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Abstract: The concept of united airway disease comprises allergic rhinitis (AR) with asthma,
and eosinophilic chronic rhinosinusitis (ECRS) with asthma. It embodies a comprehensive approach to
the treatment of upper and lower airway inflammation. The treatment of upper airway inflammation
reduces asthma symptoms and decreases the dose of inhaled corticosteroids (ICS) necessary to
treat asthma. However, little is known about the mechanisms of interaction between upper and
lower airway inflammation. Here we review these mechanisms, focusing on neural modulation
and introduce a novel therapeutic approach to united airway disease using a fine-particle ICS.
Our understanding of the relationship between the upper and lower airways and its contribution
to T helper 2 (Th2)-skewed disease, such as AR and/or ECRS with asthma, has led us to this novel
therapeutic strategy for a comprehensive approach to the treatment of upper airway inflammation
with asthma.
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1. Etiology of United Airway Disease

Eosinophilic airway inflammation such as allergic rhinitis (AR) or chronic rhinosinusitis with nasal
polyposis (CRSwNP) is often associated with lower airway diseases, such as asthma. Particularly in the
patient with aspirin-exacerbated respiratory disease, CRSwNP is accompanied by severe asthma [1].
The coexistence of both upper and lower airway disease is known as united airway disease, described
as one airway, one disease. Diseases of the upper and lower airways share macroscopic pathologic
characteristics as well as similar histological appearance in rhinitis and asthma [2]. In the Allergic
Rhinitis and its Impact on Asthma (ARIA) guidelines, Bousquet et al. suggested that the upper and
lower airways could be considered a single entity, supporting the united airways concept, but also
highlighted some differences [3]. This concept involves a continuum of inflammation involving one
common airway from the upper to the lower airway, and is considered as a heterogeneous disorder
caused by allergic or nonallergic reproducible mechanisms and presents several phenotypes [4,5].

In recent decades, the prevalence of AR has markedly increased to almost 30% since the beginning
of 2000 in the context of the Western lifestyle [6]. Recent studies have estimated that 30% of AR
patients and 70% of asthma patients have comorbid asthma and AR, respectively [4,7]. Both types
of inflammation, AR and asthma, develop in a unified morphological and functional unit and have
similarities to allergen sensitization and the process of inflammation. In a cross-sectional multicenter
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study based on the Self-Assessment of Allergic Rhinitis and Asthma (SACRA) questionnaire (state
of the impact of allergic rhinitis on asthma control, or SACRA study), Ohta et al. reported that
asthma control was significantly impaired in AR patients and that significantly more AR patients had
uncontrolled asthma than those without AR [7]. Previous surveys evaluating AR and asthma revealed
that the long-term risk of developing asthma was three times higher in AR patients [8], and the
incidence of asthma attacks was comparatively greater in asthma patients with AR [9]. In addition,
Togias et al. reported an association between degree of severity of asthma and AR [10].

In CRSwNP, there is a marked infiltration of eosinophils into the nasal polyp. In Japan, CRSwNP
with eosinophilia, referred to as eosinophilic rhinosinusitis (ECRS), is diagnosed using the Japanese
Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis (JESREC) scoring system [11].
ECRS is an intractable disease because of recurrences following multiple surgeries and is the major
endotype of CRSwNP in the Western countries [12,13]. Its prevalence in Japan and Korea has increased
in the last >20 years [14,15]. Likewise, ECRS, similar to AR, contributes to T helper 2 (Th2)-skewed
pathology and is strongly associated with severe asthma [11,13]. Indeed, we have reported that
fractionated exhaled nitric oxide reflective of disturbance of lung function was correlated with sinus
computed tomography (CT) score based on the Lund–Mackay scale [16].

Recently, Giavina-Bianchi et al. suggested the consideration of united airway disease as airway
hypersensitivity syndrome because rhinitis and asthma are chronic inflammatory diseases of the upper
and lower airways and are induced and reproduced by allergic or nonallergic hypersensitivity reactions [5].
Moreover, Wu et al. described two inflammatory phenotypes, eosinophilic and non-eosinophilic,
with a distinct clinical profile for nasal polyps and comorbid asthma, which is a common united
airway disease [17]. This evidence indicates that phenotypes and endotypes in united airway disease
must be classified by clinical features and molecular pathogenesis, respectively, in further studies.

