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Abstract: Prostate cancer (PCa), bladder cancer (BCa), and renal cell carcinoma (RCC) are the
most common urological cancers, and their incidence has been rising over time. Surgery is the
standard treatment for these cancers, but this procedure is only effective when the disease is localized.
For metastatic disease, PCa is typically treated with androgen deprivation therapy, while BCa
is treated with chemotherapy, and RCC is managed primarily with targeted therapies. However,
response rates to these therapeutic options remain unsatisfactory due to the development of resistance
and treatment-related toxicity. Thus, the discovery of biomarkers with prognostic and predictive
value is needed to stratify patients into different risk groups, minimizing overtreatment and the risk
of drug resistance development. Pharmacometabolomics, a branch of metabolomics, is an attractive
tool to predict drug response in an individual based on its own metabolic signature, which can be
collected before, during, and after drug exposure. Hence, this review focuses on the application of
pharmacometabolomic approaches to identify the metabolic responses to hormone therapy, targeted
therapy, immunotherapy, and chemotherapy for the most prevalent urological cancers.

Keywords: prostate cancer; bladder cancer; renal cell carcinoma; pharmacometabolomics; biomarkers;
treatment response

1. Introduction

The incidence and mortality of cancer tend to increase over the next years as a reflec-
tion of population aging and growth [1–3]. Incidence rates broadly vary between sexes
and world regions due to differences in lifestyle habits (e.g., diet, nutrition, physical ac-
tivity), exposure to risk factors, and disparities in quality of cancer prevention, diagnosis,
and treatment [4]. The most recent data from GLOBOCAN [2] estimated 19.3 million new
cancer cases and 10.0 million deaths worldwide in 2020. Considering the urinary system,
prostate cancer (PCa), bladder cancer (BCa), and kidney cancer (KCa) are the most common
malignancies. PCa represented the most incident urological cancer in 2020, accounting
for more than half of all diagnosed cases. Furthermore, PCa ranked 3rd in the list of most
prevalent cancers according to GLOBOCAN [2]. BCa was the 2nd most prevalent urological
cancer, ranking in the 11th position among the worldwide most common cancers, while
KCa was the 3rd most prevalent urological cancer, ranking in the 15th position among the
most common cancers [2]. Renal cell carcinoma (RCC) represented more than 90% of all
KCa diagnoses [5] and can be divided according to different histological subtypes into
clear-cell RCC (ccRCC), which constitutes 75% of all RCC cases [6], and the remaining
20% included the papillary and chromophobe RCC subtypes, among other rare types [6,7].
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Testicular, penile, and urethral cancers are also classified as urological cancers; however,
due to their low prevalence worldwide (~1%), they were not included in this review.

Significant progress has been made in the understanding of hallmarks underlying the
development of urological cancers and the identification of novel molecular markers to
improve treatment effectiveness [8]. Currently, a vast spectrum of therapeutic approaches is
available to treat urological cancers. Surgery, chemotherapy, and radiation therapy are the
most used cancer treatments [9]. Other modalities, namely hormonal, targeted, and immune
therapies, have emerged in recent years to improve or overcome the low specificity of
traditional therapeutic approaches, demonstrating significant clinical benefits in patient
outcomes [10]. However, the development of resistance after long-term exposure continues
to jeopardize the efficacy of chemotherapy, hormone therapy, and targeted therapy [11–13],
and only a small percentage of patients respond to immunotherapy [14,15], depending on
the identification of predictive biomarkers of therapeutic response.

In this regard, personalized medicine seeks to identify the most appropriate treatment
option for a patient, considering both its individual genetic and non-genetic characteris-
tics, to guide more informed clinical decisions, reducing adverse effects and associated
costs [8,16–18]. In personalized medicine, cancer patients must be divided into distinct sub-
groups so that the optimal/most precise treatment can be prescribed at the right time [19].
As a result, the conventional “one treatment fits all” paradigm, in which treatment is
used in a universal population approach regardless of individual genes, environments,
and lifestyles, is changing [20]. The use of reliable cancer classifiers can help clinicians to
correctly stratify patients to predict their therapeutic responses. Hence, pharmacogenomic
studies have been conducted to investigate the influence of inter and intra-patient genetic
variabilities on drug response [21]. However, pharmacogenomics does not consider other
important factors that may affect therapeutic responses (e.g., gender, nutrition, age, health
status, among others) [22]. These factors, as well as the disease state, can alter the metabolic
profile (metabolome) of an individual, making metabolome analysis during a treatment
regimen a promising strategy for identifying biomarkers of therapeutic response. Thus,
pharmacometabolomics emerges to perform metabolic profiling of an individual prior,
during, and after a treatment to identify potential metabolic biomarkers that can predict
patient treatment response, which is of utmost interest in precision medicine [22,23]. This
review focuses on the pharmacometabolomic studies that have been conducted over the
last twelve years (2010 to 2021) to investigate biomarkers of therapeutic response in the
most incident urological cancers, namely PCa, BCa, and RCC.

2. Current Status and Limitations of Therapies for Urological Cancers

The standard management of urological cancers initiates with surgery. However,
alternative options must be used to control cancer progression at the metastatic stages.
In this section, the most used strategies in the treatment of each urologic cancer are reviewed,
starting with the most prevalent—PCa, followed by BCa and RCC.

2.1. Prostate Cancer

PCa is a complex disease with a large spectrum of aggressiveness, from localized
PCa, which corresponds to 77% of the diagnosed PCa cases, to advanced/metastatic dis-
ease [24]. For low risk of progression (localized PCa) cases, surgery is recommended
(prostatectomy) besides surveillance to prevent the substantial associated risk to develop re-
currences [25–27]. Radiation therapy can also be prescribed for low- and intermediate-risk
cases and can be divided into two major types: external beam radiation and brachyther-
apy [25,28]. External beam radiation is addressed to the prostate gland using high-energy
rays from a machine outside the body. In turn, brachytherapy uses small radioactive
particles, also called pellets or “seeds”, that are put directly into the prostate [28]. However,
PCa can spread limiting its management by surgery or radiation and, therefore, patients
can experiment relapses. In these cases, androgen deprivation therapy (ADT), also known
as hormone therapy, is considered [29]. Male hormones, namely testosterone, are essential
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for prostate cancer development, maintenance, and progression [30]. ADT decreases the
concentration of androgens in body circulation using gonadotropin-releasing hormones
(GnRH) agonists (e.g., leuprolide, goserelin, triptorelin, histrelin) and antagonists (e.g.,
degarelix) as well as androgen inhibitors (e.g., bicalutamide, nilutamide, flutamide, enzalu-
tamide) [29,30]. The most used hormone therapy drugs are listed in Table 1. Despite the
benefits, several adverse effects have been associated with ADT including sexual side effects
(e.g., loss of libido, erectile dysfunction, among others), osteoporosis, anemia, fatigue, de-
pression, and cardiovascular complications [31]. Moreover, after an initial response to ADT,
some patients develop castration-resistant PCa (CRPCa), a progression of the disease [32].
Novel anti-androgen drugs such as bicalutamide, nilutamide, or enzalutamide have been
developed to treat this condition but the prognosis of CRPCa remains poor [25,32]. In these
cases, ADT is commonly recommended for symptom control or prescribed in combination
with chemotherapy (e.g., docetaxel, cabazitaxel, mitoxantrone) to slow the progression of
advanced PCa [28,30]. Additionally, pharmaceutical compounds like olaparib and ruca-
parib were recently approved by the FDA for targeted therapy in patients with metastatic
or hormone-resistant PCa who have mutations in breast cancer genes (BRACs), which are
well-established tumor suppressor genes that maintain genomic stability [33,34].

