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Despite decades of intensive attention directed to creation of genetically altered cells

(e.g., as in development of chimeric antigen receptor (CAR) T-cells) and/or to achieve

requisite in vitro accumulation of desired immunologic effectors (e.g., elaboration of

virus-specific T cells, expansion of NK cells, differentiation of dendritic cells, isolation, and

propagation of Tregs, etc.), there has been essentially no interest in the most fundamental

of all hurdles: assuring tissue-specific delivery of administered therapeutic cells to sites

where they are needed. With regards to use of CAR T-cells, the absence of information on

the efficacy of cell delivery is striking, especially in light of the clear association between

administered cell dose and adverse events, and the obvious fact that pertinent cell

acquisition/expansion costs would be dramatically curtailed with more efficient delivery

of the administered cell bolus. Herein, based on information garnered from studies of

human leukocytes and adult stem cells, the logic underlying the use of cell surface

glycoengineering to enforce E-selectin ligand expression will be conveyed in the context

of how this approach offers strategies to enhance delivery of CAR T-cells to marrow and

to tumor beds. This application of glycoscience principles and techniques with intention

to optimize cell therapeutics is a prime example of the emerging field of “translational

glycobiology.”

Keywords: E-selectin ligand, adoptive cell therapy, CAR T cell, GPS, sialyl Lewis X, sLeX, fucosyltransferase,

translational glycobiology

INTRODUCTION

Imagine that a product manufacturer (or vendor of the item) must make multiple shipments of
the same item to a given recipient because the delivery system is neither accurate nor efficient,
i.e., the physical transfer of that product to the intended arrival destination is imprecise. Such
transit-related loss of goods would require that far more product be manufactured than would be
needed. The faulty transport would thus be a key driver of excessive production expenses, let alone
recipient costs.

Cancer treatment has entered an era whereby tumor-specific immunocytes can be created and
expanded ex vivo, and can thereafter be administered to patients. The development of chimeric
antigen receptor (CAR) T-cells is a salient example of this approach, and these antigen-specific cells
have the immense advantage of achieving MHC-independent cytotoxicity of tumor targets. Once
cell numbers sufficient for treatment are generated, the cells are infused into patients and serve
as living drugs. To date, this approach has shown great promise in the treatment of hematologic
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malignancies (particularly, malignancies of B-cell origin) and
is gaining applicability in solid malignancies. Yet, remarkably,
in the development of such cell-based immunotherapeutics, an
essential prerequisite has been uniformly overlooked: tumor
regression is critically dependent on the ability of infused effector
cells to enter the tumor parenchyma (1–4).

Fundamentally, it is important to draw a distinction between
tissue-specific recruitment of administered cells (homing) vs.
retention of administered cells at a target site. The former
reflects explicit migration of cells to the intended site, whereas
the latter reflects the entrapment of cells. In the case of CAR-
T cells, entrapment occurs when cells that have entered a site
non-specifically become retained/lodged within that tissue upon
encountering their cognate antigen. Operationally, killing of
malignant cells by tissue-resident T cells would ensue regardless
of whether administered cells have homed to lesional sites or have
entrapped there. However, entrapment is a stochastic process,
and treatment efficacy could be much improved if cells were
capable of homing to the affected site. For the case of CD19-
directed CAR-T cells, especially for their application in acute
lymphoblastic leukemia, it would be desired for administered
cells to preferentially home to bone marrow. However, to date,
no preclinical nor clinical studies have evaluated the extent
to which administered CD19-directed CAR T-cells migrate to
marrow. Instead, all past and current applications of CAR T-cells
have focused on administrating sufficient quantities of cells
in order to achieve the anticipated cancer treatment effect(s),
with no attention to the overt waste of such cells within
unaffected sites and/or the biologic consequence(s) related to
off-target distribution. The inefficiency of intra-tumoral cell
delivery, apart from simply requiring an exceedingly abundant
cell expansion ex vivo, results in accumulations of cells in non-
lesional sites/unaffected tissues resulting in significant treatment-
related toxicities. As such, particularly for the case of CAR
T-cell therapeutics, the impact of “loss of goods” should not
be considered simply in terms of production expenditures, it
must be factored with highest attention to the incidence of
toxicities and significant patient suffering that further compound
treatment-related costs. Ideally, the infused cells should not result
in serious complications or, worse, mortality, but life-threatening
toxicities are routine with current CAR T-cell therapy and their
severities correlate with the infused cell dose (5–10).