Thus, the upper and lower airways must be integrated into the total airway, and a focus on
the concept of united airway disease, with simultaneous treatment of both AR or ECRS and asthma,
is required.

2. Relationships Among the Upper and Lower Airways and the Middle Ear in United Airway
Disease

In united airway disease characterized by eosinophilic inflammation, there are close relationships
between not only the upper and lower airway inflammation but also between the middle ear and
airway disease [5,18,19]. However, there is less evidence regarding the interaction between otitis media
and AR or ECRS. Nguyen et al. suggested that similar allergic inflammation linked AR and otitis
media with effusion and that the middle ear is a part of the united airway in atopic individuals [18].
Seo et al. reported that eosinophilic otitis media was associated with asthma severity [20], and the
treatment of asthma improved eosinophilic otitis media [19]. Although little is known about the
precise mechanisms for these relationships, it is postulated that chemical mediators released during an
allergic reaction in the nose affect the middle ear through the nasolacrimal duct and lacrimal system or
indirectly via the blood stream [19,21].

There is more evidence regarding the relationship between asthma and AR or ECRS than for
that between the ear and airway. In routine medical practice, otolaryngologists or pulmonologists
often see improvements in lower airway inflammation following the treatment of upper airway
inflammation, such as ECRS. Thus, this clinical experience indicates that there are interactions between
the upper and lower airways, but this interaction cannot be simply explained by similarities to allergen
sensitization and the process of inflammation in the total airway. Recent studies have described
this interaction as follows: endoscopic sinus surgery (ESS) improved asthma symptoms as well as
peak expiratory flow in patients with CRSwNP [22]; ESS improved scores in both the Mini Asthma
Quality of Life Questionnaire (AQLQ) and the Asthma Control Test (ACT) using validated outcome
metrics by 50% CRSwNP [23]; and ESS significantly improved the asthma symptoms, peak flow,
and arbitrary medication scores, using the US Food and Drug Administration criteria [24]. Although
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these results suggest functional interactions between the upper and lower airways in united airway
disease, little is known about the potential mechanisms for control. Currently, as shown in Figure 1,
there are three possible mechanisms for the observed association between upper and lower airway
inflammation, which are as follows: (1) decrease in postnasal drainage of inflammatory mediators
from the upper to the lower airways; (2) reduction of systemic mediators disseminated by the upper
airway; and (3) neural modulation via the nasal–bronchial reflex (NBR) [5].

Figure 1. Schema of mechanisms of interaction between upper and lower airway inflammation. Red
line and dot-line indicate parasympathetic and trigeminal nerve, respectively. AR, allergic rhinitis;
CNS, central nervous system; ECRS, eosinophilic chronic rhinosinusitis.

3. Drainage and Systemic Propagation of Inflammatory Mediators from Nasal Inflammation

In a likely mechanism, drainage of the upper airway inflammatory mediators is a convincing
mechanism, induced by the aspiration of inflammatory mediators in upper airway postnasal discharge
into the lower airway [5,10,25]. In clinical practice, patients with respiratory symptoms such as
coughing with disturbance of pulmonary function and/or increasing airway hyperresponsiveness
(AHR) in the morning because of aspiration associated with overnight secretions resulting from upper
airway disease are often encountered [3]. Moreover, Brugman et al. showed that the development of
sinusitis in the sinusitis rabbit model was related to lower AHR, even after eliminating upper–lower
airway communication [26]. In contrast, Bardin et al. used a human protocol of radioactivity in the
lower airway 24 h following technetium 99-metastable (99 mTc) injection into the maxillary sinuses
of patients with CRS with asthma, reporting that seeding of the lower airways by mucopurulent
secretions is unlikely to account for coexistent pulmonary disease [27]. Together, these studies suggest
that this theory cannot sufficiently explain all mechanisms of this interaction.

