plete-linkage metrics. We cut the cluster dendrogram so that we 
obtained two clusters for DE genes only at 3 hours, six clusters for 
DE genes only at 24 hours, and four clusters for DE genes at both 3 
and 24 hours. On the basis of the clustering results, we selected three 
specific clusters corresponding to three characteristic transcriptional 
responses: transient, long term, and increasing.
Enrichment analysis: GO, KEGG, and Reactome  
enrichment analysis
For each transcriptional regime, we performed GO overrepresentation 
tests using the “enrichGO” function in the R package “clusterProfiler” 
(v.3.10.1) (36), setting as a background the gene set used for the 
differential expression analysis. In both GO CC and BP terms, we 
used the R annotation package “org.Hs.eg.db” (v.3.7.0). To identify 
the most active pathways mediating the different transcriptional re-
gimes, we used the clusterProfiler function “enrichKEGG” to perform 
KEGG pathway enrichment on the merged set of DE genes at 3 
and 24 hours. We confirmed the results of the KEGG enrichment 
using the Reactome database (47). We performed enrichment analy-
sis on the merged set of DE genes at 3 and 24 hours using the clus-
terProfiler function “enrichPathway.” For all enrichment analyses, 
P values were adjusted using the BH-FDR correction, and an 
FDR < 0.05 was used to identify significantly enriched pathways.
PPI network
The PPI network used in our network analysis was compiled by 
Cheng et al. (54). As described in the original paper, this PPI network 
integrates 15 different databases and includes (i) binary PPIs identi-
fied via high-throughput yeast-two-hybrid (Y2H) experiments; (ii) 

kinase- substrate interactions from literature-derived low-throughput 
and high-throughput experiments; (iii) literature-curated PPIs 
identified through affinity purification mass spectrometry (AP-MS), 
Y2H, literature- derived low-throughput experiments, and protein 
three-dimensional structures; and (iv) signaling network interactions 
from literature-derived low-throughput experiments, as annotated in 
SignaLink2.0. Only the largest connected component of the network 
was considered, resulting in an interactome of 16,656 proteins and 
243,592 interactions.
RKT analysis
As an initial input for the implementation of the RKT analysis, we 
filtered the PPI network based on a list of receptors (R), kinases (K), 
and TFs, which were identified as follows. Receptors and kinases 
were assembled from the curated databases developed in (52) and 
(53), respectively. For the TFs, we first generated a list of TF motif 
mappings. To do this, we used FIMO (find individual motif occur-
rences) (76) to scan the human genome (hg38) for a comprehensive 
set of CIS-BP (catalog of inferred sequence binding preferences) 
Single-Species DNA motifs curated in the MEME (multiple em for 
motif elicitation) suite (77). Hits that met a significance less than 
1 × 10−4 and fell within [−750, +250] base pairs of a gene’s transcrip-
tional start site [based on gene annotations downloaded from UCSC; 
(78)] were used to construct a set of TF-gene interactions. We used 
this mapping to select TFs targeting DE genes at 24 hours after 
compression. In particular, for each TF, we used the hypergeometric 
test to compute the P value of the overlap between the TF’s target 
genes and DE genes at 24 hours. TFs with a P value lower than 0.05 
were included in the network. The total selected set of receptors, 
kinases, and TFs included 1827 genes.

After filtering the PPI network based on this list (1759 nodes), 
we removed all the R-R, R-TF, K-R, TF-R, TF-K, and TF-TF edges 
to restrict our analysis to the shortest paths following the RKT 
directionality. We further filtered the network to only include R 
and K annotated specifically to either the KEGG focal adhesion 
(hsa04510) or MAPK (hsa04010) pathways, obtaining two separate 
subgraphs for each pathway. For each subgraph, we computed all 
the shortest paths containing one layer of receptor, up to five layers 
of kinases, and one layer of TFs. Paths that included interactions be-
tween different receptor classes were removed, as these interactions 
typically occur via indirect cross-talk of downstream signaling pathways 
and do not represent direct ligand-receptor interactions.

To determine the main processes regulated by the most active 
RKT paths, we selected the genes that were targeted by TFs in each RKT 
path (based on the TF mapping described above) and that were DE at 
the 24-hour time point. We performed pathway overrepresentation 
test on the GO BP enriched in this gene set using clusterProfiler (see 
above), and we focused on the top 30 enriched pathways (BH-FDR < 
0.05). We used all of the genes (DE and not-DE) targeted by the TFs 
in the RKT paths as a background for the overrepresentation test.
Flow centrality and flow connectivity score
Flow centrality is a topological measure proposed by Maiorino et al. 
(57). The flow centrality FCS,T(i) of a node i with respect to a given 
source S and target T set of nodes is given by

   FC   S,T (i) =   1 ─ ∣S∣ ∣T∣    ∑ s∈S,t∈T        σ  st  (i) ─  σ  st      

where st(i) is the number of shortest paths connecting a source 
node s to a target node t passing through node i, st is the total number 
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of shortest paths connecting s and t, and ∣S∣ and ∣T∣ denote the 
size of the source and target sets, respectively. Given this definition, the 
FCS of a node represents the statistical significance of a node’s flow 
centrality value with respect to a null distribution of random pairs of 
source and target gene sets. Specifically, the FCS of a node i is equal to

  FC S   S,T (i ) =    F C   S,T (i ) −    FC    ─    FC      

where FC and FC are the average and SD across the distribution 
of the node’s FCS, T(i) values obtained by computing its flow centrality 
with respect to 1000 random source and target gene sets [see (57) 
for details]. High values of FCS indicate that the node occurs more 
frequently in connecting the source and target modules. Genes with 
FCS greater than 2 in the PPI are defined as “flow central genes.” In 
contrast to the raw values of flow centrality, the flow central score is 
not biased toward high-degree nodes.