CIRCULATING LYMPHOCYTE COUNTS,
THE CAR T-CELL DOSE RANGE, AND
ADVERSE EVENTS ASSOCIATED WITH
CAR T-CELL ADMINISTRATION

In humans, total blood volume averages 8% of total body
weight (e.g., a 50 kg person has ∼4 L of blood volume). The
usual lymphocyte count in humans under steady-state (healthy)
conditions ranges from 1× 109 to 3× 109 cells/L. In clinical trials
to date, the infusion dose of CAR T-cells has typically ranged
from upwards of 2 × 106-2 × 107 cells/kg of recipient body
weight (e.g., reflecting a dose range of 108 cells to 109 cells for
a 50 kg person). Because this cell bolus is distributed within the

total blood volume, the intravascular T-cell count immediately
post-infusion ranges from 25 × 106/L to 250 × 106/L (please
note that the conversion factor for cell dose in cells/kg into cells/L
of blood volume is 12.5). Importantly, all patients that receive
CAR T-cells are given lymphodepleting chemotherapy prior to
the cell infusion. In essence, then, the overwhelming majority of
circulating lymphocytes post-infusion are CAR T-cells, and the
resulting cell count reflects as much as one-fourth the number
of lymphocytes that would natively be present in the blood of
a healthy person (i.e., 0.25 × 109 lymphocytes/L, where normal
count is 109 lymphocytes/L). There is no precedent in any
physiologic immune response for a circulating lymphocyte pool
that is comprised predominantly (if not solely) of cells with
mono-specificity for a given antigen, especially encompassing
lymphocytes bearing receptors and costimulatory motifs that
uniformly trigger cell activation upon encountering the cognate
antigen.

The most frequent clinical adverse event associated with
CAR T-cell infusions is a condition known as “cytokine release
syndrome” (CRS), which is consequent to T cell activation.
CRS encompasses a spectrum of clinical features including
fevers, third-spacing of fluid, hypotension, and hypoxia. This
constellation of physical changes is incited by release of
inflammatory cytokines such as IL-6 and γ-interferon, and it
can be managed by agents that block IL-6 (e.g., tocilizumab,
an antibody directed to the interleukin-6 receptor), and, if
necessary, steroids (6, 11). Though infrequent, CRS can progress
to frank respiratory failure and other severe organ toxicities
(e.g., cardiac failure, hepatitis, renal failure), requiring intensive
care support (e.g., intubation/ventilatory care, vasopressors,
hemodialysis), sometimes culminating in death due to organ
failure. In addition to CRS, neurotoxicity known as “CAR-related
encephalopathy syndrome” (CRES) can ensue, characterized
by mental status changes (somnolence and/or agitation with
confusion/disorientation), which can progress to increased
intracranial pressures, seizures, motor weakness, and coma. As
in the case of severe CRS, steroids are utilized in therapy for
management of life-threatening CRES but blockade of IL-6 is
ineffective in treatment of CRES, perhaps because this entity is
driven by CNS infiltration of CAR T-cells (11, 12). In this regard,
the potency of steroids may reflect the ability of these agents
to interrupt lymphocyte trafficking (13). Importantly, though
steroids yield beneficial anti-inflammatory effects, these agents
can also dampen the effectiveness of the CAR T-cell assault on
tumor cells.