The use of diagnostic biomarkers, such as the serum prostate-specific antigen (PSA),
which is commonly used for PCa screening, prostatic acid phosphate (PAP), and prostate-
specific membrane antigen (PSMA), as target antigens in immunotherapy has been in-
vestigated [32,35]. Moreover, the scientific community has been interested in combining
immunotherapy and targeted therapy to increase the sensitivity of cancer cells to antitumor
effects of antineoplastic drugs [36].

Apart from efforts to improve PCa therapeutics, reliable biomarkers for patient strati-
fication and outcome prediction are urgently needed [32].

2.2. Bladder Cancer

Transitional cell carcinoma, which represents 90% of all BCa cases, presents distinct
histological variants associated with different clinical features and outcomes [37]. Man-
agement of BCa is based on the pathological findings of the biopsy (histology, grade,
and invasion), accomplished during the cystoscopy [38]. Local disease, also known as non-
muscle-invasive BCa (NMIBC), is treated with transurethral resection of the bladder tumor
(TURBT). However, approximately 20% of all NMIBC cases progress to muscle-invasive
BCa (MIBC) which treatment is accomplished with radical cystectomy with pelvic node dis-
section [39]. Additionally, surgery is frequently combined with cisplatin-based neoadjuvant
chemotherapy, which has been considered the first-line treatment for metastatic BCa [38,40].
Cisplatin-based treatment encompasses significant benefits for the patient, but it also causes
several side effects and toxicity. Furthermore, it has a low response rate (40–50%) due to
the development of resistance mechanisms during long-term exposures [41,42].

To address the drawbacks of chemotherapy, recent research has demonstrated the
antitumoral activity of immune checkpoint inhibitors such as pembrolizumab and ate-
zolizumab in BCa management [42]. These pharmaceutical compounds are currently
recommended as first-line treatment for advanced BCa and non-responding or non-eligible
chemotherapy BCa patients [39,43].

Mutations on FGFR3 or FGFR2 genes are usually associated with the presence of cancer.
Indeed, FGFR3 has been used as a prognostic and predictive marker for less aggressive
forms of BCa, as well as a therapeutic target of erdafitinib, which is typically recommended
for cases of recurrent BCa [41,44]. These findings enhance the clinical benefits of identifying
driving changes in the development of patient-specific therapies. In this vein, the possibility
of predicting sensitivity to phosphatidylinositol 3-kinase/mammalian target of rapamycin
(PIK3/mTOR) inhibitors has already been reported through the identification of mutations
in the PIK3CA genes, that occur in approximately 26% of BCa patients [45].

Despite the advances in BCa management, response to treatment is still non-durable
and cisplatin therapy is associated with significant treatment-related toxicity. Strategies
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for optimization of drug doses and drug combinations must be established in order to
avoid drug overexposure. Moreover, the identification of early signs of resistance can
help researchers gain a better understanding of the mechanisms that underpin resistance
development.

2.3. Renal Cell Carcinoma

RCC is recognized as a metabolic disease characterized by deregulations on several
processes including angiogenesis (e.g., von Hippel–Lindau/hypoxia-inducible factor gene
mutations) [46], energy metabolism (Warburg effect), and nutrient-sensing pathways [47,48].
This heterogeneity impairs the selection of RCC therapeutics, hence, the definition of prog-
nostic and predictive elements of therapeutic response is of utmost importance. Approxi-
mately 65% of all RCC diagnosed cases are confined to the kidney and can be successfully
managed with surgery (total or partial nephrectomy), with a 5-year relative survival rate of
93% [49,50]. Despite the recognition of surgery as the standard treatment for localized RCC,
in some particular cases, radiotherapy can be considered using a radiation source outside
the body [7,51]. For metastatic RCC patients, the survival rate decreases significantly to 70%
when cancer spreads to near structures of the kidney (e.g., lymph nodes) and 12% when can-
cer spreads to distant parts of the body [49]. In these cases, and when patients experience
relapses after local therapy, systemic treatment is required. The systemic treatment begins
with first-line therapies that include inhibitors of tyrosine kinases (e.g., vascular endothelial
growth factor (VEGF) receptors), as sunitinib, pazopanib, tivozanib and cabozantinib,
and mTOR, as temsirolimus and everolimus [7,52]. More recently, the combination of
these targeted drugs with immunotherapeutic agents (ipilimumab/nivolumab or pem-
brolizumab/axitinib) has been approved [53,54]. Resistance acquisition is an important
phenomenon in RCC in both targeted and immune therapies that contributes to limited
long-term responses and, consequently, a poor prognosis [55]. The discovery of biomarkers
that predict drug efficacy can help to avoid these problems, reducing costs and improving
patient survival [56]. Ongoing and future clinical trials must delve deeper into the subset
of patients who do not respond to current therapies. Chemotherapy is not recognized as a
usual treatment for RCC due to low associated response rates [57].

3. Pharmacometabolomics
3.1. The Concept

Molecular profiling of tumors using genomics, proteomics, and metabolomics ap-
proaches can assist clinicians in patient stratification [8]. Pharmacogenomics, broadly
defined as the study of individual genetic profiles to predict the therapeutic response of
patients, has been used as a route to perform precision medicine but it is not sensitive to
environmental factors (e.g., diet, age, nutrition, gender, lifestyle, gut microbiome among
others) that also influence the response of a patient or a group of patients to the drug ther-
apy [58]. Thus, pharmacometabolomics was defined in 2006 as “an enhanced understanding
of mechanisms for drug or xenobiotic effect and increased ability to predict individual variation in
drug response phenotypes, based on using both baseline metabolic profiles prior to treatment and also
effects of drug treatment over time” [59]. Since metabolic changes precede phenotypic changes,
pharmacometabolomics is a powerful tool to predict therapeutic responses based on the
discovery of similar metabolic signatures of a group of patients pre- and post-treatment
(metabotypes) [22,59,60]. These metabolic signatures refer to several low-molecular-weight
endogenous and exogenous metabolites including amino acids, fatty acids, organic acids,
carbohydrates, among others, and their levels can be used to build models of patient
response to a drug (including toxicity and side effects) [61]. In the realm of precision
medicine, the analysis of perturbations in the levels of these chemical compounds is critical
to select biomarkers capable of predicting responses and monitoring the health status of a
patient during treatment [62].
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3.2. Workflow

The design of a pharmacometabolomic study constitutes an important point before
its beginning to ensure optimal sample handling, metabolite extraction, detection, and in-
terpretation to guarantee the reproducibility of the results [23]. Since the primary goal of
pharmacometabolomics in the biomarker discovery field relies on the assumption that the
metabolic fingerprint is altered by treatment response, resistance, and/or toxicity, the work-
flow initiates with the collection of biological samples before (baseline) and after treatment
(Figure 1). The second step in the pharmacometabolomics pipeline is data acquisition
which includes metabolite detection by high-throughput analytical techniques. Data gener-
ated in the second step must be processed into a manageable format using bioinformatic
tools before being subjected to multivariate and univariate statistical methods. The final
step entails data interpretation to identify potential biomarkers of therapeutic response
(e.g., biomarkers of efficacy, toxicity, pharmacokinetics, and pharmacodynamics) to build
mathematical models capable of predicting therapeutic responses.

Figure 1. Overview of a representative pharmacometabolomics workflow and its main goals.

