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Abstract: The latest developments in solid propellants and their components are summarized.
Particular attention is given to emerging energetic binders and novel, ‘green’ oxidizing agents and
their use in propellant formulations. A brief overview of the latest reports on fuel additives is included.
Finally, a summary of the state of the art and challenges in its development are speculated on.
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1. Introduction

Solid propellants have found a wide range of applications, both military and civil in
nature. By far their most common use is in rocket engines, such as in the case of sounding
rockets used for observation and launch vehicles used for placing satellites in orbit. Besides
that, solid propellants also have many applications in civil engineering. Their ability to
produce a huge amount of gaseous products is used in air bags. Additionally, as they are
substances burning at high temperatures, they are used when destruction of hazardous
biological and chemical agents is needed [1].

Depending on their chemical composition, solid propellants are typically classified as:

• Single-base (SB) propellants that contain cellulose nitrate (“nitrocellulose”, NC);
• Double-base (DB) propellants that contain NC and either propane-1,2,3-triyl trinitrate

(“nitroglycerin”, NG) or its mixture with other nitric acid esters, such as ethane-1,2-diyl
dinitrate (“nitroglycol”, EGDN);

• Triple-base (TB) propellants that are essentially DB propellants supplemented with
1-nitroguanidine;

• Composite propellants (CPs) that contain an oxidising solid (e.g., ammonium perchlo-
rate) and a binder that also acts as a fuel [2].

Apart from the abovementioned components present in the case of the four main
solid propellant classes, particular propellant formulations typically also contain a variety
of additives, such as preservatives, combustion modifiers, catalysts, curing agents, high
explosives, auxiliary fuels, plasticizing agents, and others [3,4]. It should be noted that in
some cases, the lines between the individual propellant classes are gradually becoming
blurred, as exemplified by the modification of DB propellant formulations with Al powders
and 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX) [5].

In terms of their scale of application, SB propellants have long since been replaced by
DB propellants as the most commonly used type of solid propellants. In turn, although
TB propellants have found some applications, these remain rather niche, such as their
application in large-caliber ammunition [6]. Composite propellants, in turn, are becoming
increasingly more popular due to the extensive research effort that has been dedicated to
their development over recent years [7–10].
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In this work, we have aimed at summarizing the most relevant recent developments
in the field of solid propellant formulations. Although the majority of recent reports
focus on CPs and their modification. This is exemplified by reports of the use of new
energetic binders and novel, ‘green’ oxidizing agents (prospective replacements for the
environmentally harmful ammonium perchlorate)), a number of worthwhile efforts are
also being undertaken in regards to other types of propellants. This is well exemplified by
the attempt to replace the highly problematic liquid nitric acid esters (i.e., NG and EGDN)
in double-base propellant formulations with other energetic compounds [11].

2. Progress in Composite Propellant (CP) Formulations
2.1. Use of New Polymer Binders

Currently, hydroxyl-terminated polybutadiene (HTPB) (Figure 1) is the most com-
monly used binder in CP formulations, due to its favorable mechanical properties, good ad-
hesion to both hydrophilic and hydrophobic materials, and high heat of combustion [12,13].
HTPB is also reported as resistant to aging, having high oxidative and hydrolytic stability,
while allowing for a high degree of loading with solids (up to 90% by weight) [14,15].
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Figure 1. Chemical structure of hydroxyl terminated polybutadiene (HTPB).

Some basic properties of hydroxyl-terminated polybutadiene were listed in Table 1.

Table 1. Fundamental properties of HTPB binder [16].

Number Average Molecular Weight (Da) 5210
Dispersity 2.53
Viscosity (cp) (T = 27 ◦C) 2320
Hydroxyl Value (mg KOH/g) 42
Microstructure (%) (cis, Trans, Vinyl) a 29, 64, 7

a—it was calculated from 1H-NMR spectra.

