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Objective. )is study summarized asthma literature indexed in the Medical Literature Analysis and Retrieval System Online
(MEDLINE) and explored the history and present trends of asthma cell research by stem frequency ranking to forecast the
prospect of future work.Methods. Literature was obtained fromMEDLINE for the past 30 years and divided into three groups by
decade as the retrieval time. )e frequency of stemmed words in each group was calculated using Python with Apache Spark and
the Natural Language Tool Kit for ranking. )e unique stems or shared stems of 3 decades were summarized. Results. A total of
1331, 4393, and 7215 records were retrieved from 3 decades chronologically, and the stem ranking of the top 50 were listed by
frequency. )e number of stems shared with 3 decades was 26 and with the first and last 2 decades was 5 and 13. Conclusions. )e
number of cell research studies of asthma has increased rapidly, and scholars have paid more attentions on experimental research,
especially on mechanistic research. Eosinophils, mast cells, and T cells are the hot spots of immunocyte research, while epithelia
and smooth muscle cells are the hot spots of structural cell research. )e research trend is closely linked with the development of
experimental technology, including animal models. Early studies featured basic research, but immunity research has dominated in
recent decades. )e distinct definition of asthma phenotypes associated with genetic characteristics, immunity research, and the
introduction of new cells will be the hot spots in future work.

1. Introduction

Asthma is a major public health problem around the world,
affecting individuals across the age spectrum from infants to
older adults. )erefore, research on its pathogenesis and
treatment has been a hot topic in the study of respiratory
diseases. It is now well accepted that cell activity has a close
relationship with pathogenesis of asthma, and numerous basic
and clinical studies focus on different types of relevant cells.

As a typical example of type I hypersensitivity, the research
of immune cells concerned with asthma, such as lymphocytes,
monocytes, and mast cells, is most common. For instance,
Tcell subsets include CD4⁺, CD8⁺Tcells [1],)2,)17 [2],)9
[3], and so on. Except for immune-relevant cells, structural cells

of the airways, such as epithelial cells [4], smooth muscle cells
[5], and bronchial myofibroblasts [6], are also an important
focus of research. In recent years, cell therapy has attracted the
attention of researchers to treat asthma and its complications.
A study revealed that bonemarrow-derivedmesenchymal stem
cell (BMSC) therapy significantly suppressed lung pathology
and inflammation in the ovalbumin-induced asthma mouse
model [7].

Currently, there has been continued interest in targeting
airway cells for developing new asthma treatments. )ere-
fore, it has become imperative to analyze the current trend
and future direction of asthma cell research. )is study
summarized asthma literature indexed in the Medical Lit-
erature Analysis and Retrieval System Online (MEDLINE)

Hindawi
Journal of Healthcare Engineering
Volume 2018, Article ID 9363820, 10 pages
https://doi.org/10.1155/2018/9363820

mailto:vincent.tang@shutcm.edu.cn
http://orcid.org/0000-0002-1889-9013
http://orcid.org/0000-0001-7771-4034
http://orcid.org/0000-0001-9824-5695
http://orcid.org/0000-0001-5112-7544
http://orcid.org/0000-0002-2857-5784
http://orcid.org/0000-0002-7588-7801
https://doi.org/10.1155/2018/9363820


of the National Library of Medicine (NLM) in the past 30
years and explored the history and present state of asthma
cell research by stem frequency rank to provide ideas for
future work.

2. Objects and Methods

2.1. Objects. Literature of asthma cell research indexed from
MEDLINE in the past 30 years was divided into three groups
with 10 years as the retrieval time. )e literature containing
the keywords “Asthma” and “Cell” in the fields “Title” or
“Abstract” was included for further investigation.)e limit of
publication date in the three groups were “January 1, 1987, to
December 31, 1996,” “January 1, 1997, to December 13, 2006,”
and “January 1, 2007, to December 31, 2016,” respectively.

)e search results of each decade were exported into
a CSV file with information such as title and author. All the
titles of each CSV file were saved as a text file for analysis
with stem frequency rank.

2.2. Programming. Due to the large amount data in the
literature, we adopted Apache Hadoop, which is commonly
used in big data analysis as the data storage framework. As
a file system supporting a data-intensive distributed appli-
cation, Apache Hadoop has better distribution character-
istics and provides file services with both reliability and
mobility for the program development [8]. To speed up the
computation, we selected the Apache Spark open-source
computing framework in our study instead of the Apache
Hadoop built-in MapReduce computing method. )e major
difference between Spark andMapReduce lies in in-memory
computing technology, which means the data are analyzed
and processed to acquire the results in the memory before
being written to the hard disk [9].