The biological matrices most used in pharmacometabolomic studies include blood
plasma/serum, tissues, and cells and they are collected prior to treatment at the baseline,
followed by collection during and after treatment. Serum and plasma are complex matrices
that are broadly used to monitor drug responses and can be collected at different time points
(e.g., routine clinical follow-ups) [63]. Tissue samples require an invasive collection, and the
representativeness of the tissue sample is compromised by the heterogeneity of the tumor;
notwithstanding, they allow for the evaluation of the metabolites at their origin, i.e., in the
specific organ [64]. For urological cancer studies, tissue can be collected during surgeries
(e.g., prostatectomy, nephrectomy, and cystectomy), which are the primary treatment
modality for most of them, in order to address implications of a previous drug exposure
(e.g., adjuvant chemotherapy). However, recruiting a significant number of participants
to collect human samples remains a challenge in pharmacometabolomic studies, making
it necessary to investigate other biological models. Indeed, some studies referred to the
use of biological samples from less complex models, such as in vitro and animal models
including the cell line-derived xenograft (CDX), for accessing in vivo therapeutic responses.
In vitro models provide an easier comprehension of drugs action and aid in their rapid
incorporation into novel therapeutic settings [65,66]. Patient-derived xenografts (PDX) are
models in which the tissue or cells from a patient’s tumor are implanted into an animal
model (typically mice), allowing researchers to track the dynamics and progression of
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cancer (e.g., development of treatment resistance) while preserving tumor heterogeneity,
genomic, and histological characteristics [67].

Regarding the analytical techniques used in pharmacometabolomics studies, nuclear
magnetic resonance spectroscope (NMR) and mass spectrometry-based (MS) have been
widely used in metabolomics studies [68]. Each one presents specific advantages and limita-
tions in terms of sensitivity, reproducibility, and equipment costs [69]. No single analytical
technique can provide complete coverage of the human metabolome which is composed of
numerous metabolites from different classes with varying concentrations and physicochem-
ical properties [68]. As a result, the combination of both NMR and MS-based platforms
allows for a more accurate characterization of the physiologic, pathologic, and treatment-
specific metabolites [70,71]. Despite this, the majority of pharmacometabolomic studies are
limited to a single technique.

Translating the complex and non-linear data generated by NMR and MS methods to a
model that can predict patient response to a drug is challenging. Thus, data pre-processing
is a paramount step to prepare the raw data into a format that can be interpreted by mul-
tivariate analysis [72]. In general, the basic tools for data pre-processing include noise
filtering and baseline correction, peak detection and deconvolution, alignment, and nor-
malization [73]. Then, appropriate unsupervised and supervised multivariate analysis
can ensure the extraction of useful information from experimental data [74,75]. Principal
component analysis (PCA) is an unsupervised method to easily detect trends and outliers
among samples, without considering sample identity. Hierarchical cluster analysis is also
commonly used to build a tree diagram based on the similarity or differences between
sample groups (clusters). Supervised methods, such as partial least squares-discriminant
analysis (PLS-DA) and the orthogonal PLS-DA (OPLS-DA), consider a previous classifica-
tion of samples to build the projection, maximizing the differences between samples [72].
Due to the risk of overfitting, model robustness must be evaluated through cross-validation
or permutation tests and, if possible, using an independent set of data to build the mod-
els [72]. Univariate analysis (e.g., ANOVA, t-tests) is commonly used to evaluate the
statistical significance of the biomarkers. To avoid the chance of false-positive results,
p-values can be corrected for multiple comparisons using Bonferroni correction or the false
discovery rate [72].

Discriminant metabolites identified can be further investigated to understand derange-
ments in pathways that underlie drug response [22]. Several integration databases for
enrichment analysis are available (e.g., MetaboAnalyst [76], Kyoto Encyclopedia of Genes
and Genomes (KEGG) [77]) that can simplify the biochemical interpretation and relevance
of the potential biomarkers [72,75].

4. Pharmacometabolomic Studies in Urological Cancers

The goal of pharmacometabolomic studies performed in the urological cancers field is
to identify discriminative metabolites between samples collected before and after a drug
treatment to advance with candidate biomarkers and mechanistic pathways of treatment
response. In this section, a review of the literature was performed to access studies that
apply pharmacometabolomic approaches to identify the metabolic responses to hormone
therapy, immunotherapy, targeted therapy, and chemotherapy in PCa, BCa, and RCC.
The identification of papers was conducted through a search on the PubMed database
considering the following keywords or expressions [(metabolomics OR “metabolic pro-
filing”) AND (chemotherapy OR “targeted therapy” OR immunotherapy OR “hormone
therapy” OR “endocrine therapy” OR “androgen deprivation therapy” OR resistance) AND
(“prostate cancer” OR “bladder cancer” OR “renal cancer” OR “kidney cancer” OR “renal
cell carcinoma”)]. The search was performed in December 2021, considering all literature
published in English from 2010 to 2021. In total, the search retrieved 163 papers (Figure 2).
After an initial screening, 59 review papers and comments were excluded. The remaining
104 records of original results were analyzed, and 68 articles were excluded due to the lack
of relevance for the topic, 10 articles reporting results with alternative pharmaceutical com-



Pharmaceuticals 2022, 15, 295 7 of 24

pounds, and 5 articles using other omics approaches. Finally, 18 articles were considered
for the present review.

Figure 2. Flow diagram of literature search (time frame: 2010–2021; database: PubMed).

4.1. Pharmacometabolomic Studies in Prostate Cancer

PCa is the most studied urological cancer using pharmacometabolomic approaches
with ten studies reported from 2010 to 2021. Table 1 summarizes the study design and
main findings from those reports, including the pattern of metabolites with the poten-
tial to be candidate biomarkers of therapeutic response and the related metabolic path-
ways. Because castration resistance is a common condition in PCa, specific biomarkers
associated with resistance development are also discussed in the research studies. Early
biomarkers of resistance must be identified to optimize treatment regimens and improve
long-term outcomes.

Three studies aiming to monitor the treatment response of PCa cells were performed
using in vitro models [78–80]. Lodi et al. [78] used 1H NMR spectroscopy to assess the
effects of treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and
the heat shock protein 90 (HSP90) inhibitor 17AAG on the metabolome of two PCa cell
lines. These compounds belong to the group of targeted therapy approaches, whose
clinical interest has increased in the last few years. The pharmacometabolomic analysis
was complemented with Western blotting to confirm the inhibition of the target proteins.
The results showed that LY294002 treatment increased intracellular levels of glutamine
and several branched-chain amino acids (BCAAs), such as valine, leucine, and isoleucine,
while decreasing levels of lactate, alanine, fumarate, phosphocholine, and glutathione
were observed. Regarding 17AAG, PCa-exposed cells demonstrated a similar increasing
tendency in the levels of BCAAs, as well as increases in phosphocholine, myo-inositol,
taurine, and citrate, and decreases in lactate, alanine, fumarate, and glutamine levels. Both
inhibitors induced intracellular metabolic alterations (lactate, alanine, and fumarate) that
may be associated with the activation of glucose uptake and glycolysis by PI3K-protein
kinase B/Akt (PI3K/Akt) signaling. The alterations in intracellular glutamine levels un-
veiled some specificity for the treatment type, with an increase following PI3K inhibition
(LY294002) and a decrease following HSP90 inhibition (17AA treatment), indicating a
potential role of glutaminolysis in cancer cell growth. Citrate is typically found in high
concentrations in healthy prostate tissue due to the specific metabolism of prostate cells that
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accumulates this metabolite rather than oxidizing it for energy production [71]. For this
reason, the increase in intracellular concentration of citrate after 17AAG treatment may
indicate a specific shift to a more physiological behavior of PCa cells. Furthermore, the pro-
cess of obtaining energy is switched to glycolysis rather than oxidative phosphorylation
in PCa, resulting in an increase in the levels of glucose and lactate compared to normal
cells [71,81]. Given this, the decreased levels of lactate in PCa cells after treatment, found by
Lodi et al. [78], suggested its effectiveness. Because tumors rely on BCAA intake for energy,
their intracellular accumulation appears to indicate a slowdown of protein synthesis and,
consequently, a decrease in cell proliferation and cancer progression [78,82]. The alterations
found in common in both cell lines suggested that several metabolites are simultaneously
modulated following treatment.