As shown in (Figure 1), non-functionalised HTPB only consists of a hydrocarbon
backbone and it exhibits no energetic properties and consequently limits the maximum
specific impulse values that can be achieved for formulations containing this binder. Never-
theless, the popularity of HTPB as a binder for propellants stems from its ease of processing
(Figure 2).
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That is the reason why new polymeric binders with potential use in rocket propellants
are being extensively investigated. Such new materials are varied and even though many
HTPB copolymers are reported, most binders for propellants typically are based on different
polymers and repeat units, such as glycidyl azide polymer (GAP), 3,3-bisazidomethyl
oxetane (BAMO), 3-azidomethyl-3-methyl oxetane (AMMO), as well as their polymers and
copolymers. The fundamental properties of some polymeric binders are listed in Table 2.

Table 2. Fundamental properties of typical binders.

Polymer Density (g/cm3) ∆Hf (kJ/mol) OB % Tg (◦C) Lit.

HTPB 0.90–1.50 a 261–1290 a −65 −75 [16,18]
GAP 1.30 117 −45 −45 [19,20]

PBAMO 1.30 413 −45 −39 [20,21]
PAMMO 1.17 179 −35 −170 [20,22]

PolyNIMMO 1.26 −335 −25 −114 [20,22]
PolyGLYN 1.39 −285 −65 −61 [22,23]

a—depends on the source (as well as compound composition).

GAP exhibits a set of properties desirable of an energetic binder for use in solid
propellant formulations. At room temperature, it is a highly viscous liquid, making
it easy to produce suspensions of solid particles (e.g., metallic fuels, oxidizing agents).
GAP exhibits a high enthalpy of formation (957 kJ/kg) due to the presence of an azide
group in the structure of the macromolecule [13,24,25]. Another novel energetic binder
is the polymer of 3,3′-bis(azidomethyl)oxetane (PBAMO). In the case of PBAMO, both
its density and heat of formation are higher than the respective values for GAP, but on
the other hand, PBAMO exhibits poor mechanical properties (i.e., higher glass transition
temperature) [20,26]. To overcome this problem, a lot of copolymers are synthesized (e.g.,
DFAMO/BAMO copolymer) [27].
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In the aspect of new HTPB derivatives, copolymers of HTPB with ε-caprolactone
have recently been reported, produced by HTPB-initiated ring opening polymerization of
ε-caprolactone (Figure 3) [28]. The ε-caprolactone content was varied among the produced
copolymers, revealing that polymers containing 25% by weight of ε-caprolactone units
showed the most favorable properties (good viscosity, adequate hydroxyl value, miscibility
with nitroglycerine as a plasticizer). Additionally, it provides proper strain capabilities,
enables high solid loading and its glass transition temperature remains low (Tg = −74 ◦C).
Referring to their results, it is predicted to be possible to obtain a significantly higher specific
impulses using such a binders (Isp = 263,6 s), as compared to the traditional HTPB-based
propellants (Isp = 260,2 s), as calculated using NASA CEC software.
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This copolymer has also been investigated alongside NG (acting as a plasticizer), in a
series of composite propellant formulations [29] using analogous HTPB/DOA formulations
for comparison (Table A1).

According to the study, an 12–16% increase of the calorimetric value and 4.4–5% gain
in the density is observed for the HTBCP25/NG formulations. Theoretical performance of
the formulations was calculated by using NASA CEC-71 code. The obtained results predict
that HTBCP25/NG formulations will outperform others, when specific impulse values,
characteristic velocity values, flame temperature, and burning rates are considered.

Energetic thermoplastic elastomers (ETPEs) are a big group of compounds, with
a good chance to replace the traditional binders. ETPEs can be reused, recycled, and
recovered and it has contributed to their prevalence among energy materials. In recent
years, much work has focused on the synthesis of poly(3,3-bisazidomethyl oxetane/3-
azidomethyl3-methyl oxetane) (P(BAMO/AMMO)), due to its good properties: proper
heat formation, low glass transition temperature and low sensitivity to stimuli. PAMMO is
usually obtained by the living cationic polymerization of AMMO, which is known for its
very high mechanical sensitivity [30–37].

