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Benefiting from the rapid development of electron microscopy imaging and deep
learning technologies, an increasing number of brain image datasets with segmentation
and synapse detection are published. Most of the automated segmentation methods
label voxels rather than producing neuron skeletons directly. A further skeletonization
step is necessary for quantitative morphological analysis. Currently, several tools are
published for skeletonization as well as morphological and synaptic connectivity analysis
using different computer languages and environments. Recently the Julia programming
language, notable for elegant syntax and high performance, has gained rapid adoption
in the scientific computing community. Here, we present a Julia package, called
RealNeuralNetworks.jl, for efficient sparse skeletonization, morphological analysis, and
synaptic connectivity analysis. Based on a large-scale Zebrafish segmentation dataset,
we illustrate the software features by performing distributed skeletonization in Google
Cloud, clustering the neurons using the NBLAST algorithm, combining morphological
similarity and synaptic connectivity to study their relationship. We demonstrate that
RealNeuralNetworks.jl is suitable for use in terabyte-scale electron microscopy image
segmentation datasets.

Keywords: skeletonization, morphological analysis, clustering, connectomics, Julia language, neuron
morphology, neuron connectivity

INTRODUCTION

Neural morphology and synaptic connectivity are closely related to brain function. With both
nanometer resolution and a large field of view, advanced Electron Microscopes can produce large-
scale image stacks (Kornfeld and Denk, 2018; Yin et al., 2020). Image voxels, pixels in a 3D image
volume, can be clustered as individual neurons manually (Kasthuri et al., 2015) or automatically
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using computer vision technologies (Lee et al., 2017, 2019, 2021;
Januszewski et al., 2018; Macrina et al., 2021). Benefiting from
the rapid development of deep learning (LeCun et al., 2015),
the performance of automated segmentation approaches has
greatly improved (Beier et al., 2017; Lee et al., 2017, 2019).
With additional help from proofreading (Kim et al., 2014; Zhao
et al., 2018; Dorkenwald et al., 2020; Hubbard et al., 2020),
reconstructed neurons with synaptic connectivity can be used for
scientific discovery (Deutsch et al., 2020; Januszewski et al., 2020;
Vishwanathan et al., 2020).

Neurons are like trees and their skeletons can be used for
morphological analysis. Skeleton or centerline representation
is widely used in the morphological analysis (Stepanyants and
Chklovskii, 2005; Halavi et al., 2008; Cuntz et al., 2011; Parekh
and Ascoli, 2013; Armañanzas and Ascoli, 2015). In contrast
to manual tracing and getting a neuron skeleton directly, most
existing automated segmentation methods produce voxel labeling
and are skeletonized in another step.

Synapses can also be detected automatically (Huang et al.,
2018; Turner et al., 2020; Buhmann et al., 2021; Liu and Ji,
2021). Synaptic connectivity analysis can be used to detect motifs
or communities. Although several software tools exist for each
processing or analysis step, they were normally implemented
using different computer languages. There is a lack of a consistent
computational environment for the whole analysis pipeline,
and users have to switch back and forth between different
programming languages and environments.

Traditionally, developers normally use an interpreted
language for prototyping, such as Python or MATLAB
(MathWorks, Inc., Natick, MA, United States), and then
translate the code to a compiled language, such as C or C++,
to speed up the computation for large scale deployment. This
was called a “two-language problem.” Although some packages,
such as Cython and pypy, can be used to help generate lower-
level code, there still exist a lot of restrictions. Recently, a
programming language with both intuitive syntax and high
performance, called Julia (Bezanson et al., 2017), was designed
to tackle this problem and has gotten more and more popular in
the scientific computing community (Perkel, 2019). Benefiting
from this design, prototype code can be compiled just in time
and transformed into efficient binary code. As a result, we do
not need to rewrite the prototype code using another low-level
language, such as C or C++. Motivated by this elegant design,
we use Julia to implement some essential analysis steps, including
skeletonization, morphological analysis, and connectivity
analysis, in two software packages called RealNeuralNetworks.jl
and BigArrays.jl.