To determine potential similarities among the 556 flow central 
genes identified in our analysis, we performed a clustering analysis. 
For each flow central gene, we created a binary vector representing 
all source and target nodes; we assigned a value of 1 to an element of 
this vector if the corresponding source/target node occurred in one of 
the shortest paths mediated by the flow central gene. We performed 
an unweighted average linkage clustering on these 556 binary vectors 
using the Hamming distance metric and identified five main clusters. 
We then investigated the connectivity properties of each cluster by 
defining a connectivity score, f c

S/T, as

    f    c   S/T   =  ∑ i=0   N  S/T        N   i   flow   /  S  c    

where Ni
flow is the number of flow central genes in cluster c that 

connect to source/target node i, Sc is the size of the flow central cluster c, 
and NS/T is the size of the source and target modules, respectively. 
The connectivity score measures the relative amount a cluster 
mediates the communication with the source/target sets.
Comparison between flow central genes in asthmatic HBECs 
at baseline and in nonasthmatic HBECs at 24 hours  
after compression
We first compared the transcriptional profiles of (i) nonasthmatic 
HBECs at 24 hours after compression and (ii) noncompressed asthmatic 
HBECs by computing the overlap in the DE genes in each condi-
tion. We found 14 overlapping genes between DE genes at 24 hours 
after compression and DE genes in asthmatic cells (hypergeometric 
P = 4.64 × 10−12). To further identify global patterns of similarities, 
we selected the DE genes at 24 hours after compression (FC > 1.5 
and BH-FDR < 0.05) and compared the sign of their FC value between 
the two DE analyses. The signs of the FC values were positively correlated, 
with a Pearson correlation coefficient of  = 0.4 and two-tailed P = 
1.8 × 10−9, showing similar perturbations in the genomic patterns 
of nonasthmatic postcompression cells and asthmatic cells.

For the comparison between the flow central genes connecting 
nonasthmatic postcompression HBECs at 3 hours versus 24 hours 
and nonasthmatic postcompression HBECs at 3 hours versus asthmatic 
HBECs, we modified the original definition of FCS to remove non-
informative similarities in the calculation of the flow centrality values 
due to the same source set. To account for these biases, we random-
ized only the target module in the computation of the FCS, following 
the same randomization protocol described in (57). It follows that 

the resulting FCS expresses the statistical significance of the flow 
central values by comparing them with a null distribution where only 
the target set is variable. This approach allowed us to estimate 
similarities between flow central genes that are related only to the 
specific target sets chosen.

Experimental validation
Protein expression analysis
To detect secreted ECM protein Tenascin C in response to compres-
sion by Western blot analysis, basolateral conditioned media were 
collected at 24 hours from HBECs with or without compression. In 
both conditions, equal amounts of protein were concentrated from 
the basolateral conditioned media to pellets using 20% trichloroacetic 
acid. Pellets were washed with ice-cold acetone three times and 
suspended in 10 l of 2× SDS–polyacrylamide gel electrophoresis 
(SDS-PAGE) buffer, boiled, and loaded on the 10% SDS-PAGE 
as described previously (79, 80). Transferrin was detected as a 
loading control.
Quantitative real-time RT-qPCR
We detected mRNA expression in HBECs exposed to two different 
stimuli known to induce the UJT: mechanical compression and IR.  
For the radiation-induced UJT, primary HBECs from two donors 
with no preexisting chronic lung diseases were ALI-cultured and 
were exposed to subtherapeutic doses (1 gray) of IR on days 7, 10, 
and 14 of ALI culture [using the same protocol described in (19)]. 
Two independent replicates were introduced for each donor. RNA 
was extracted at 24 hours after the final IR exposure. For the 
compression-induced UJT, RNA was extracted from compressed 
HBECs (six donors with no preexisting chronic lung diseases) at 
24 hours after the onset of pressure using the same protocol described 
in Materials and Methods.

RNA was extracted from cells using the RNeasy Mini Kit (QIAGEN, 
Valencia, CA) according to the manufacturer’s instructions. One 
microgram of total RNA was used to synthesize complementary 
DNA (cDNA) using MultiScribe reverse transcriptase (Applied 
Biosystems, Foster City, CA). RT-qPCR was performed using 25 ng 
of cDNA and 2× SYBR Green PCR Mastermix. Primers specific for 
ACTB (5′-GGACTTCGAGCAAGAGATGG-3′/5′-AGGAAGGAAG-
GCTGGAAGAG-3′), DUSP7 (5′-ATCCCCATCTCTGACCACTG-3′/ 
5′-TAGGCGTCGTTGAGTGACAG-3′), NEDD9 (5′-ATGTCCAC-
GTCTTCCACCTC-3′/5′-TTAGGCTGGAGACACCCATC-3′), 
FLNA (5′-GGAGGAGGCAAAAGTGACCG-3′/5′- ACTTATCCAC-
GTACACCTCGAAG-3′), and GAPDH (5′-TGGGCTACACTGAG-
CACCAG-3′/5′-GGGTGTCGCTGTTGAAGTCA-3′) were used to 
test the mRNA expression. PCR quantification was done with the 
comparative Ct method, with normalization to GAPDH as the 
housekeeping gene.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/30/eabf1088/DC1

View/request a protocol for this paper from Bio-protocol.
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