Wang et al. [38] proposed a quicker and safer way to synthesize poly(3-mesyloxymethyl-
3-methyl oxetane) (PAMMO) through the cationic ring opening polymerization of MMMO
and azidation of obtained PMMMO, as the second stage. Two ways of azidation were
investigated: homogenous method and phase-transfer catalyst. In Figure 4, the general
synthesis of PAMMO is presented, with MMMO and PMMMO synthesis included.
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with permission from [38]. Copyright 2021, John Wiley and Sons.

Results show that phase transfer catalysis method is more efficient than homogenous
method (it took 18 h to gain 100% and for homogenous method it took much longer—
42 h). The study also reports the thermal decomposition performance of PAMMO by a
TG/FTIR/MS analysis. A two stage thermal decomposition can be observed. During the
first stage, azide groups are decomposed and gaseous products such as N2, HCN, and NH3
occurred. Polyether backbone decomposes in the second stage—with NO, NO2, CH2O,
and other C-H gases’ release.

Zhang et.al [39] prepared a BAMO-AMMO alternative block (BAAB)-based propellant,
with 80% of the solid content. In this study, a BAAB was used as an ETPE and the final
formulation was optimized by making the energy calculations. Theoretical predictions
yielded the following: the higher content of RDX and Al, the higher the specific impulse;
higher Al content leads to reduction in the oxygen balance coefficient. The formulation pre-
dicted to ensure high specific impulse (275.45 s) and appropriate oxygen balance coefficient
(0.5) is listed in Table A2.

Density, heat of explosion, glass transition temperature, and mechanical properties
were also measured and investigated. Obtained data were better as compared to the similar
propellant formulation (e.g., obtained density was 1.8102 g cm−3 and for reference sample
was 1.7814 g cm−3).

Pant et al. [15] reported a method for obtaining a functionalized HTPB with azide
groups, using two methods (Figure 5).
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Figure 5. Synthesis of azidated hydroxyl-terminated polybutadiene (HTPB): (a) two-step method; (b) one-step method.

In the two-step synthesis, the first step involves bromination reaction, followed by
azidation. Single step synthesis was based on the method proposed by Fristad et al. [40]
and is much easier and faster to carry out. Despite that, the azide groups content is lower,
as compared to the product of the two-step synthesis. Moreover, separation of the product
was also a problematic issue.
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Additionally, probes with different azido groups content were prepared (10%, 15%,
20%). The study reports that when the azide groups increase, the viscosity and glass
temperature also increase. It turned out that the best candidate for further rocket propellant
application is a binder with 10% content of azido groups, because glass temperature and
viscosity were in the scope of parameters, which gives propellant its practical usage.

2.2. Novel Oxidizing Agents

Ammonium perchlorate (NH4ClO4, AP) is commonly used oxidizing agent for solid
rocket propellant. Combustion of fuels, with AP as an oxidising agent, in rocket engines
leads to release of hazardous substances, which affect human health and also have bad
influence on the environment. Recently, many studies have focused on obtaining new
oxidizing agents, by synthesis of novel compounds or modification of known compounds.
The aim was to obtain compounds that meet the current requirements for solid rocket
fuels (non-polluting, characterized by a good oxygen balance and providing high specific
impulse) [41–43].

Three different novel oxidizing agents were investigated by Abd-Elghany et al. [44]:
Bis(2,2,2-trinitroethyl)oxalate (BTNEOx) [45], 2,2,2-Trinitroethyl-nitrocarbamate (TNENC) [46],
and 2,2,2-Trinitroethyl-formate (TNEF) [47]. Obtained results were compared to the tra-
ditional AP/HTPB rocket propellant formulation. The performance of the HTPB based
propellant formulations with different content of high energy density oxidizing agents
was reported. For each ratio, the highest value of specific impulse was predicted (EXPLO5
software) for TNEF, so it was chosen for further investigation and for comparison with
AP/HTPB binder (Table 3). The comparison included parameters such as specific impulse
(Is), characteristic exhaust velocity (C*), thrust velocity (Cf), temperature at the nozzle exit
(Te), and mole of the gaseous products (mol·g).