MATERIALS

We demonstrate the usage of RealNeuralNetworks.jl by analyzing
a dataset with some proofread neurons. The details of this dataset,
including sample preparation, imaging, automated segmentation,
proofreading, was previously reported (Vishwanathan et al., 2017,
2021). Briefly, a sample (about 250 µm× 120 µm× 80 µm) from
a zebrafish larvae brainstem was stained, sectioned, and imaged

using a Zeiss Sigma field emitting scanning electron microscope.
The image voxel size is 5 nm× 5 nm× 45 nm, and the final image
volume size is over four terabytes with a voxel bit-depth of 8
(256 gray levels). Images are aligned and segmented automatically
using a convolutional neural network (Lee et al., 2017; Wu
et al., 2021). Based on the automated segmentation, about three
thousand objects, including neurons or orphan neurites, were
proofread using a modified Eyewire system (Kim et al., 2014;
Greene et al., 2016; Bae et al., 2018; Vishwanathan et al., 2021).
The final plain segmentation was exported to Google Cloud and
visualized using Neuroglancer (Maitin-Shepard, 2021; Figure 1).

METHODS AND RESULTS

Data Storage
Segmentation and skeleton data are stored in Google Cloud
Storage. The cutout and saving of segmentation chunks are
implemented in a standalone Julia package, called BigArrays.jl
(see section “Code Availability”). This is similar in functionality
to the Python package CloudVolume (Charles et al., 2020;
Silversmith et al., 2021b), and the data format is compatible
with both packages. The cutout and saving of chunks were
implemented on the client, so no intermediate server was needed.
Benefiting from the distributed storage system in the cloud,
the cutout and saving performance scales linearly with the
number of operations. Besides skeletonization, BigArrays.jl was
designed for general usage and could be used to handle arrays
that are too large to fit in RAM. For example, a potential
application is solving the out-of-memory issue in the simulation
of quantum computing using tensor networks (Fishman et al.,
2020) (Personal Communication).

For skeletonization, we can store the results in several formats.
Currently, we support SWC with plain text encoding (Ascoli
et al., 2001) which is widely used in most other analysis tools.
Additionally, We also created a customized binary representation
of SWC and all the numbers are encoded as binary scalar values
directly and the loading and saving speed is greatly accelerated.
For the synapses, it was detected externally and the result was
saved using a language agnostic format “CSV.”

Additionally, the data, including segmentation volume and
skeletons, are formatted following Neuroglancer Precomputed.
As a result, the data could be visualized directly using
Neuroglancer (Maitin-Shepard, 2021) once they are uploaded to
the cloud storage without any additional work.

Distributed Skeletonization of Neurons
To speed up skeletonization, we implemented the hybrid cloud
distributed computation architecture in python-based chunkflow
(Wu et al., 2021). The object IDs were used to define tasks and
all the IDs were ingested to a queue in Amazon Simple Queue
Service (SQS) using a Julia package called AWSSDK.jl (2021). The
skeletonization of each neuron is independent of each other, so
performance scales linearly with the number of nodes allocated.

Because task management (in SQS) and storage management
are both distributed, we can launch workers on any computer
with an internet connection and cloud authentication. Each
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FIGURE 1 | Sparse segmentation after proofreading. (A) Some of the neurons are proofread and the fragments are agglomerated as individual neurons. (B) Some of
the proofread neurons are visualized.

FIGURE 2 | Skeletonization computation in a worker.

task performs skeletonization for one object, called sparse
skeletonization. The computation pipeline on the worker
uses a modified TEASAR algorithm (Sato et al., 2000;
Bae et al., 2018; Silversmith et al., 2021a). Briefly, the steps are as
follows (Figure 2).

1. A worker fetches a task from SQS;
2. It then fetches the segmentation chunk list covering that

object or neuron;

3. It extracts the point cloud of that object; It computes the
distance from the boundary of the binary mask of that
object;

4. It finds a point with the largest distance to the boundary as
a seed;

5. If not all the points are visited, find a new central path
by computing the shortest path from seed to the furthest
unvisited point and then mark all the nearby points as
unvisited;
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FIGURE 3 | (A) Skeletonize of a single neuron. Note that broken parts were reconnected. (B) All the skeletons with a random color. The spheres represent cell
bodies with varying diameters.