)e analysis of stem frequency ranking was handled
using the Natural Language Tool Kit (NLTK). NLTK is an
important tool for dealing with human natural language,
which can be applied to word merging, text retrieval, and
statistics, and so on. )e technologies such as “Word fre-
quency Accumulation,” “Stemming Processing,” and “Stop-
word Filtering” applied in this study were all performed with
NLTK [10]. According to the integrated application of the
above techniques, the programming environment and
working process can be summarized as follows:

(1) Programming environment: EC2 server of Amazon
Web Services (AWS) platform was selected as the
programming environment.

Server model: t2 micro
Server Location: Oregon, United States
Operating System and software: Ubuntu Server
14.04 with built-in Python language (version 2.7.3),
Apache Spark (version 1.6.2), and NLTK (version
3.0).

(2) Working process:

(a) Import a text file.
(b) Create the Spark context.

(c) Convert all text to lowercase.
(d) Remove punctuations, empty lines, and non-

letter symbols.
(e) Use stop word list to filter irrelevant vocabulary

of research such as “they,” “where,” “to,” and
“is.” )e words influencing the results such as
“review,” “asthma,” and “cell” were also added
into the stop word list for filtering.

(f ) Stemming for reducing each word to its base
form by removing its common morphological
ending. In this study, we utilized PorterStemmer,
a Python wrapper of the libstemmer library, to
perform the stemming step.

(g) Rank all stems according to their frequency.
(h) List the top 50 stems, and output the results.

3. Results

3.1. ,e Number of Studies Retrieved by Searching ,ree
Decades. 1331, 4393, and 7215 records were retrieved in the
1st, 2nd, and 3rd decade, respectively, which shows that the
number of cell research literature of asthma indexed by
MEDLINE presents explosive growth from 1987 to 2017; the
literature number of the next decade was 1.5–2 times greater
than the previous one.

3.2.,eTop 50 Stems of,reeDecades. )e top 50 stems of 3
decades are listed in Table 1. )e number of stems shared
with 3 decades was 26 (Figure 1) and with the first and last 2
decades were 5 and 13 (Figures 2 and 3). )e numbers of
unique stems of 3 decades were 19, 6, and 11, respectively
(Figure 4). According to the chronological order, the author
names with the highest frequency of the three decades are
Pascal Chanez (Aix-Marseille University, Paris, France),
Stephen T. Holgate (University of Southampton, South-
ampton, United Kingdom), and Andrew Halayko (Uni-
versity of Manitoba, Manitoba, Canada).

4. Discussion

4.1. Mainstream Research Trends in ,ree Decades. )e
mainstream research trends can be summarized from stems
shared with 3 decades. First, experimental research attracted
more attention by researchers rather than clinical research.
“Children” is the only relevant stem on behalf of clinical
research for its frequent occurrence of asthma among
children, and a study reported that asthma is common in
children and is a leading cause of childhood hospitalization
[11]. )e stems related with experimental research, such as
“respons,” “express,” and “induc,” were much more com-
mon with rising frequency year after year. Mechanism
(mechan) and interventional effect were the two main di-
rections of experimental research, but mechanism was more
popular among scholars because stems about activation
(activ) of cells or pathways [12–14], immune or cell response
(respons) [15–17], genetic or protein expression (express)
[18–20], and the role of cells or relevant genes or protein
were always in the top 10 among all decades. )e other 3
stems about mechanism research “product,” “induc,” and
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“mediat” were mainly frequent in “production of cytokines”
[21], “protein or allergen-induced” [22], and “cell-mediated”
[23], respectively. Inhibition was a typical intervention effect
and its stem “inhibit” was ranked in our results. For example,
the following were included: the inhibition of glucocorti-
coids on degranulation of mast cells in allergic asthma [24],
inhibition of the kinase ITK in a mouse model of asthma
reduces cell death [25], and the inhibition of CD38 gene-

modified dendritic cells on murine asthma development
[26].

Second, two frequent stems about pathologic changes of
asthma were “inflamm” and “hyperrespons.” “Inflamm” was
also in the top 10 because airway inflammation is the main
expression of asthma, with mechanism research about in-
flammation such as etiological agents and influence factor
[27, 28], being very common. Hyperresponsiveness was

Table 1: Top 50 stems of three decades.