Table 3. Comparison between performance of AP/HTPB and TENF/HTPB propellant formulations [47].

Formulation AP/HTPB TNEF/HTPB

Is (s) 245.9 251.2
C* (m·s−1) 1484.4 1532.6
Cf 1.62 1.61
Te (K) 1360.5 1331.8
Molg (mol·kg−1) 39.77 41.13

Higher characteristic exhaust velocity also contributes to the better overall combus-
tion properties. TNEF/HTPB measured burning rate was 14% higher than AP/HTPB
(12.11 mm·s−1 for TNEF/HTPB and 10.64 mm·s−1 for AP/HTPB).

TNEF was also investigated theoretically against AND in a propellant formulation
utilizing GAP as the binder [48].

Performance parameters of the prepared samples were predicted using EXPLO5
V_6.03 software, suggesting that the TNEF/GAP formulation will show better perfor-
mance than the AND/GAP formulation, both in terms of specific impulse (Is = 250.1 s
and Is = 202.4 s respectively) and characteristic exhaust velocity (C* = 1408 m s−1 and
C* = 1243 m s−1 respectively). TNEF is not only expected to provide high performance, but
also is well miscible with GAP, forming a homogeneous mixture. In the case of ADN/GAP
propellant, the aggregation of irregularly shaped ADN crystals and their coating by the
polymeric matrix occurred, which may result in unstable and uncontrolled burning of
the propellant. In summary, TNEF outperforms the traditional AP/HTPB binder and is a
promising novel oxidizing agent to which further research should be devoted to increase
the scale of production and explore its practical application in solid rocket propellant
formulations.

Klapötke et al. [45] prepared a series of synthesis of new potential high-energy density
oxidizing agents. Compounds were synthesized in the reactions of 2,2,2-trinitroethanol
(TNE) and 3,3,3-trinitropropanol with oxalyl chloride and hydrazide (Figure 6).
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Figure 6. Synthesis of the polynitro compounds.

Series of chemical reactions led to formation of bis(2,2,2-trinitroethyl) oxalate (a)
2,2,2-trinitroethyl chloro(oxo)acetate (b), 2,2,2-trinitroethyl (3,3,3-trinitropropyl) oxalate
(c), 2,2,2-trinitroethyl azido(oxo)acetate (d), the diester bis(2,2,2-trinitroethyl) imidodicar-
boxylate (e) and finally 2,2,2-trinitroethyl N-(4,4,4-trinitrobutanoyl)-carbamate (f). 2,2,2-
trinitroethylcarbamate carbonyl azide (g) is formed in the reaction of oxalyl diazide with
TNE (Figure 7).
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For the synthesized compounds, a high decomposition temperature (183–186 ◦C) was
observed. Sensitivity measurements were also a subject of this study. Among those com-
pounds, one was found to be extremely sensitive to impact and fraction stimuli and great
caution should be taken while working with such a compound. Summarizing measured
parameters for all obtained compounds are in the range achievable with the use of tradi-
tional oxidizing agents, but the predicted specific impulse value was still below the value
calculated for ammonium perchlorate (Is = 256 s, as compared with NH4ClO4—Is = 262 s).

Another study [11] investigated the thermal behavior and decomposition charac-
teristics of Bis(2,2,2-trinitroethyl)-oxalate (BTNEOx) (Figure 8) and its formulation with
nitrocellulose. In this study an attempt was made, to prove that NC/BTNEOx is a proper
replacement for nitroglycerine in smokeless double base propellant. High frame rate
recordings were used to prove that during the combustion of propellant, smokeless gases
are formed. Further investigation also confirmed that NC/BTNEOx formulations is an
interesting replacement for NG, so further research should be undertaken.
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One of the most popular research topics in the field of the novel energetic materials are
co-crystals—crystalline materials, which consist of two or more components and exhibiting
unique sets of properties. It is considered that this relatively new technology improves the
mechanical properties of explosives and may also contribute to improved combustion rates
and oxygen balance. Moreover, co-crystallization may also contribute to the increase of
thermal stability.