6. If all the points have already been visited, the
skeletonization is done and it switches to postprocessing,
including removing redundant nodes, removing hair
by comparing the diameter and path length, removing
branches inside the cell body, resampling the node
density to make it more evenly distributed along the path,
removing empty branches, smoothing.

Given a sparsely or densely segmented volume, we extract the
centerline or skeleton of its neurites one by one using a modified
TEASAR algorithm (Sato et al., 2000; Bae et al., 2018; Silversmith
et al., 2021a). Given a bit-packed binary volume representing a
neuron, the foreground voxels are extracted as a point cloud. The
distance from each point to the nearest boundary was computed
as a Distance from Boundary Field (DBF). Find the point with the
largest DBF as a seed point. Construct an undirected graph with
points as nodes and neighboring points are connected with edges.
Find the farthest unvisited point as the destination and compute
the shortest path as the skeleton using Dijkstra’s algorithm

TABLE 1 | Features for single neuron morphology analysis.

Features Description

Segment order The order increases from the root node while
branching

Segment length The path length of a single segment

Branching angle The angle of two segments in a branching point

Tortuosity The curvature of a segment

Distance to root path length The minimum path distance from the segment to
root node

Average radius The mean of all the nodes radius in the segment

Radius from soma For each node, the Euclidean distance from the
soma

Terminal segment path
length

The path length of each terminal segment

The ratio of neck diameter
to head

Could be used to identify spines

(Dijkstra, 1959). Points around the skeleton are marked as visited
and not used in the following computation. Find the unvisited
point closest to visited points as the new seed and iterate until all
the points are visited. If the segmentation voxel is not continuous,
we can look for the nearest terminal node (Supplementary
Figure 1) to reconnect within a distance threshold. Note that the
binary representation was bit-packed and the memory usage was
reduced by 8 fold.

As a result, all proofread neurons are skeletonized (Figure 3).
The distributed computation was performed in Google Cloud.

Morphological Features for Single
Neuron Analysis
We decompose each neuron into segments or single nodes and
compute their features. Definitions of node, branching node,
root node, terminal node, segment, and the terminal segment
are in Supplementary Figure 1. Additionally, an irreducible
node corresponds to a soma, branching node, or terminal
node. Based on existing literature (Uylings and van Pelt, 2002;
Schierwagen, 2008; Schierwagen et al., 2010; Cuntz et al., 2011),
we implemented some widely used morphological features for
the skeletons and demonstrated the results using our zebrafish
dataset (Table 1 and Figure 4). In the spines of mammalian
brains, the diameter of the neck is normally much smaller than
the head, thus we added a feature to measure the ratio of neck
diameter to head (Figure 4H).

Morphological Features of Many
Neurons
For a number of neurons, we would like to encode each neuron
using a feature vector, which could be used in neuron type
clustering. Based on the literature, we have also implemented
several widely used features (Table 2) and applied them to our
zebrafish dataset (Supplementary Figure 2; Uylings and van Pelt,
2002; Schierwagen, 2008; Schierwagen et al., 2010; Cuntz et al.,
2011; Wanner et al., 2016).
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FIGURE 4 | Some morphological features of a single neuron. (A) The morphology of a neuron is visualized in Jupyter Notebook. (B) Histogram of tortuosity of
neuron segments. (C) Histogram of neighboring node distance. (D) Histogram of path length to the root node. (E) Sholl analysis. (F) Segment path length versus
segment order. (G) Branching angle in radians versus tortuosity of segments. (H) Terminal segment path length versus terminal segment neck-head radius ratio.

Morphological Clustering Using NBLAST
Most of traditional morphological features do not measure
the spatial distribution of neurons. An automatic neuron type
classification method, called NBLAST (Costa et al., 2016),
measures the spatial distribution and is getting popular. The
original method was implemented in R and C++. In order
to incorporate this method in our analysis ecosystem, we
implemented this algorithm from scratch using Julia. We
performed hierarchical clustering (Supplementary Figure 3)
using Clustering.jl (Stukalov and Lin, 2021) and classified the
neurons into 23 types based on the NBLAST similarity scores
(Figure 5). The visualization was created using Neuroglancer.