Ranking
1st decade 2nd decade 3rd decade

Stem Frequency Stem Frequency Stem Frequency
1 eosinophil 147 inflamm 545 inflamm 1153
2 activ 115 express 425 respons 552
3 respons 113 eosinophil 358 express 537
4 inflamm 102 receptor 351 t 526
5 t 90 activ 341 activ 525
6 express 84 respons 339 receptor 508
7 bronchoalveolar 80 t 326 mice 476
8 role 76 role 321 role 429
9 lavag 75 induc 298 epitheli 422
10 mast 72 mast 232 induc 410
11 lymphocyt 71 smooth 229 muscl 406
12 atop 67 muscl 228 smooth 401
13 cytokin 61 epitheli 228 inhibit 401
14 receptor 60 cytokin 211 immun 336
15 releas 59 product 207 mous 333
16 induc 58 inhibit 205 murin 330
17 inhibit 55 allergen 200 mast 328
18 allergen 54 atop 177 eosinophil 294
19 product 53 protein 171 remodel 290
20 epitheli 53 sputum 168 signal 257
21 inhal 50 gene 166 protein 250
22 adhes 49 murin 160 children 245
23 mediat 47 mice 158 cytokin 244
24 inflammatori 46 pulmonari 148 inflammatori 235
25 children 45 inflammatori 146 suppress 234
26 histamin 43 hyperrespons 144 hyperrespons 232
27 muscl 41 children 136 pulmonari 230
28 leukotrien 40 inhal 136 gene 226
29 antigen 40 th2 118 product 224
30 smooth 40 remodel 118 th2 215
31 fluid 38 inhibitor 118 modul 213
32 sodium 38 mechan 116 dendrit 210
33 ige 37 develop 116 develop 207
34 peripher 34 rat 115 allergen 196
35 macrophag 34 allergeninduc 114 attenu 195
36 pulmonari 33 immun 113 pathway 190
37 vitro 32 lymphocyt 110 differenti 190
38 mechan 32 infect 106 target 185
39 select 31 sensit 102 novel 183
40 protein 30 novel 102 infect 177
41 therapi 28 mediat 100 mediat 176
42 glucocorticoid 28 peripher 100 regulatori 174
43 bronchoconstrict 28 signal 100 type 164
44 guinea 28 leukotrien 98 sever 164
45 chang 28 allergi 97 rat 164
46 pig 28 growth 97 promot 161
47 tcell 27 chemokin 96 inhibitor 156
48 hyperrespons 27 modul 93 allergi 156
49 immun 27 mous 93 mechan 151
50 modul 27 kinas 93 potenti 150
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oftenmentionedwith inflammation [29, 30] for immunology-
related study of asthma.

)ird, in terms of different types of cells related with
asthma, eosinophils, mast cells, and T cells are the hot spots
of immunocytes, according to the results of ranking. Mast
cells are the “first line of defense” in which innate/adaptive
immune cells can be activated to release a wide range of
mediators by allergen-IgE-specific triggers and are widely
distributed in tissues of the airway exposed to the envi-
ronment, so mast cells preempt the critical roles played by
histamine and mucus secretion in causing airway obstruc-
tion [31, 32]. )e studies about the expression of CD an-
tigens [33–35] involving mast cells and its mediated
cytokines [36] are very common. Airway eosinophilias are
associated with the inflammatory response and likely par-
ticipate in airway remodeling [37–40]. Many studies have

reported that the expression of its granular proteins has
functions relevant to the features of asthma, including
histopathologic changes, reversible airway narrowing, and
bronchial hyperreactivity [41–44].)e activated Tcells in the
airway wall are associated with inflammation of asthma
[45, 46], and the subsets of T cell antigens have attracted
extensive attention by researchers, such as the Tcells of CD4
+(T helper) [47–51], CD8+ [52–54], CD25+ [55], CD28
[56, 57], CD29 [58, 59], CD39+, and CD73 [60–63]. )e
imbalance of different subsets and the regulatory mechanism
are the research emphasis of this field [64–67].

Epithelia and smooth muscle cells (SMCs) are the hot
spots of structural cell studies. Research has shown that
airway epithelial barrier dysfunction may have important
implications for asthma [68–72]. )e relevant genes or
protein expression of epithelia and the regulatory
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Figure 1: )e shared stems of three decades. )e orange, green, and purple bars show the frequencies of stems in the 1st, 2nd, and 3rd
decade, respectively.
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mechanism of barrier function or dysfunction are the re-
search emphasis [27, 28]. It has been reported that SMCs
isolated from asthma patients release more proinflammatory
mediators than that in control subjects [73], which may
contribute to airway wall remodeling [74].

4.2.VariationTrends ofResearch overTime. Several variation
trends can be summarized after comparing the shared stems
in the first and last two decades.

First, the phenotype definition of asthma has become
gradually clearer. )e shared stem “atopic” in the first two
decades showed that “atopic” and “non-atopic” stems were
often used to define the phenotypes of asthma due to the
limited available data about asthma and atopy at that time
[75], which resulted in ambiguity of the phenotype

definition. However, the stem “allergi” shared with the last
two decades indicated that the concept “allergic asthma” was
widely used in studies [76, 77], which indicates that the
phenotype of asthma was definitive.