The in vitro study performed by Qu et al. [79] aimed to study the antitumor effects of
proxalutamide and two others currently used androgen receptor (AR) antagonists (bica-
lutamide and enzalutamide) on AR-positive (LNCaP and 22RV1) and AR-negative PCa
cell lines through liquid chromatography quadrupole time-of-flight mass spectrometry
(LC-Q/TOF-MS). The results unveiled that proxalutamide significantly decreased the in-
tracellular levels of glutamine, glutamate, cysteine, glycine, reduced glutathione (GSH),
oxidized glutathione (GSSG), aspartate, uridine, cytidine, and thymidine in AR-positive
cells, while no effect was observed on the intracellular levels of AR-negative cell lines.
These changes suggested that proxalutamide inhibited glutamine metabolism, redox home-
ostasis (glutathione metabolism), and pyrimidine synthesis in AR-positive cells. Moreover,
a reduction in the expression of cell surface transporters necessary for glutamine intake
was noted through Western blot assays.

In the third study, the metabolic dysregulations in castration-resistant PCa compared
to androgen-dependent PCa were investigated in in vitro and animal models by targeted
NMR spectroscopy analysis of metabolites involved in the metabolism of [U-13C]-glucose
and [U-13C]-glutamine [80]. The in vitro model comprised the intracellular metabolites of
human PCa cell lines representative of androgen-dependent PCa (LNCaP) and castration-
resistant PCa (PC3), which were cultured with 13C-glucose and 13C-glutamine media. In the
animal model, aqueous extracts of solid tumor masses from the transgenic adenocarcinoma
of mouse prostate (TRAMP) mice were analyzed. The results unveiled higher levels of
amino acids, membrane precursors, and organic acids from energy metabolism in the
resistant condition, indicating a higher energetic and biosynthetic demand to support cell
survival and growth. Interestingly, this study reported an increase in the levels of glutamate
(an intermediate in glutathione metabolism) as well as glutathione, an antioxidant agent
that can protect resistant cells from the cytotoxic effects of drugs, thereby supporting the
development of drug resistance [80,83].

Human samples have been the preferred model for pharmacometabolomic studies of
PCa, but the number of available samples collected before and after treatments has been
limited. Table 1 summarizes seven pharmacometabolomic studies performed in serum,
plasma, and tissue from PCa patients under hormone therapy (androgen deprivation
therapy) [84–88] and chemotherapy regimens [89,90]. The first study was performed by
Saylor et al. [84] to investigate changes in plasmatic metabolite levels in patients receiving
a gonadotropin-releasing hormone (GnRH) agonist using both GC-MS and LC-MS/MS.
The main alterations observed in plasma extracts after 3 months of treatment exposure
included an increase in the levels of cholate (an intermediate of bile acid metabolism) and a
decrease in the levels of steroids and metabolites from lipid β-oxidation (several carnitines
and ketone bodies), effects which were associated with the use of androgen-deprivation
therapy in PCa patients [84,91].
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Table 1. Pharmacometabolomic studies performed in PCa.

Cancer Therapy
under Study Samples Instrumental and

Statistical Analysis Treatment Response Metabolic
Interpretation Ref.

In vitro and animal models

Targeted therapy:
PI3K inhibitor LY294002
(10–25 µM) and HSP90

inhibitor 17AAG (0.25–1 µM)
48 h of treatment exposure

Intracellular (polar) metabolome
of PCa cell lines:

PC3 untreated (DMSO solvent
control), n = 8

treated with LY294002, n = 8
treated with 17AAG, n = 8

LNCaP untreated (DMSO solvent
control), n = 8

treated with LY294002, n = 8
treated with 17AAG, n = 8

1H NMR
PCA

Mann–Whitney U test

LY294002 treatment effects in both cell lines (PC3
and LNCaP):

↑ valine; leucine; isoleucine; glutamine
↓ alanine; lactate; fumarate;glutathione;

phosphocholine
17AAG treatment effects in both cell lines (PC3 and

LNCaP):
↑ valine; leucine; isoleucine; phosphocholine;

myo-inositol; taurine; citrate
↓ lactate; alanine; fumarate; glutamine

LY294002 and 17AAG
exposure activated glycolysis
by PI3K/Akt signaling and

influenced the glutaminolysis

[78]

Hormone therapy:
androgen receptor (AR)

antagonists proxalutamide,
bicalutamide,

and enzalutamide (1–10 µM)
48 h of treatment exposure

Intracellular (polar) metabolome
of PCa cell lines:

AR-positive cells (22RV1 and
LNCaP):

untreated, n = 6
treated with each AR antagonist,

n = 6 per drug
AR-negative cells (PC3, DU145):

untreated, n = 6
treated with AR antagonist, n = 6

per drug

LC-Q/TOF-MS
PCA, PLS-DA, OPLS-DA
Two-tailed student’s t-test

One-way analysis of
variance

Proxalutamide treatment effects in both AR-positive
cell lines:

↓ glutamine; glutamate; GSH; GSSG; GSH/GSSG;
glycine; aspartate; uridine, cytidine; thymidine

Bicalutamide treatment effects in AR-positive cell
lines:

↓ thymidine
Enzalutamide treatment effects in AR-positive cell

lines:
↓ GSH
↑ aspartate

No significant changes were found for
proxalutamide, bicalutamide, and enzalutamide in

AR-negative cell lines

Proxalutamide exposure
inhibited glutamine

metabolism, glutathione
metabolism and pyrimidine

metabolism

[79]

Hormone therapy

Intracellular (polar) metabolome
of cell lines:

AR-positive cells:
LNCaP, n = 4

Castration resistant cells:
PC3, n = 4

Tissue extract (polar phase):
TRAMP, n = 3

castrate resistant TRAMP, n = 3

1H NMR
Student’s t-test

Castration resistant condition effects in cell lines:
↑ aspartate; glutamate; lactate; myo-inositol;

phosphocholine; glycerophosphocholine; total
choline; alanine; glutathione

↓ citrate; glucose; creatine; creatine phosphate
Castration resistant condition effects in TRAMP:
↑lactate; aspartate; glutamate; glutathione

↓citrate; creatine

Castration resistant condition
was associated with an

upregulation of glycolysis;
TCA cycle; glutaminolysis
and glutathione synthesis

[80]
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Table 1. Cont.

Cancer Therapy
under Study Samples Instrumental and

Statistical Analysis Treatment Response Metabolic
Interpretation Ref.