Recently, many studies [49–51] on development of co-crystals, such as a co-crystal
composed of hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) and ammonium nitrate (AN).
This co-crystal was developed in order to overcome some of the drawbacks (i.e., high
hygroscopicity and phase transitions of AN and negative oxygen balance of HNTO) of AN
and HNTO [49]. A noticeable difference in the morphology and size of the co-crystal and
the parent substance crystals was observed (as shown by X-ray diffractograms), despite
similar crystallization conditions.

Thermal properties of the raw materials and co-crystal were investigated with a DSC
method. The co-crystallization has changed the thermal properties of the obtained material
and as a result, the co-crystal does not go phase transformation. The heat of decomposition
(1483.15 J/g) was also higher than that of the parent substances (940.20 J/g and 849.79 J/g
for AN and HNTO respectively).

High mechanical sensitivity of the HNTO limits its practical application in SRP or
explosives. Obtained co-crystal has only few surface defects and voids (possibility of the
generation of the hot spots under mechanical stimuli decreases).

Another example of recently obtained novel green oxidizing agents are bis-heterocyclic
compounds. When compared to single heterocyclic compounds, bis-heterocyclic oxidizing
agents are characterized with better properties, relevant to such compounds (e.g., higher
detonation performance and thermal stability). Recently, five novel bis-heterocyclic com-
pounds with potential use as oxidizing agents were synthesized (Figure 9a–f) [45,47,52–56].

In the literature, one more example of bis-heterocyclic compound has been described:
Bis(3-nitro-1-(trinitromethyl)-1H-1,2,4-triazol-5-yl)methanone (Figure 9f) [57].

The authors attempted to obtain a compound that would have similar (high) den-
sity and good impact sensitivity, while improving the decomposition temperature. The
proposed synthesis proceeds in two steps and involves treating bis(3-nitro-1H-1,2,4-triazol-
5-yl)methane with a sodium hydroxide and chloroacetone in acetonitrile. The next step is
the nitration reaction in the presence of sulfuric and nitric acids (Figure 10).
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Characteristic parameters for rocket propellants were calculated using EXPLO5 (ver-
sion 6.01) software.

By comparing the data in Table 4, it can be concluded that bis(3-nitro-1-(trinitromethyl)-
1H-1,2,4-triazol-5-yl)methanone is a promising candidate for being used as an oxidizing
agent in rocket propellant compositions. It is characterized with a high density and a
proper, high decomposition temperature. Furthermore, its theoretical specific impulse is
higher than AP or ADN.
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Table 4. Comparison of the properties of the described compound with AP and AND [57].

Compound Bis(3-nitro-1-(trinitromethyl)-1H-
1,2,4-triazol-5-yl)methanone AP ADN

ρ (g/cm3) 1.95/1.93 1.95 1.81
VDET (m/s) 8252 6368 7860

Tdec (◦C) 164 >200 159
IS (J) 9 15 3–5
Isp (s) 219 157 202

2.3. Effect of the Additives on Propellant Efficiency and Other Properties

Oxidant and binder are the two main components of the solid rocket fuel. Despite these,
propellants formulations usually consist of appropriate additives, which influence their
overall performance and other properties (e.g., mechanical properties). Commonly used
propellant additives include metal fuel, curing agents, burning rate catalysts, etc. [58–61].

2.3.1. Effects of the Additives on the Mechanical Properties

The purpose of plasticizers as rocket fuel additives is to significantly improve the fuel
processing properties [4]. Boshra et al. [62] investigated different composite propellant
formulations, which vary in the used plasticizer. Plasticizer they used were as follow:
dioctyl adipate (DOA), bis(2-ethylhexyl) azelate (DOZ), dibutyl phthalate (DBP).

This study reveals that using DOZ and DBP as a plasticizer in GAP-based SRP formu-
lations leads to increasing the viscosity and accelerating the curing reactions. After the test,
the separation between fillers and binder occurred, which proves that DOZ is incompatible
with GAP. The same phenomena were noticed for DBP. DOA was chosen to be the best
plasticizer for GAP matrix: propellant was characterized with a low viscosity and high
tensile strength.