Another theory describes the mechanism by which bone marrow-derived systemic inflammatory
response and systemic mediators from upper airway inflammation are disseminated via the
bloodstream. Interestingly, Braunstahl et al. reported that bronchial provocation in AR patients without
asthma could induce allergic inflammation in the nose as well as increase the number of peripheral
blood eosinophils [28]. They showed that nasal allergen provocation in AR patients could induce
the expression of adhesion molecules and tissue eosinophilia in the upper and lower airways [29].
Finally, results of a study by Higashi et al. suggested that cysteinyl leukotriene overproduction might
be involved in hyperplastic rhinosinusitis with nasal polyposis in asthma patients, noting significant
decreases in the urinary leukotriene E4 concentrations after the sinus surgery in both aspirin-intolerant
and aspirin-tolerant asthma patient [30].
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4. Neural Modulation in United Airway Disease

Nasal swelling of the mucosa and discharge through stimulation to the nasal vasculature and
glands by inflammatory cascade in AR is regulated not only by direct effects of chemical mediators
released from inflammatory cells and epithelial cells but also by neural modulation after specific
antigen-antibody reaction [31,32]. In studies of AR patients who underwent Vidian neurectomy,
Konno et al. defined the role of the neural network in AR [33,34]. In their investigations, signaling
of the sensory nerve endings in the nose is transmitted to the central nervous system (CNS) via the
trigeminal nerve; this signaling is then involved in the nasal vasculature and gland on the opposite
side (the nasonasal reflex) through parasympathetic nerves (Figure 2).

Figure 2. Neural pathway in allergic rhinitis; nasonasal reflex, nasal-ocular reflex, and nasal–bronchial
reflex. CGRP, calcitonin gene-related peptide; SP, substance P; FcεR, Fc epsilon receptor

Eye symptoms associated with AR were investigated by Baroody et al. [35,36]. In this mechanism,
called the nasal-ocular reflex, a neurogenic network signals the CNS following trigeminal stimulation
and partly contributes to the relationship between allergic conjunctivitis and AR (Figure 2) [35–38],
whereas chemical mediators released during allergic reaction in the nose involved in allergic
conjunctivitis may also contribute to this interaction via the bloodstream [38].

Notably, it is believed that this neurogenic network, called NBR, also exists between the upper
and lower airways through the CNS by stimulation of the trigeminal in the nose and via an efferent
pathway through a parasympathetic nerve such as the vagus nerve (Figures 1 and 2) [5]. In humans,
Corren et al. demonstrated that the nasal-allergic response by nasal provocation with allergen in
AR patients enhanced AHR in the lower airway [39], and that nasal corticosteroid delivered into
nasal cavity reversed this increased AHR in the lower airway associated with antigen exposure in
AR and asthma patients [40]. Consistent with this, Bonay et al. reported that not only AHR but also
the total number of eosinophils and eosinophil-cationic protein level in the sputum was increased
after pollen challenge into the nose of patients with seasonal AR [41]. Furthermore, after ovalbumin
sensitization mice, nasal ovalbumin (OVA) provocation using an aerosol rapidly induced AHR in the
lung via the pulmonary upregulation of substance P (SP) and activation of neurokinin 1 receptors
(NK-1R) [42]. However, whether signaling from the nose through a neural pathway between the
upper and lower airways can promote chronic pulmonary inflammation and persistent AHR remains
unclear. To clarify this, additional experiments are needed: For instance, investigations about relevance
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between neural inflammation by neurotransmitters, such as tachykinins (SP and neurokinins) [43,44]
and NBR are required.

In conclusion, although all mechanisms for interaction between upper airway inflammation and
asthma are difficult to explain using one theory, several possible mechanisms may overlap to produce
this pathology.