Human models

Hormone therapy: leuprolide
(22.5 mg IM 3-month depot)
and bicalutamide (50 mg per

day)
4 weeks of treatment

exposure

Lipophilic and hydrophilic
plasma extracts:

PCa untreated group, n = 36
PCa treated group, n = 36

LC-MS/MS
GC-MS

Student’s t-test

Hormone therapy effects in PCa treated group:
↑cholate

↓dehydroisoandrosterone sulfate; epiandrosterone
sulfate; androsterone sulfate; cortisol;

4-androsten-3β, 17β-diol disulfates 1 & 2;
5α-androstan-3β,17β-diol disulfate; pregnendiol

disulfate; pregn steroid monosulfate; andro steroid
monosulfates 1; deoxycarnitine; acetylcarnitine;

hexanoylcarnitine; octanoylcarnitine;
decanoylcarnitine; laurylcarnitine;

palmitoylcarnitine; stearoylcarnitine;
oleoylcarnitine; 3-hydroxybutyrate; acetoacetate;

dodecanedioate; octadecanedioate;
2-hydroxybutyrate; α-hydroxyisovalerate; 2-

methylbutyroylcarnitine

Hormone therapy exposure
inhibited steroids synthesis,

fatty acid oxidation, bile acid
synthesis and BCAAs

synthesis

[84]

Hormone therapy:
bicalutamide and goserelin
up to 2 years of treatment

exposure

Lipophilic serum extract:
PCa

untreated group, n = 18
treated group, n = 36

(poor response n = 18 and
good response n = 18)
Healthy group, n = 18

LC-MS
PLS-DA

OPLS
Duncan pairwise post hoc

tests

Hormone therapy effects in PCa poor response
group:

↑ deoxycholic acid; glycochenodeoxycholate;
L-tryptophan; arachidonic acid; deoxycytidine

triphosphate; pyridinoline
↓ docosapentaenoic acid

Hormone therapy effects in PCa good response
group:

↑ L-tryptophan; arachidonic acid; deoxycholic acid;
glycochenodeoxycholate

↓ docosapentaenoic acid; pyridinoline;
deoxycytidine triphosphate

Hormone therapy exposure
altered cholesterol metabolic

pathway
[85]

Hormone therapy: degarelix
(240 mg)

7 days of treatment exposure

Tissue extract (polar phase):
PCa

untreated group, n = 6
treated group, n = 7

Control group, n = 10

1H-NMR
PCAOPLS-DA

Degarelix effects in PCa treated group:
↓lactate; total choline

Hormone therapy exposure
reduced glycolysis and

membrane phospholipid
metabolism

[86]
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Table 1. Cont.

Cancer Therapy
under Study Samples Instrumental and

Statistical Analysis Treatment Response Metabolic
Interpretation Ref.

Hormone therapy: LHRH
agonist, LHRH-antagonist,

or orchiectomy
3 and 6 months of treatment

exposure

Lipophilic and hydrophilic
serum extracts:

PCa
untreated group, n = 20

treated group (3 months),
n = 20

treated group (6 months),
n = 20

GC-TOF-MS
LC-HILIC-MS/MS

Volcano plot
ANOVA

Pearson correlation

Hormone therapy effects in PCa treated group
(3 months):

↑ dihydroxycholestanoyl taurine; dodecanedioic
acid; eicosatetraenoic acid

↓ hydroxymyristoyl-carnitine; malonyl-carnitine;
hexanoyl-carnitine; dodecenoyl-carnitine;

octanoyl-carnitine; oleoyl-carnitine;
decanoyl-carnitines; 3-hydroxyburtirc acid;

indoleacetic acid; andosterone sulfate
Hormone therapy effects in PCa treated group

(6 months):
↑ dihydroxycholestanoyl taurine; AMP;

N-acetyl-glucosamine-1-phosphate;
mevalonate-5-phosphate; 2-hydro-D-gluconate

↓malonylcarnitine; oleoylcarnitine;
hexanoylcarnitine; tetradecendoycarnitine;

heptanoylcarnitine palmitoylcarnitine;
decanoyl-carnitines; myristolylcarnitine;

3-hydroxyburtic acid; oxalic acid; glycolic acid;
nonanoic acid; androsterone sulfate

Hormone therapy exposure
reduced steroid biosynthesis;

fatty acid β-oxidation and
ketogenesis and alters

microbiome metabolism

[87]

Hormone therapy

Tissue extract (polar phase):
BPH group, n = 39

HSPCa group, n = 39
CRPCa group, n = 25

1H NMR
PCA, OPLS-DA

10-Fold cross validation
CV-ANOVA
Student t-test

Bonferroni correction
AUC

Hormone therapy resistance effects in CRPCa
(compared with BPH):

↑ alanine; lactate; glutamate; taurine
↓ myo-inositol; citrate

Hormone therapy resistance effects in CRPCa
(compared with HSPV):

↑ creatine
↓ choline; lactate; alanine; glutamate; glycine

Castration resistant condition
was associated with

down-regulation of amino
acid metabolism; membrane

metabolism (choline
metabolism) and altered

energy metabolism
(possibility of inverse

Warburg effect)

[88]
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Table 1. Cont.

Cancer Therapy
under Study Samples Instrumental and

Statistical Analysis Treatment Response Metabolic
Interpretation Ref.

Chemotherapy: docetaxel
(75 mg/m2)

3 weeks of treatment
exposure

Lipophilic plasma extract:
Discovery set:

PCa
untreated group, n = 96

treated group, n = 89
Validation set:

PCa
untreated group, n = 63

treated group, n = 47

LC-MS/MS
Latent class analysis

Univariable and
multivariable cox

regression
Logistic regression

Student’s t-test

Docetaxel effects in PCa treated group:
no significant changes were found - [89]

Chemotherapy (docetaxel)
and hormone therapy (LHRH

analog)
18–24 weeks of treatment

exposure

Tissue extract (polar phase):
PCa

treated group, n = 12
untreated group, n = 10

HPLC
PCA

OPLS-DA
Two-tailed student’s t test

One-way analysis of
variance

Docetaxel and hormone therapy effects in PCa
treated group:

↑ GSSG; glycerol-3-phosphate; shikimate; 14.0 Lyso
PA; d-glucarate; dodecylbenzenesulfonic acid;

guanosine
↓ phospholipids (PC, PE, PS, LPE);

27-hydrocycholesterol 3 sulfate;
2-hydroxy-4-methylpentanoate

Docetaxel and hormone
therapy exposure inhibited

pathways involved in
biosynthesis and energy
metabolism: amino acid
metabolism; purine and

pyrimidine metabolism; TCA
cycle; lipid synthesis;

glutathione metabolism

[90]

22RV1: human prostate carcinoma epithelial cell line; AMP: adenosine monophosphate; AUC: area under curve; AR: androgen receptor; BCAAs: branched chain amino acids;
BPH: benign prostatic hyperplasia; CRPC: castration resistant PCa; CV-ANOVA: analysis of variance of cross-validated residuals; DU145: cell line with epithelial morphology
isolated from the prostate; GC-MS: gas chromatography–mass spectrometry; GC-TOF-MS: gas chromatography-time of flight-mass spectrometry; GSH: reduced glutathione; GSSG:
oxidized glutathione; HPLC: high-performance liquid chromatography; 1H-NMR: proton nuclear magnetic resonance spectroscopy; HSP90: heat shock protein 90; HSPC: hormone
sensitive PCa; LC-MS/MS: liquid chromatography-tandem mass spectrometry; LC-HILIC-MS/MS: liquid chromatography-hydrophilic interaction chromatography-tandem mass
spectrometry; LC-HRMS: liquid chromatography-high resolution mass spectrometry; LC-MS: liquid chromatography-mass spectrometry; LNCaP: lymph node carcinoma of the
prostate; LPE: lysophosphatidylethanolamine; PA: phosphatidic acid; PC3: prostate cancer cell line; PC: phosphatidylcholine; PCa: prostate cancer; PCA: principal component analysis;
PE: phosphatidylethanolamine; PI3K: phosphatidylinositol 3-kinase; PS: phosphatidylserine; OPLS-DA: orthogonal partial least squares-discriminant analysis; TRAMP: transgenic
adenocarcinoma of mouse prostate; UMP: uridine monophosphate.
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One of the most recent studies presented in Table 1 was performed by Chi et al. [87]
and corroborated the findings reported in the aforementioned study (Saylor et al. [84]).
Chi et al. carried out a pharmacometabolomic study with the goal of investigating serum
metabolic alterations in PCa patients after hormone therapy at three different time points:
before, 3 months, and 6 months after therapy. The most significant changes were found
consistently at 3 and 6 months and included significantly lower levels of androsterone
sulfate, 3-hydroxybutyric acid, and several long-chain acyl-carnitines, suggesting an impact
in steroid synthesis and ketogenesis. Furthermore, some of the known adverse effects of
hormone therapy included glucose intolerance and insulin resistance [31,87].