The severity of CRS and CRES correlates principally with
the dose of CAR T-cells administered, but is also related to
the tempo of the in vivo expansion of the CAR T-cells and
the extent of CAR T-cell expansion, processes that each reflect
both the initial cell dose and the tumor burden of the recipient.
In any case, since the localization of CAR T-cells in off-target
tissues contributes to the observed organ toxicities (5, 11, 12),
it is reasonable to speculate that improving the specificity of
CAR T-cell infiltration within tumor sites would lessen the onset
and severity of both CRS and CRES. There is strong evidence
in support of this notion, as the presence of CAR T-cells in
cerebrospinal fluid is correlated with the severity of CRES (12).
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Moreover, in preclinical studies (14–16) and in a clinical trial
(17), administration of CAR T-cells directly into cancer sites has
yielded marked anti-tumor effects. Importantly, in preclinical
studies, the efficacy of CAR T-cells directly injected into tumor
sites is much greater than that of intravenous injection (14–16),
with as much as 10-fold greater cells needed intravenously to
obtain equivalent anti-tumor effects (16). In the clinical trial of
CAR T-cell regional administration, high doses (107 cells) were
administered locally without manifestations of severe systemic
toxicities (17). Thus, to optimize the therapeutic window of
intravascularly systemically administered CAR T-cells, it is first
necessary to develop strategies to program a more precise
delivery of systemically administered CAR T-cells to the relevant
tumor site(s).

THE MOLECULAR BASIS OF CELL
TRAFFICKING

Host defense critically depends on the capacity to ensure rapid
and precise delivery of leukocytes to inflammatory sites. To
this end, circulating leukocytes express a highly specific set of
molecular effectors that engage endothelial cells within sites of
tissue injury/inflammation. The first hurdle in all transmigration
events involves the initial tethering and then rolling attachment
of circulating cells to target endothelium with sufficient strength
to overcome the prevailing forces of hemodynamic shear (18).
This “Step 1” braking interaction is principally mediated by
selectins (E-, P-, and L-selectin; known as CD62E, CD62P, and
CD62L, respectively) and their ligands. Following this initial
endothelial engagement, a cascade of events occur whereby cells
undergo chemokine-mediated activation of integrin adhesiveness
(Step 2), followed by integrin-mediated firm adherence to the
endothelium (Step 3), finally resulting in transmigration (Step 4)
(18).

As indicated by their nomenclature, the selectins are “lectins,”
i.e., proteins that bind to carbohydrates. This family of lectins
require Ca++ to bind their target (i.e., the selectins are
Ca++-dependent lectins). The prototypical carbohydrate binding
determinant for all selectins is a terminal sialofucosylated
lactosaminyl glycan known as “sialyl Lewis X” (CD15s)
(Figure 1). This tetrasaccharide consists of a “core” disaccharide
composed of the monosaccharides galactose (Gal) and N-
acetylglucosamine (GlcNAc), which are joined in β(1,4)-linkage
[this disaccharide is called a “Type 2” lactosamine unit (LacNAc)]
(see Figure 1). The sLeX determinant contains sialic acid [also
known as “neuraminic acid (Neu5Ac)] that is α(2,3)-linked to
the Gal, and fucose (Fuc) that is α(1,3)-linked to the GlcNAc:
Neu5Ac-α(2,3)-Gal-β(1,4)-[Fuc-α(1,3)-]GlcNAcβ1-R (18). This
glycan is created by step-wise addition of sialic acid and then
fucose onto the terminal type 2 lactosamine core structure by
respective glycosyltransferases (see Figure 1), and it is recognized
by a variety of monoclonal antibodies (mAbs), including themAb
known as “CSLEX-1” and another mAb known as “HECA452.”
Compared to HECA452, the CSLEX-1 mAb has a more restricted
specificity in that it recognizes only sLeX, whereas HECA452
recognizes both sLeX and the isomeric sialofucosylated type 1

FIGURE 1 | Terminal lactosamine structures. Depicted are the structures for

terminal sialylated Type 2 lactosamine (LacNAc), sialylated Lewis X (sLeX;

CD15s), and Lewis X (LeX; C15). Component monosaccharides are shown

using colored symbol nomenclature (key is at top of figure). Shown at left is the

Type 2 lactosamine unit (LacNAc Type II), a disaccharide comprised of Gal

β(1,4)-linked to GlcNAc. “R” refers to the reducing end glycans, which are

typically comprised of polylactosamine chains (i.e., repeating units of Type 2

lactosamines). The key enzymes in creation of sLeX [the

α(2,3)-sialyltransferases (α(2,3)sialylTs) and α(1,3)-fucosyltransferases

(α(1,3)FTs) are as shown, as are the α(1,3)FTs that create LeX; these enzymes

are ordered (top to bottom, high-low) to depict the relative activity of each

enzyme in creating the pertinent structure [see reference (19) for details].