5. A Novel Therapeutic approach to United Airway Disease

Recently, CRSwNP with a shift from predominantly neutrophilic toward eosinophilic airway
inflammation has been dramatically increasing, especially in several Asian countries over the last
20 years [45]. Notably, prevalence of ECRS, considered a special and recalcitrant subtype of CRS,
has been increased since more than 20 years [46]. Concurrently, treatment of asthma has switched from
systemic to local corticosteroid administration such as inhaled corticosteroid (ICS) [47]. The possibility
of this drastic therapeutic change might lead to an insufficient treatment of upper airway inflammation,
while no epidemiological study about this relevance has been reported. If this is true, systemic
corticosteroid administration for the simultaneous treatment of both asthma and AR or ECRS is a
better approach to treating united airway disease. Nevertheless, ICS is still an attractive approach
because it has fewer side effects than systemic corticosteroid administration, and ICS treatment
dramatically decreases the risk of death from asthma [48]. Actually, in the meta-analysis, Lohia et al
reported that intranasal corticosteroid medications improved pulmonary function, bronchial reactivity,
asthma symptom scores, asthma-specific quality of life, and rescue medication use in patients with both
AR and asthma [49], suggesting the efficacy of local corticosteroid therapy in united airway disease.

A novel approach focused on the concept of united airway disease is, therefore, needed for the
simultaneous treatment of both upper and lower airway inflammation using ICS. To regulate united
airway disease, as shown in Figure 3, we developed an original approach using the oral inhalation of
fine particles of ICS, which are then exhaled through the nose (ETN) [50].

Figure 3. Schema of HFA-BDP ETN treatment; hydrofluoroalkane-134a-beclomethasone dipropionate
(HFA-BDP) exhaled through the nose (ETN) treatment. Red dots indicate corticosteroids.

A benefit of ICS is that a sufficient number of fine particles are delivered in the nasal cavity as
well as in the lower airway. In patients with uncontrolled, recurrent CRSwNP with asthma, including
those treated with a combination of ICS to hydrofluoroalkane-134a-beclomethasone dipropionate
via a metered-dose inhaler (HFA-BDP MDI) ETN treatment improved the sinus CT score defined by
Lund–Mackay scale, airway obstruction evaluated by forced expiratory volume in 1 second (%FEV1)
and forced expiratory flow between 25% and 75% of vital capacity (%FEF25–75) and the total number
of peripheral eosinophils [50]. In addition, our blinded, placebo-controlled study revealed similar
improvements with HFA-BDP MDI ETN treatment and placebo [51]. Interestingly, long-Acting Beta
agonists (LABAs) such as formoterol and salmeterol have the effect of not only relaxing smooth muscle
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in the bronchi but also restoring corticosteroid sensitivity in patients with severe asthma [52], resulting
in a synergistic effect. Currently, ICS/LABA therapy is often used in asthma patients. As expected,
the ICS/LABA ETN treatment of patients with refractory ECRS with severe asthma results in improved
nasal symptoms with asthma control [53]. Thus, we suggest that simultaneous treatment in upper and
lower airway by HFA-BDP MDI ETN enhances therapeutic effect by blocking interaction between
upper and lower airway inflammation.

Recently, another inhaled bronchodilator using an anticholinergic drug that blocks acetylcholine
(ACh) receptors, such as a long-acting muscarinic antagonist (LAMA), was used to treat chronic
obstructive pulmonary disease as well as asthma, and several studies reported that, in asthma patients,
ICS combined with LAMA (ICS/LAMA) has greater efficacy and safety than the same dose of ICS
alone [54,55]. However, because LAMA exerts its bronchodilator effect via the inhibition of muscarinic
but not nicotinic receptors [56], the use of an anticholinergic compound must be carefully evaluated in
united airway disease. Therefore, the effect of ICS/LAMA in united airway disease can be clarified by
close patient follow-up, and it also has the potential for improving asthma.

An interesting future therapeutic strategy in united airway disease focuses on regulation by neural
inflammation via NBR in an interaction between upper and lower airway disease. Rosas-Ballina et al.
recently reported that the signaling of ACh receptors from the parasympathetic nerves modulates
the immune reaction [57]. Thus, future investigations may elucidate the mechanism for the
signaling of ACh receptors, including both muscarinic and nicotinic receptors, by ACh released
from parasympathetic nerves.

6. Conclusions

We have reviewed the etiology of united airway disease, focusing on the interaction between
upper and lower airway inflammation and, in particular, the mechanism by which neural pathways
are regulated. We suggest that next-generation therapy for united airway disease should involve the
regulation of neural inflammation and that this approach will clinical impact.
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