Second, genetic studies and airway remodeling have
received more attention. Along with novel experiment
technologies applied in molding and detection, more studies
of signaling pathways [23] and airway remodeling [78] at the
gene level [18] were performed in the last 2 decades with
evidence from the common stems “gene,” “signal,” and
“remodel.” Moreover, the shared stems “mice,” “rat,”
“murine,” and “mous” in the last two decades have shown
that more animal models of rats were used in such exper-
imental research [79–82]. In contrast, the shared stems of the
first two decades implied studies of downstream signaling
pathways including cytokines [83], leukotrienes [84], pe-
ripheral blood [85], or different types of receptors [86]
attracted great attention at that time.

Finally, looking into changes in therapeutic approaches,
the shared stem “inhal” in first two decades showed that
inhaled treatment was mainstream at the early stage [87, 88].
However, it ceased to be the hot spot because of the con-
tinuous exploration of new treatments or drugs, such as
Montelukast [89] andmonoclonal antibodies [90]. During the
past 20 years, the shared stem, “inhibitor,” indicated that as
one type of a new drug for asthma, inhibitors such as histone
deacetylase inhibitors [91, 92] and tyrosine kinase inhibitors
[93] were implicated in influencing gene expression of
asthma-related cytokines [94], gaining importance.

4.3. Distinctive Research Hot Spots of Every Decade.
Several distinctive research hot spots can be analyzed
according to the unique stems of each decade. Two specific
aspects were concerned in the studies of the first decade.
First, the relevant mechanism researches including the re-
lease of cytokines [95] or histamines [95] and cell adhesion
[96] about bronchoalveolar and macrophages [97, 98] were
performed with corresponding experimental approaches
such as cell counting method, immunofluorescence, ELISA,
and bioassay commonly [99]. Second, there was specific
phenomenon that researchers were enthusiastic about
asthma therapy, and glucocorticoid [100] and nedocromil
sodium [101] were often studied using pulmonary function
test.

)e main hot spot drawn from the unique stems of the
second decade is that the allergen-induced topics, such as
airway hyperresponsiveness [102] or inflammation and the
regulation mechanism of allergic sensitization [103], were
popular. Its relevant common experimental techniques in-
cluded immunohistochemistry, flow cytometry, RT-PCR,
and ELISA [104]. In addition, the specific research topics
“different types of growth factors” [105], “kinases” [106], and
“chemokines” [107] were also common due to their relevant
roles that have been gradually explored and affirmed.

With the development of genetic technology, the re-
search of the immune response became prevalent in the
third decade, and specific stems about its mechanism,
regulation, and signaling pathways such as “pathway” [108],
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“target” [109], and “regulatori” [110] were found in the
ranking. In terms of the corresponding experimental
methods, some new techniques including digital droplet
PCR (ddPCR) [111], whole-genome screen [112], and
multiplexed fluorescent microsphere-based immunoassay
(xMAP technology) [113] were widely adopted. Besides,
a new type of cell was found in the list, dendritic cells [26], as
one of the sentinel cells. Dendritic cells are the most im-
portant and primary antigen-presenting cells of asthma.
)ey take up the antigen, process it, and present the pro-
cessed antigen to T cells [114]. )erefore, dendritic cell-
related studies may be one of the breakthroughs in the
treatment of asthma.

5. Conclusion and Future Trends

)e number of cell research studies of asthma indexed by
MEDLINE has increased rapidly. According to the ranking
list of frequent stems, scholars paid more attention to ex-
perimental research, especially mechanistic research, rather
than clinical research. )e immunocyte studies and struc-
tural cell research are the two main directions. Eosinophils,
mast cells, and T cells are the hot spots of immunocyte
studies, while epithelia and SMCs are the hot spots of
structural cell research. )e research trend is closely linked
with the development of experimental technology, including
animal models. Early studies featured basic research, but
immunity research has dominated in the recent decade with
the development of genetic technology.

Based on the stem rankings of three decades, future
trends can be predicted in the following aspects: (1) )e
distinct definition of asthma phenotypes associated with

genetic characteristics will provide benefits for basic studies
and clinical therapy. For instance, personalized medicine
treatment tailored to individual’s asthma phenotypes
identified through biomarkers [115]. (2) Immunity research
involving signaling pathways, regulatory mechanisms, tar-
gets with specific biomarkers, and so on at the gene level will
provide more evidence for the pathogenesis of asthma.
Meanwhile, the discovery of asthma biomarkers will con-
tribute to characterize the population and associate the
disease with environmental and therapeutic effects [116], as
well as predict prognosis [117]. (3) )e study of new cells
regulating allergy, inflammation, or remodeling of airways,
such as dendritic cells, type 2 innate lymphoid cells [118],
and regulatory T cells [119], will bring the potential to
provide therapeutic benefits.
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