Cross-linking agents are the critical component when it comes to mechanical properties
of the propellants. In one study [63], different crosslinking mixtures based on trimethy-
lolpropane (TMP) as a crosslinker and butanediol (BDO) as a chain extender on CSRPs
based on hydroxyl-terminated polybutadiene, were studied, with 27 propellant samples
being prepared with different weight ratio of TMP to BD and investigated. The effect of
CM content (0–0.5%) on propellant properties was also investigated. Moreover, the effect
of the CM on CSRPs with different ratio of NCO/OH = 0.7, 0.75, and 0.8 was studied to
indicate the proper ratio, that enables the largest possible strain-ability and high strength.

The importance of the NCO/OH ratio in generating the crosslinking and binding
between chains of the polymeric matrix was proved: rise in the strength and a reduction in
the strain were observed as NCO/OH increases was observed for all the mixtures. The
highest value of tensile strength was measured for TMP-BDO (2:1 ratio). It varied from
8.2 kgf/cm2 (TMP-BDO 0.15%), 11.2 kgf/cm2 (TMP-BDO 0.3%), and 12.1 kgf/cm2 (TMP-
BDO 0.5%) at NCO/OH = 0.7; 10.1 kgf/cm2 (TMP-BDO 0.15%), 12.5 kgf/cm2 (TMP-BDO
0.3%), and 14.1 kgf/cm2 (TMP-BDO 0.5%) at NCO/OH = 0.75; and finally 11.5 kgf/cm2

(TMP-BDO 0.15%), 13.8 kgf/cm2 (TMP-BDO 0.3%), and 15.7 kgf/cm2 (TMP-BDO 0.5%)
at NCO/OH = 0.8. In addition, as the TMP-BDO mixture content increases, the rate in
tensile strength also increases and gives the highest strength of kgf/cm2 at 0.5% TMP-BDO
content, when compared to the other mixtures added. The reason for this is a higher
triol (TMP) ratio, which leads to more crosslinks between chains and formation of the
three-dimensional polymeric matrix.

2.3.2. Effects of the Additives on the Performance Properties

In another study, 56 nm particles of iron(III) oxide were used as a combustion rate
modifier in SRP formulations [64]. AP/HTPB rocket fuel samples with different Al and
Fe2O3 content were prepared and investigated under the rule the more Fe2O3 the less AP
was added.
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According to study results, calorific value of the propellants, sensitivity to friction and
hardness decreases when the Fe2O3 content increases. Additionally, the catalytic effect of
the Fe2O3 on the burning rate of propellant was proven.

An application of [Cu(TNBI)(NH3)2(H2O)] as an energetic complex [65] in solid rocket
propellants has been studied. Rocket fuel was based on the AP/HTPB formulation and a
complex was used to replace RDX, which is considered as a high explosive compound in the
propellant formulation. Different compositions were prepared. Although the study reports
that big amount of [Cu(TNBI)(NH3)2(H2O)] decreases the calorific value of the propellant
(when compared to HTPB-based samples), authors state that [Cu(TNBI)(NH3)2(H2O)]
can be used as a replacement for RDX. On the other hand, addition of complex results
in improvement of the hardness and reduces the sensitivity to friction. Higher burning
rates were obtained for samples with [Cu(TNBI)(NH3)2(H2O)], so it may also be used as a
burning rate modifier and studies on this aspect will be progressed.

The influence of additions of Ti and Mg on the thermal properties and the combustion
characteristics of HTPB-based solid rocket propellants was also investigated [52].

Study reports that addition of Mg/Ti particles lead to decrease of the energy value
(because it has lower energy content than boron). On the other hand, the Ti content increase
has influence on reduction of the ignition delay time. According to the literature, Ti content
of 15–20% by weight of boron content provides the optimal value of the ignition delay
time—much lower when compared to B-HTPB based samples. However, addition of Mg
particles was characterized with a higher ignition delay time. Differences between ignition
value time of samples may be connected with thermal conductivity of the particles [66,67].