The study carried out by Huang et al. [85] used LC-MS to analyze serum samples from
PCa patients with different responses, i.e., good and poor responders, to the combination
of bicalutamide and goserelin, which correspond to an antiandrogen and a luteinizing
hormone-releasing hormone analog, respectively. Several metabolites were statistically
altered between untreated PCa patients and healthy controls, including oxycholic acid,
glycochenodeoxycholate, L-tryptophan, docosapentaenoic acid, arachidonic acid, deoxycy-
tidine triphosphate, and pyridinoline. After drug treatment, these metabolites returned to
near-normal levels in the good responder patient group, but not in patients who developed
castration resistance (poor responders). Additionally, higher levels of docosapentaenoic
acid and glycochenodeoxycholate were linked to a faster rate of cholesterol synthesis. These
findings may be useful in predicting how patients will respond to this type of hormone
therapy combination.

Regarding tissue analysis, Madhu et al. [86] investigated the metabolic effects of
degarelix, a hormone blocker, as adjuvant treatment in PCa patients undergoing radical
prostatectomy. Polar metabolites were extracted from benign and malignant tissue samples
and analyzed by 1H-NMR spectroscopy. Degarelix treatment induced a significant decrease
in the levels of lactate (fuel for oxidative metabolism) and total choline (membrane pre-
cursor). These metabolites are usually found to be elevated in PCa human samples [71],
so their levels can be monitored and proposed as candidate biomarkers of therapeutic
response to degarelix.

A better understanding of the metabolic differences between hormone-sensitive
(HSPCa) and castration-resistant PCa (CRPCa) is also of utmost importance. In this way,
recent research presented the 1H NMR analysis of tissue from patients with the two phe-
notypes under hormone therapy [88]. The results showed a good separation between the
two groups, with choline, creatine, and lactate as the metabolites with the highest discrimi-
natory power for the metabolic signatures of patients sensitive and resistant to hormone
therapy. This potential biomarker panel suggested that the main alterations occurring
in the resistant condition were related to alterations in amino acid metabolism, choline
metabolism and suggested a possible inverse of the Warburg effect [88].

Lin et al. [89] used LC-MS/MS to investigate changes in plasma metabolites levels in
PCa patients before (baseline) and after docetaxel (a chemotherapeutic agent) treatment to
develop a tool for monitoring which patients should or should not remain with chemother-
apy. However, the authors concluded that it was not possible to assign a metabolic signature
that distinguishes between the two groups of patients. The authors justified the findings by
pointing out important limitations in the study that may have contributed to the results;
namely, the inability to identify the circulant lipid species and the small number of patients
enrolled, which remains a limiting and dependent factor in studies using human samples.
Notwithstanding, a recent study using the combination of docetaxel with a luteinizing
hormone-releasing hormone analog (hormone therapy) before prostatectomy addressed
the impact of this adjuvant combination on the metabolome of PCa tissue samples [90].
The results unveiled significant dysregulations in the levels of several metabolites including
an increase in the levels of glycerol-3-phosphate, dodecylbenzenesulfonic acid, guanosine,
among others, and a decrease in the levels of phospholipids, 27-hydroxycholesterol 3 sul-
fate, 2-hydroxy-4-methylpentanoate, among others. Since most of these metabolites belong
to important pathways for cell growth and proliferation, such as biosynthesis and en-



Pharmaceuticals 2022, 15, 295 14 of 24

ergy metabolism, the use of this type of combination before prostatectomy suggested a
therapeutic benefit limiting tumor growth. Expression of key proteins in tumor samples
from patients receiving or not receiving the neoadjuvant therapy was also evaluated to
corroborate the findings obtained by HPLC analysis.

4.2. Pharmacometabolomic Studies in Bladder Cancer

Regarding BCa, Table 2 depicts the three pharmacometabolomic studies performed
in the last 10 years including the methodology used and a summary of the main findings.
Two in vitro pharmacometabolomic studies [13,92] were conducted to address the metabolic
implications of cisplatin resistance and one additional study was performed to predict the
response to gemcitabine as neoadjuvant therapy [93].

Although BCa tumors are initially susceptible to cisplatin, the development of resis-
tance during treatment hampers its efficacy. In this regard, Lee et al. [13] performed a
comparative lipidomic profiling of two BCa cell lines: a cisplatin-sensitive and a cisplatin-
resistant cell line as a representation of in vivo chemoresistant BCa. Ultra-performance
LC-MS (UPLC-MS) profiling of several lipid species revealed altered levels between the
endometabolome of the two cell lines, including significantly elevated levels of one ce-
ramide and two triglycerides in cisplatin-resistant cells. Ceramides are recognized as
important elements in cellular membrane structure, whereas triglycerides are essential for
energy storage [71], which reinforces the maintenance of cell growth to promote tumor
progression on a resistance condition [13]. The authors concluded that a rearrangement of
lipid metabolism is required for BCa pathogenesis.

The same in vitro model (resistant, T24R, and cisplatin sensitive cell lines, T24S) was
explored by Wen et al. [92] that performed an NMR quantitative analysis of glucose-
derived metabolites in cisplatin-resistant conditions. In comparison to sensitive cells,
resistant cells consumed more glucose and consequently excreted more glucose-derivatives,
acetate, and fatty acids. The authors also found a preference for glucose as a source of
increased fatty acid synthesis in resistant cells by using labeled glucose. These findings
agree with the previous study [13] confirming a reprogramming of lipid metabolism in
cisplatin-resistant BCa.

The combination of gemcitabine and cisplatin is frequently recommended in BCa
treatment. A study performed by Yang et al. [93] aimed to identify predictive biomarkers of
efficacy to treatment with gemcitabine as neoadjuvant therapy for transurethral resection
of bladder tumors. Metabolite analysis using high-resolution LC-MS was performed on
tissue collected from BCa patients before and after submucosal gemcitabine injection.
Adjacent healthy tissue was also collected for comparison with normal conditions. Tissue
metabolic profiling unveiled significant alterations in the levels of several metabolites,
most notably alterations on bilirubin and retinal, which recovered to near normal levels
after gemcitabine treatment. The authors proposed that bilirubin and retinal could be
investigated as therapeutic targets of gemcitabine.

4.3. Pharmacometabolomic Studies in Renal Cell Carcinoma

Sunitinib is commonly used for the treatment of advanced RCC, but 30% of patients
are intrinsically resistant to this type of targeted agent [12]. In this regard, two studies were
carried out with the goal of identifying biomarkers of resistance to sunitinib treatment
using in vitro [83] and xenograft [94] models, and three others investigated the metabolic
responses in human samples after exposure to different anti-neoplastic agents [95–97].
Therapeutic strategies for resistance situations are of utmost importance, particularly in the
case of RCC, for which the systemic therapy effectiveness rates remain low. Table 3 lists
five pharmacometabolomic studies focused on RCC therapeutics performed in the last 10
years, including the methodology used and a summary of the main findings.
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Table 2. Pharmacometabolomic studies performed in BCa.

Cancer Therapy
under Study Samples Instrumental and Statistical

Analysis Treatment Response Metabolic
Interpretation Ref.