Synaptic Connectivity Combined With
Morphology
After neuron segmentation and synapse detection were done
externally, we can construct a graph of the neural network.
Within the graph, the neurons are nodes and the synapses are
edges. We use the synapse number as a connectedness metric

for neurons. The more synapses connecting two neurons, the
closer they are. Based on the distance matrix, we can perform
hierarchical clustering, reorder the connectivity matrix, and
identify some communities (Figure 6A).

Once we have the skeleton morphological features and
synaptic connectivity, we can combine them. We can order
the neurons in the connectivity matrix using NBLAST
hierarchical clustering. As a result (Figure 6B), there are
some morphologically similar neurons highly connected with
each other. Morphologically similar neurons tend to have
stronger synaptic connections as well (Figure 6C), which is
consistent with previous findings in the mouse visual cortex
(Lee et al., 2016).

DISCUSSION

RealNeuralNetworks.jl was built to process voxel segmentation
datasets from Serial Section Electron Microscopy images.
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TABLE 2 | Features of a single neuron.

Features Description

Distance from soma to the
center of skeleton mass

A metric to measure symmetricity centered by
soma

Total path length The physical length of all the skeleton paths

The number of branching
points

Median segment length The median segment length of all the segments
starts and ends at irreducible nodes

3D Sholl Analysis (Sholl, 1953) Count the intersections to spheres centered on
the root node

Average branching radian The mean of the branching angles

Average tortuosity The average value of the ratio of the path length
to the Euclidean distance between irreducible
nodes

Asymmetry The distance of the soma node to the arbor
center of mass

Typical radius The Euclidian distance of the dendritic arbor
points to the center of mass

Fractal dimension Measures similarity across scales

Root node radius The radius of the root node which is normally
the soma

Total dendrite path length If the dendrite segments are classified

Longest segment path length

Convex hull volume

Surface area

Post-synapse number Number of postsynaptic sites

Pre-synapse number Number of presynaptic sites

Some components, such as skeletonization and morphological
analysis, can be reused for sparsely labeled neurons in Light
Microscopy images.

Comparison With Related Tools
Most existing tools are specifically designed for one or two
analysis steps, rather than providing a one-stop solution and
a consistent computational environment. Compared with some
related software, RealNeuralNetworks.jl has a more complete
toolset for the analysis (Table 3).

NeuTu (Zhao et al., 2018) was built mainly for proofreading
neuron reconstruction from Electron Microscopy images.
Besides that, it can also measure neuron shape similarity and
perform clustering of neuron types (Zhao and Plaza, 2014).
The measurement is built upon arbor density maps which is
much more computationally heavy than skeleton-based NBLAST
(Costa et al., 2016). Although the sparse skeletonization of
NeuTu was also built upon the TEASAR algorithm (Sato et al.,
2000), the geodesic distance between neighboring voxels is
measured using the image intensity rather than distance map in
our implementation. Thus, the skeleton accuracy is correlated
with image quality.

Currently, RealNeuralNetworks.jl only has some widely used
morphological features and is not as complete as L-Measure
(Scorcioni et al., 2008) and TREES toolbox (Cuntz et al., 2010).
Vaa3D (Peng et al., 2010, 2014) was built for light microscopy

image processing, especially neuron tracing, and has a much
richer set of tracing algorithms.

Kimimaro (Silversmith et al., 2021a) was built for dense
skeletonization rather than sparse skeletonization. Currently, it
does not have a bit-packed binary representation of segmentation
volume and requires much more memory for sparse usage.