The thermal behavior and thermal properties of promising energetic material dihy-
droxylammonium 5,50-bistetrazole-1,10-diolate (TKX-50) were investigated with different
techniques [68]. There are many works dedicated to the investigation of different hetero-
cyclic systems (imidazole, triazole, pyrozole, and tetrazole) [69–73]. Of these heterocyclic
systems, the tetrazole moiety has the highest nitrogen atom content, which results in high
heat of formation and high energetic performance. Recently, a big amount of nitrogen-rich,
tetrazole derivatives were reported [74–79]. Although among those systems TKX-50 ap-
pears to be the most promising, with its synthesis procedure being reported [80], much
work needs to be done to confirm the practical applicability of this compound. TKX-50 is
characterized by excellent heat-resistance properties: its critical temperature of thermal
explosion is 533.39 K [74]. It was shown that TKX-50 decomposes with the formation of N2,
H2O, NH3, N2O, and NO.

HTPB-based propellant formulations were made with a iron hydroborate (BH-Fe) as a
burning rate modifier were studied [81,82]. The samples had the same composition but
differed in mass fraction of BH-Fe (Tables A3 and A4). Propellant formulations without
BH-Fe were used as a reference. The work focuses on describing the effect of BH-Fe on
combustion properties (burning rate and pressure exponent).

BET and SEM analysis showed that microstructure of the tested BH-Fe particles has
irregular shape and tends to disperse. In addition, no cold cohesion was observed (for the
microsized sample). This phenomenon appears during storage, handling, and manufacture
(at room temp.) and leads to microsized clusters reducing the specific surface.

Density of propellant formulations which contain aluminum particles is larger than
those which contain BH-Fe as an additive. It may be related to the modest porosity of
BH-Fe powders during the manufacture of propellant formulation.

When it comes to combustion properties (burning rate and pressure exponent), in-
creasing the mass fraction of BH-Fe leads to increase the burning rate (12% higher burning
rate for 3% mass fraction of the BH-Fe replaced Al powder) and experimentally-determined
specific impulse.

Furthermore, the results obtained indicate that although burning rate depends on the
mass fraction of BH-Fe, the pressure exponent does not change much. Figure 11.
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Effect of Al addition to composite-modified double based propellants on the heat of ex-
plosion, burning rate and the combustion properties was reported [5]. Seven formulations
with different Al/HMX content were prepared by a slurry-cast method. Heats of explosion,
burning rates, combustion parameters and flame characterization were investigated.

The minimum free energy method (NASA-CEA) was used to calculate the theoretical
value of the specific impulse. Study reports that stochiometric coefficient of propellant
decreases with the Al content growth. On the other hand, specific impulse increases with
the addition of Al (but the increase gradually slows). Heat of explosion increases when
the content of Al/HMX increases. With the increase of Al/HMX content, the energy
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performance also increases—this growth is limited by oxygen balance (which is reduced).
At some point (Al/HMX more than 7/30) burning rate is reduced, because of the heat
lost. This is caused by the ‘thermal sink’ effect of Al. Furthermore, addition of Al leads
to formation of the burning droplets on the propellant surface, which caused to brighter
individual flames.

Spinel compounds are further example of additives for composite solid propellants,
which can act as ballistic modifiers. Recently, a synthesis of such a compound was re-
ported [83]. Authors aimed to obtain CuCr2O4 with a excess of CuO. Previously published
works have shown the possibility of synthesizing CuCr2O4 through ceramic method
(CeCC), co-precipitation route (CpCC) [84], and Pechini method. CuCr2O4 with an excess
of CuO was obtained by a decomposition of the sodium alginate mixed metal complex.
Crystalline structure was analyzed using X-ray diffraction (XRD) spectroscopy. Observa-
tion of tetragonal peaks (101) of CuCr2O4 confirmed the spinel structure. Additionally,
further observations confirmed CuO phase occurrence.

The resulting compound was tested in a typical solid propellant formulation (AP/HTPB)
in order to determine its burning rate. Additionally, results were compared with SRP
formulation without ballistic modifier (Table 5).

Table 5. Comparison between burning rates of propellant samples [83].