In vitro models

Chemotherapy: cisplatin (10 mM)
2 days of treatment exposure

Intracellular (lipophilic)
metabolome of BCa cell lines:
Cisplatin-sensitive cells T24S,

n = 4
Cisplatin resistant cells T24R,

n = 4

UPLC-MS
PCA

Student’s t-test
p-value

Cisplatin resistance effects:
↑ CE (22:6); TG (49:1); TG (53:1)

Cisplatin-resistant condition
altered lipid metabolism

(storage of fatty acids and
phospholipid biosynthesis)

[13]

Chemotherapy: cisplatin (10 µM)
12 h of treatment exposure

Intracellular (polar)
metabolome of cell lines:

Cisplatin-sensitive cells T24S,
n ≥ 3

Cisplatin-resistant cells
T24R, n ≥ 3

2D NMR (1H–13C HSQC)
Student’s t test

Cisplatin resistance effects:
↑ acetate; fatty acids

↓ glucose; lactate; alanine:

Cisplatin-resistant condition
was associated with an

upregulation of glycolysis
(Warburg effect) and fatty

acid synthesis (cellular
proliferation)

[92]

Human models

Chemotherapy: gemcitabine (50 mg,
dissolved in 20 mL normal saline)

30 min of treatment exposure

Lipophilic tissue extracts:
BCa untreated group, n = 12

BCa treated group, n = 12
adjacent normal group, n = 12

adjacent normal treated
group, n = 12

LC-HRMS
PCA

Paired student t-test

Gemcitabine effects in BCa treated group:
↓ bilirubin; retinal

Gemcitabine effects in adjacent normal
treated group:
↑ histamine
↓ thiamine

- [93]

2D NMR: two-dimensional nuclear magnetic resonance; 1H–13C HSQC: 1H–13C heteronuclear single quantum coherence; BCa: bladder cancer. CE: ceramides; LC-MS/MS: liquid
chromatography-tandem mass spectrometry; LC-HRMS: Liquid chromatography-high resolution mass spectrometry; LC-MS: liquid chromatography-mass spectrometry; PCA: principal
component analysis; T24: human urinary bladder cancer patient cell line; TG: triglycerides; UPLC-MS: ultraperformance liquid chromatography-tandem mass spectrometry.
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Table 3. Pharmacometabolomic studies performed in RCC.

Cancer Therapy
under Study Samples Instrumental and Statistical

Analysis Treatment Response Biological
Interpretation Ref.

In vitro and animal models

Targeted therapy: sunitinib (10 mM)
5 days of treatment exposure

Intracellular (polar) metabolome
of RCC cell lines:

786-O Par (parental), n = 3
786-O Res (sunitinib-resistant),

n = 3

CE-TOF MS
PCA

Fold change
Two-tailed student t-test

Sunitinib resistance effects:
↑ dihydroxyacetone phosphate; fructose

1,6-bisphosphate; choline; cysteine;
methionine; thymidine; citrate;
glycerophosphorate; fumarate;

glucose-6-phosphate; tryptophan; ADP;
creatine; 6-phosphogluconate;
sedoheptulose-7-phosphate;

fructose-6-phosphate; glutamate; malic
acid; acetyl-CoA

↓ oxidized glutathione; ornithine;
creatinine; guanine; succinic acid

Sunitinib resistant condition
is associated with

up-regulation on lipid
biosynthesis (membrane

metabolism), energy
metabolism (glycolysis and

TCA cycle), arginine and
proline pathways, urea cycle
and nucleic acid biosynthesis

[83]

Target therapy: sunitinib (25 mg/kg
per day)

4 weeks of treatment exposure

Intracellular (lipophilic)
metabolome of primary cell

culture of xenograft RCC mouse
model:

786-P (parental)
untreated, n = 5

treated, n = 5
786-R (sunitinib-resistant)

treated, n = 5

LC-MS/MS
Mann–Whitney U test

One-way ANOVA Post hoc
Tukey’s test

Sunitinib resistance effects in 786-R
(compared with 786-P treated):

↑ glutamine; 2-oxoglutaric acid; fructose
6-phosohate; D-sedoheptulose

7-phosphate; glucose 1-phosphate;
myo-inositol

Sunitinib resistance effects in 786-R
(compared with 786-P untreated)

1-phosphate; fructose 6-phosohate;
D-sedoheptulose 7-phosphate

↓ glutamate; glutathione; myo-inositol

Sunitinib resistant condition
is associated with

up-regulation of energy
metabolism (glutamine

uptake, glycolysis, and TCA
cycle) and antioxidant

activity

[94]
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Table 3. Cont.

Cancer Therapy
under Study Samples Instrumental and Statistical

Analysis Treatment Response Biological
Interpretation Ref.

Human models

Targeted therapy:
Arm A- bevacizumab (10 mg/kg1
every 2 weeks) and temsirolimus

(25 mg per week) combination
Arm B—sunitinib (50 mg per day for

4 weeks followed by 2 weeks off)
Arm C- interferon- α (9 mIU three
times per week) and bevacizumab

(10 mg/ kg every 2 weeks)
combination

2 and 5–6 weeks of treatment
exposure

Hydrophilic serum extracts:
Arm A
RCC

untreated group, n = 56
treated group (2 weeks), n = 55

treated group (5–6 weeks), n = 49
Arm B
RCC

untreated group, n = 26
treated group (2 weeks), n = 22

treated group (5–6 weeks), n = 20
Arm C
RCC

untreated group, n = 20
treated group (2 weeks), n = 25

treated group (5–6 weeks), n = 22

1H NMR
PCA
OPLS

Cross-validation ANOVA

Bevacizumab and temsirolimus
combination effects in RCC treated

group (2 weeks):
↑ glycerol backbone of

phosphoglycerides; triacylglycerides;
fatty acids; very low-density lipoproteins

and low-density lipoproteins; glucose;
N-acetylglycoproteins

Bevacizumab and temsirolimus
combination effects in RCC treated

group (5–6 weeks):
↑ glycerol backbone of

phosphoglycerides; triacylglycerides
fatty acids; very low-density

lipoproteins; low-density lipoproteins;
glucose; N-acetylglycoproteins; BCAAs;
alanine; glycine; glutamine; acetoacetate;

acetone; glycerol; cholesterol
↓acetate; ethanol

Sunitinib effects in RCC treated group (2
and 5–6 weeks): no significant changes

were found
Interferon-α and bevacizumab

combination effects in RCC treated
group (5–6 weeks):

↑ lipids and very low-density
lipoproteins

↓ low-density lipoproteins

Bevacizumab and
temsirolimus combination

caused the greatest
modification essentially in

lipid and lipoprotein
metabolisms

[96]
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Table 3. Cont.

Cancer Therapy
under Study Samples Instrumental and Statistical

Analysis Treatment Response Biological
Interpretation Ref.