lactosaminyl glycan known as sialylated Lewis A (sLeA). These
mAb do not react with the unsialylated glycans known as
“Lewis X” (LeX) and “Lewis A” (LeA) even though they share
a common trisaccharide core structure with sLeX and sLeA,
respectively. Notably, the LeX determinant is best known by its
CD designation (“CD15”), and it is a key marker of human
myeloid cells (see Figure 1).

E- and P-selectin are expressed on vascular endothelium
(P-selectin also on platelets), and L-selectin is expressed on
circulating leukocytes (18). E- and P-selectin are typically
inducible endothelial membrane molecules that are prominently
expressed at sites of tissue injury and inflammation. However,
the microvasculature of bone marrow and skin constitutively
expresses these selectins, and they play a key role in steady-state
recruitment of blood-borne cells to these sites (20). Importantly,
within all inflammatory sites and sites of tissue injury/damage in
primates (but not rodents), E-selectin is the principal vascular
selectin mediating cell recruitment, as the promoter element
responsive to the inflammatory cytokines TNF and IL-1 has
been deleted from the primate P-selectin gene. Thus, at all
inflammatory sites of humans (including tumor endothelial
beds), vascular E-selectin expression is more pronounced than
that of P-selectin, and E-selectin also has higher baseline
expression than P-selectin in human marrow and skin (18, 20).

Whereas, both glycolipids and glycoproteins can be decorated
with sLeX determinants, glycoproteins serve as the primary E-
selectin ligands under blood flow conditions since they extend
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farther from the surface of the circulating cell than do glycolipids.
There are three principal ligands for E-selectin expressed
on subsets of human lymphocytes, each consisting of highly
sialofucosylated glycoforms of well-recognized glycoproteins:
CD162 (PSGL-1), CD43, and CD44. CD44 is a rather ubiquitous
cell membrane protein and is best known for binding hyaluronic
acid. However, display of sLeX on CD44 confers new biology,
and this specialized CD44 glycovariant, first observed on human
hematopoietic stem/progenitor cells (HSPCs), is known as
“Hematopoietic Cell E-/L-selectin Ligand” (HCELL) (21–23).
As the name indicates, HCELL binds both E-selectin and L-
selectin, and in vitro assays of E- and L-selectin binding under
hemodynamic shear stress indicate that HCELL is the most
potent ligand for these molecules expressed on any human
cell. Notably, studies using human mesenchymal stem cells
have shown that HCELL functions as a bone marrow “homing
receptor” (24). Moreover, HCELL is not natively expressed on
murine cells, and thus HCELL plays a uniquely prominent role
in mediating human, but not mouse, HSPC migration into
marrow (25).

E-selectin ligands are natively expressed on a restricted subset
of human CD4 and CD8 lymphocytes, and are conspicuously
absent on human B cells. However, α(2,3)-sialylated type
2 lactosamines [Neu5Ac-α(2,3)-Gal-β(1,4)-GlcNAcβ1-R]
(Figure 1) are characteristically displayed on both human CD4
and CD8 cells, and, therefore, assembly of sLeX on human
lymphocytes pivots on α(1,3)-fucosylation of the sialylated
LacNAc “acceptor” structure, i.e., the only component missing
is α(1,3)-linked fucose modification of N-acetylglucosamine
(GlcNAc). Importantly, sLeX can only be created by fucosylation
of sialylated LacNAc, as there is no mammalian sialyltransferase
that can place sialic acid in α(2,3)-linkage to Gal in LeX to
create sLeX. Thus, the terminal, rate-limiting biosynthetic
step for assembly of LeX and sLeX in each case involves
fucose addition to either an unsialylated LacNAc (for LeX

biosynthesis) or to sialylated LacNAc (for sLeX biosynthesis)
(see Figure 1). This “terminal” reaction is programmed by
glycosyltransferases known as α(1,3)-fucosyltransferases [α(1,3)-
FTs]. In humans, there are six α(1,3)-FT isoenzymes (known
as FT3, FT4, FT5, FT6, FT7, and FT9), and four of these are
specialized to create sLeX: FT3, FT5, FT6, and FT7 (19). Of
these enzymes, FT7 is the one that characteristically drives
expression of sLeX on human leukocytes, including lymphocytes
(18, 26).