Pressure (MPa) Burning Rate WOMO a (mm/s) Burning Rate CURCO b (mm/s)

4.90 6.82 9.73

8.83 8.36 12.00
a—propellant without metal oxide. b—propellant with CuCr2O4.

As it can be seen in the Table 4, addition of CuCr2O4 resulted in increase of burning
rate of propellant in 43%. The reason for the increased burning rate is the appearance of the
additional catalytic areas, which accelerate the oxidation of propellant components [85,86].

3. Summary

In recent years, extensive work has been performed on novel energetic binders, as
well as other components of propellant formulations. These efforts have largely been
focused on making propellants more ‘green’, by replacing the most environmentally-
harmful components of their formulations. The replacement of ammonium perchlorate
is of particular research interest and numerous energetic systems have been proposed
as alternatives to this compound, particularly nitrogen-rich organic cyclic species and
their salts.

In terms of the evolution of binders used in propellant formulations, recent years have
brought a shift away from the ‘tried and true’ use of HTPB, in favour of more energetic
polymers, such as GAP and PBAMO. This stems from the fact that such binders can actually
improve the performance of propellants rather than only serving as an organic fuel and
thermal ballast, as in the case of HTPB.

The use of additives has also been shown to be an important aspect of developing
rocket propellant formulations as they can greatly affect the final performance of a pro-
pellant. Nevertheless, it should be remembered that if the fundamental components of a
propellant formulation are not optimized, no amount of additives will resolve the arising
performance issues.

In terms of practical applications, the greatest challenge for the development of new
propellant formulations is not the lack of high-performance components, but the effective
cost of a unit amount of propellant. Although cost may be disregarded in some applications,
in most cases, the use of components that are produced through a sequence of sophisticated
chemical transformations will result in a prohibitive cost of the propellant, greatly limiting
its prospective applications.



Materials 2021, 14, 6657 14 of 17

Author Contributions: Conceptualization, A.S. and T.J.; Data curation, K.L.; Writing—original draft
preparation, K.L. and A.S.; Writing—review and editing, T.J.; Visualization, K.L.; Supervision, A.S.
and T.J. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the support of the Silesian University of Technology project
no. 04/040/BK_21/0145. T.J acknowledges the support of the Silesian University of Technology
04/040/BKM21/0170.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Compositions of propellants [29].

HTPB HTBCP25 DOA NG Others a AP b Al RDX

I 10 - 5 - 1 64 20 0
II - 10 - 5 1 64 20 0
III 10 - 5 - 1 59 20 5
IV - 10 - 5 1 59 20 5
V 10 - 5 - 1 54 20 10
VI - 10 - 5 1 54 20 10
VII 10 - 5 - 1 49 20 15
VIII - 10 - 5 1 49 20 15

a—crosslinker (trimethylol propane); chain extender (n-butanediol); curing agent (IPDI). b—total AP (300 µm, 60 µm).

Table A2. Propellant formulation [39].

Compound Mass Fraction (%)

BAAB ETPE 15
AP 40

RDX 18.5
Al 18

BuNENA 5
Carbon black 1.4

PbCO3 2.1

Table A3. Composition of propellant samples used in study [81].

Binder HTPB
Plasticizer di-2-etylhexyl sebacate (DES)
Curing agent 2,4-toluene diisocyanate (TDI)
Cross-linking agent isophthaloyl-bis-(2-methylaziridine) (HX-752)
Bonding agent bi-(2-methy-1-aziridinyl) phosphine oxide (MAPO)
Metallic fuel Al powder (5µm)
Oxidising agent AP
Burning rate modifier catocene (GFP); chromite copper (CC)

Table A4. Mass fraction of formulation’s compounds [81].

Samples HTPB (%) AP (%) Al (%) GFP (%) CC (%) BH-Fe (%) Add. (%)

CSP-1 9.5 65 18 4 1.5 0 2
CSP-2 9.5 65 17 4 1.5 1 2
CSP-3 9.5 65 15 4 1.5 3 2

CSP-1—reference sample.
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