Why Julia
Julia is a modern language with nice features for both
scientific computing and general programming (Bezanson et al.,
2017; Perkel, 2019). It performs just-in-time compilation for
the code, so performance can be comparable with C/C++.
In addition, it has an intuitive syntax and an interactive
programming interface like MATLAB (MathWorks, Inc., Natick,
MA, United States), which is useful for prototyping and
experiments. It is open-source with a permissive license,
so it is much easier to deploy in the cloud compared
with commercial languages requiring a license, such as
MATLAB (MathWorks, Inc., Natick, MA, United States).
Julia can be used interactively in Jupyter Notebooks (The
“Ju” is from the name of Julia) (Perkel, 2019). Julia is
increasingly popular in the scientific computing community.
It has been downloaded over 25 million times and over 5000
packages are registered.

For most of the interpretable languages, such as Python
and MATLAB, manipulating single elements in one or
nesting loop is normally tens or hundreds of times slower
than low-level languages, such as C and C++. For good
performance, programmers are limited to using “vectorized”
operations which were actually implemented in lower-level
languages. In our applications, we perform a lot of voxel
manipulations that are hard to express in “vectorized”
operations. Benefiting from the just-in-time compilation,
all of such operations can be implemented directly in Julia with
good performance.

For the computation in local cluster or supercomputer, Julia
was designed for distributed computing at the beginning and
has gained a dramatic rise in the high-performance computing
community. Our packages are expected to be adaptable in
a local cluster.

Limitations
The skeletonization module was designed for sparse
skeletonization rather than dense skeletonization. For
sparse skeletonization, we can skeletonize some neurons
of interest while the proofreading is ongoing. It would be
too computationally expensive to iterate over the neurons
individually in a terabyte-scale or petabyte-scale image volume.
For dense skeletonization, Kimimaro is a better alternative
(Silversmith et al., 2021a).

Currently, RealNeuralNetworks.jl only has limited support
for visualization, such as functions for skeleton visualization.
For more complicated plots, users must build their own scripts
or Jupyter Notebooks based on other Julia visualization
packages. Compared with the TREES toolbox (Cuntz
et al., 2010, 2011), RealNeuralNetworks.jl does not have
an interactive skeleton editing interface. Compared with
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FIGURE 5 | NBLAST classification of neurons. The scale bar in the last image is 100 µm.
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FIGURE 6 | Combine morphological NBLAST clustering and synaptic connectivity. (A) The synaptic connectivity matrix was reordered by hierarchical clustering
based on connectivity distance. (B) The synaptic connectivity matrix was reordered according to hierarchical clustering based on the NBLAST score. The synapse
number is encoded in the point diameter and color. (C) For each neuron pair, the relationship between NBLAST morphological similarity and number of synapses.

TABLE 3 | Comparison of software tools.

Tool/Feature References Language Skeletonization Morphological features NBLAST similarity Synaptic connectivity

L-Measure Scorcioni et al., 2008 Java X

NBLAST Costa et al., 2016 R, C++ X

NeuroM Palacios et al., 2021 Python X

NeuTu Zhao and Plaza, 2014 C++ X

TREES toolbox Cuntz et al., 2010 MATLAB X

Vaa3D Peng et al., 2014 C++ X X

CBLAST Januszewski et al., 2020 Python, R, C++ X* X

3D BrainCV Wu et al., 2014 MATLAB X X

Kimimaro Silversmith et al., 2021a Python, C++ X

RealNeuralNetworks.jl Julia X X X X

*CBLAST uses NBLAST for similarity measure.

L-Measure, there are some missing morphological features in
RealNeuralNetworks.jl.

Julia is a young language with rapid development and
adoption in the scientific computing community. However, many
of the packages are still evolving and are not yet stable.

CONCLUSION

In summary, we present a Julia-based tool, called
RealNeuralNetworks.jl, for sparse skeletonization, morphological
analysis, and synaptic connectivity analysis. We provide
an integrated computational environment for the analysis
pipeline. We have demonstrated the utility of this package
by processing a Zebrafish segmentation dataset. We hope
that it could be useful for other connectomics projects
in the future.

CODE AVAILABILITY

The code is open-sourced in GitHub: https://github.com/
seung-lab/RealNeuralNetworks.jl. The BigArrays.jl is available in
GitHub as well: https://github.com/seung-lab/BigArrays.jl. The
Jupyter Notebooks are available in GitHub: https://github.com/
jingpengw/realneuralnetworks-notebook.
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