GLYCOENGINEERING THE EXPRESSION
OF E-SELECTIN LIGANDS: IMPLICATIONS
FOR ADOPTIVE IMMUNOTHERAPEUTICS

Human T cells typically display high cell surface expression
of CD44, CD43, and PSGL-1, the glycoproteins that can serve
as scaffolds for decoration with sLeX (i.e., that function as
E-selectin ligands) (27). However, compared to monocytes
and neutrophils that uniformly express E-selectin ligands,
only a limited fraction of circulating T cells display E-
selectin binding activity (27), and their E-selectin binding

characteristically drops during culture-expansion in serum-
containing medium (26, 28). Importantly, the absence of sLeX

expression on lymphocyte CD44, CD43 and PSGL-1 is solely
a function of underfucosylation, as these proteins display
copious amounts of terminal sialylated Type 2 LacNAc motifs
(27). Indeed, the levels of sialylated LacNAc typically increase
during culture-expansion of human T cells and dendritic
cells (28, 29). Accordingly, installation of Fuc in α(1,3)-
linkage onto GlcNAc completes the creation of sLeX on the
surface of the cultured cells. This cell surface glycoengineering
can be achieved by introduction of nucleic acid encoding
the relevant α(1,3)-FTs (30), or by exofucosylation of the
cell surface using purified recombinant α(1,3)-FTs together
with the donor nucleotide sugar GDP-fucose (18, 31). In
regards to clinical applications, it may be preferable to employ
α(1,3)-exofucosylation rather than enforced intracellular α(1,3)-
fucosyltransferase gene (“FUT”) expression for a variety of
reasons, not the least of which is to avoid the potential of
alterations in native glycosylation dynamics by introducing a
non-physiologic level of the pertinent glycosyltransferase within
the Golgi.

The expression of E-selectin ligands controls cellular entry
into marrow, skin, and to all inflammatory sites (18). Studies
using adoptively transferred regulatory T cells in xenotransplant
models of acute graft-vs.-host disease (28, 32) indicate that
enforced sLeX expression via α(1,3)-exofucosylation promotes
cellular entry into inflammatory lesions (32) and also into
marrow (28). Results of both preclinical and clinical studies
using human HSPCs (33, 34), and preclinical studies of human
mesenchymal stem cells (24) reveal that exofucosylation potently
programs cellular delivery to marrow and, notably, preclinical
studies show appropriate distribution within marrow (24, 33),
and clinical administration of exofucosylated human HSPCs
improves engraftment kinetics without any adverse effects
(34). Thus, enforcing E-selectin ligand expression on CD19-
specific CAR-T cells would drive marrow delivery of these
cells. Given the constitutive E-selectin expression in dermal
microvessels, it would be expected that exofucosylated CAR
T-cells would migrate to the skin, but immunoreactivity would
only be triggered in presence of relevant infiltrating tumor
cells. However, more generally, because E-selectin expression
is characteristically upregulated in tumor endothelial beds (35–
46), higher E-selectin binding would increase the ability of
CAR-T cells targeting a pertinent malignant cell type to enter
relevant lesional tissue [i.e., for solid malignancies (e.g., breast,
colon, and lung) and lymphoid malignancies (lymphomas and
Hodgkin’s disease)]. Beyond enhancing treatment efficacy, the
more efficient influx of infused cells into sites where needed
would limit collateral damage by lessening cytotoxic T cell
accumulations in non-lesional tissue, would allow for decreasing
the amounts of infused cells, and commensurately, would trim
production costs by diminishing the numbers of expanded
cells required to achieve the intended clinical effect. Thus,
glycoscience-based strategies can literally steer the pathways
for CAR T-cells, providing a roadmap for achieving improved
patient outcomes using these cells and other types of adoptive
cell immunotherapeutics.
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