Immunotherapy:
Arm A- nivolumab (phase 1:

0.3/3/10 mg/kg every 3 weeks;
phase 3: 3 mg/kg every 2weeks)

Arm B- everolimus phase 3
(10 mg per day)

4 and 8 weeks of treatment exposure

Lipophilic serum extracts:
Arm A

Phase 1 trial
RCC

untreated group, n = 91
treated group (4 weeks), n = 84
treated group (9 weeks), n = 69

Phase 3 trial
RCC

untreated group, n = 392
treated group (4 weeks), n = 98
treated group (8 weeks), n = 324

Arm B
RCC

untreated group, n = 349
treated group (4 weeks), n = 58
treated group (8 weeks), n = 0

LC-MS
Volcano plots

Benjamin-Hochberg multiple
testing corrections

Pearson correlations

Nivolumab effects in RCC treated group
(phase 1 and 3):
↑ kynurenine

Everolimus effects in RCC treated group:
no significant changes were found

Nivolumab exposure
upregulated tryptophan

catabolism (increased
tryptophan to kynurenine
conversion) resulting in an

adaptive immune
suppressive

microenvironment

[97]

Immunotherapy (checkpoint
inhibitors): nivolumab and

atezolizumab with bevacizumab
2 and 4 weeks of treatment exposure

Lipophilic serum extracts:
RCC treated and responder

group, n = 10
RCC treated and non-responder

group, n = 15

LC-MS
T-distributed stochastic

neighbor embedding
Linear mixed effects models

10-Fold cross validation

Immunotherapy effects in RCC treated
group:

PC(38:0), PC(42:0), PC(42:2), PC(40:6),
PC(42:3), PC(44:6), SM(OH, 22:1),

SM(24:1), SM(26:1), SM(20:2)

Immunotherapy upregulated
β- oxidation of lipids rather
than glycolysis and altered T
cell metabolism to enhance

therapeutic response

[95]

786-O: hypertriploid renal cell carcinoma cell line; 1H NMR: proton nuclear magnetic resonance; CE: ceramide; CE-TOF MS: capillary electrophoresis-time of flight mass spectrometry;
LC-MS: liquid chromatography-mass spectrometry; LC-MS/MS: liquid chromatography-tandem mass spectrometry; OPLS: orthogonal partial least squares; PCA: principal component
analysis; PC: phosphocholine; RCC: renal cell carcinoma; SM: sphingomyelin.
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The first study used capillary electrophoresis-time of flight mass spectrometry (CE-MS)
to look at metabolic changes in sunitinib-resistant RCC cells [83]. The results revealed that
intracellular levels of several metabolites involved in energy processes, including glycolysis,
TCA cycle, and pentose phosphate pathway, were found to be higher in sunitinib-resistant
cell lines [83]. Because glycolysis is the primary source of energy in this type of cancer cells,
these mechanisms are essential for RCC progression [98]. These findings are consistent
with a most recent study performed by Sato et al. [94] where the use of a xenograft RCC
mouse model was reported to identify changes in intracellular metabolites unveiling
the mechanisms of sunitinib resistance. In brief, they subcutaneously implanted both
sensitive (786-P) and sunitinib-resistant (786-R) cell lines in different mice groups followed
by administration of sunitinib. After 4 weeks of sunitinib exposure, tumoral tissues were
collected from each mouse and subjected to primary cell culture. In the sunitinib-resistant
condition, LC-MS analysis revealed significantly increased intracellular levels of fructose
6-phosphate, D-sedoheptulose 7-phosphate, and glucose 1-phosphate, suggesting a higher
glycolysis rate together with a higher uptake of glutamine into the TCA cycle. These results
were corroborated by the higher expression of glutamine transporters in sunitinib-resistant
cells. Moreover, the results disclosed significantly higher levels of glutathione and myo-
inositol in resistant primary cells compared to sensitive cells, indicating a higher antioxidant
activity in resistant cells as a protective action against the antitumor effects of sunitinib.
Future validation of the role of these pathways using sensitive and sunitinib-resistant RCC
patient groups may identify early biomarkers of resistance.

The implications of sunitinib and other targeted therapies on the metabolism of pa-
tients with metastatic RCC were also investigated by Jobard et al. [96]. Pre-treatment and
serial on-treatment serum samples were collected during a clinical trial and analyzed by
NMR spectroscopy. The main goal of this study was to compare the metabolic response to
two conventional treatments (sunitinib and interferon-α in combination with bevacizumab)
with a new combination with bevacizumab, an anti-angiogenic drug, and temsirolimus,
an mTOR inhibitor, proving the use of a pharmacometabolic approach to monitor and
predict responses. The combination of bevacizumab and temsirolimus caused a faster
and higher impact on the metabolome of treated RCC patients when compared to other
treatments. The main dysregulated metabolites were lipid species and lipoproteins, which
are metabolites responsible for the transport of endogenous lipids and cholesterol, metabo-
lites of β-oxidation, as well as glucose, cholesterol, among others. These findings could
be indicative of the associated side effects of this combination, as some toxic effects, such
as hypercholesteremia and hypertriglyceridemia, have already been observed in RCC
patients under temsirolimus treatment [99]. These results highlighted the potential of a
pharmacometabolomics approach to predict chemotherapeutic side effects [96].

The pharmacometabolomic studies performed by Li et al. [97] and Mock et al. [95]
investigated the impact of immunotherapy. The first study [97] used LC-MS to analyze
serum samples collected from different RCC patients (at 4 and 8 weeks of treatment).
The profiling of serum metabolites revealed an increase in the kynurenine/tryptophan ratio.
Kynurenine is a product from tryptophan metabolism that causes immunosuppression.
Tryptophan is usually found downregulated in RCC cells suggesting an increased use
by these cells [100]. In this study, the alteration in the kynurenine/tryptophan ratio was
associated with an adaptative resistance mechanism and, as a result, a worse overall
survival of RCC patients. The monitoring of these metabolites can provide information
about the patient’s condition during treatment.

Lastly, the study performed by Mock et al. [95] investigated the metabolic changes
that underpin immunotherapy response and failure. To achieve this goal, serum samples
from 28 urological cancer patients (25 RCC plus 2 BCa plus 1 patient diagnosed with
both) who underwent immunotherapy were collected before the first, second, and third
cycles, followed by LC-MS analysis. Most serum metabolites associated with response
to immunotherapy belong to the class of very long-chain fatty acid-containing lipids
(VLCFA-containing lipids). Comparing the serum lipid content between responders and
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non-responders among the first and third cycles, VLCFA-containing lipids seem to act as
sensitizers to immune treatment, based on the impact of T cell metabolism, as suggested by
the authors. The prognostic value of the VLCFA-containing lipids was also investigated
by transcriptomic analysis. To confirm the potential of this metabolite class in predicting
immunotherapy response, the obtained results must be validated in a larger patient cohort.

5. Conclusions and Future Perspectives

Despite the efforts made to date to improve cancer therapies, the selection of the
best treatment modality for metastatic stages in urological cancers remains a challenge.
Thus, the understanding of the impact of treatments on the metabolome of patients can be
paramount for predicting therapeutic responses in the personalized medicine era. The stud-
ies published so far on this topic advanced with metabolic signatures characteristic of
responses to hormone therapy and chemotherapy in PCa, along with chemotherapy in BCa
and targeted therapy and immunotherapy in RCC. These metabolic signatures may lead
to the definition of candidate predictive biomarkers of treatment response, as well as the
recognition of metabolic alterations that occur during resistance development.

Further studies are needed to validate the impact of the different treatments on the
metabolic fingerprint in larger and independent clinical cohorts of different populations
(e.g., ethnicities) of urological cancers patients, as well as to complement those studies with
multi-omics analyses to improve accuracy in predictive biomarker detection and a better
understanding of the mechanisms underlying cancer therapeutic resistance. In this regard,
a better stratification of patients based on their metabotypes (metabolic signatures) may help
to predict its prognosis. In future pharmacometabolomics studies, it is important to consider
the standardization of protocols of sample handling and storage, analytical conditions,
and data interpretation. Human sample biobanks are an important aspect to consider
in these studies because they preserve samples collected before and during a treatment
regimen, increasing the availability of a higher number of human samples. Additionally,
the incorporation of machine learning techniques can speed up the interpretation of big
data generated in clinical practice by recognizing patterns of metabotypes to improve
patient stratification and, as a result, devising optimal treatment strategies.
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