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Abstract

Retinal prostheses can restore the basic visual function of patients with retinal degeneration,

which relies on effective electrical stimulation to evoke the physiological activities of retinal

ganglion cells (RGCs). Current electrical stimulation strategies have defects such as unsta-

ble effects and insufficient stimulation positions, therefore, it is crucial to determine the opti-

mal pulse parameters for precise and safe electrical stimulation. Biphasic voltages

(cathode-first) with a pulse width of 25 ms and different amplitudes were used to ex vivo

stimulate RGCs of three wild-type (WT) mice using a commercial microelectrode array

(MEA) recording system. An algorithm is developed to automatically realize both spike-sort-

ing and electrical response identification for the spike signals recorded. Measured from

three WT mouse retinas, the total numbers of RGC units and responsive RGC units were

1193 and 151, respectively. In addition, the optimal pulse amplitude range for electrical stim-

ulation was determined to be 0.43 V-1.3 V. The processing results of the automatic algo-

rithm we proposed shows high consistency with those using traditional manual processing.

We anticipate the new algorithm can not only speed up the elaborate electrophysiological

data processing, but also optimize pulse parameters for the electrical stimulation strategy of

neural prostheses.

Introduction

Retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are retinal degenera-

tion (RD) diseases with a prevalence of about 1 in 4000 [1–3]. The photoreceptor cells of RP

and AMD patients degenerate irreversibly and cannot convert optical inputs into neural

spikes, resulting in the loss of part or even all visual functions. However, even for profound

RD patients, some physiological structures and functions of the retinal ganglion cells (RGC)

are usually still preserved [4, 5]. Therefore, the RGC can be stimulated to evoke the neural

activity of the remaining retinal neurons [6–8], thereby providing a straightforward method

for the blind to restore visual function.
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Such retinal stimulation methods that have been used to restore visual functions include

electrical retinal prosthesis [4, 9, 10], optogenetics [11], photochemistry [12], ultrasonic stimu-

lation [13], etc. Among them electrical stimulation based retinal prosthesis have been well

studied for decades and recognized as the mainstream for practical applications [14]. In recent

years, such retinal prostheses have achieved great progress in the device safety, integration and

miniaturization, including microelectrode arrays, stimulator, wireless circuits, chip packaging,

and implantation surgery [15]. In addition, many clinical trials and commercial implantation

have been reported [16–18]. New tools and stimulation strategies have also been reported [19–

21] explore the relationship between RGC response and electrical stimulation parameters,

which will provide a reference for obtaining the optimal pulse for safe and efficient visual

perception.

Previous studies have used manual spike sorting with empirical rules to determine whether

the neuron cells were responsive or not. For example, as the classical ex vivo electrophysiologi-

cal tool, a microelectrode array (MEA) system was used to record the multi units of RGC elec-

trical responses after the electrical stimulation, and some spike-sorting methods were used to

convert a spike sequence containing multi-units activities into a single-unit spike sequence

[22, 23]. Currently, a widely used spike-sorting software is Offline Sorter™ (Plexon Inc., USA)

[24, 25]. However, this softwares has several critical drawbacks such as cumbersome manual

data processing, tedious parameter setups, and long processing time. Although some auto-

matic algorithms for spike-sorting have been proposed [26, 27], they can only perform spike

detection and spike classification, without analyzing the electrical response of RGCs. For the

optimization of electrical stimulation strategies, it is critical to understand the influence of the

parameters, the distance between the electrode and the neuron, etc. Therefore, an algorithm

needs to be developed to provide an effective tool for rationally evaluating the effects of various

parameters on electrical stimulation.

Herein we propose a facile and comprehensive algorithm that can automatically perform

the spike detection, the spike classification and identify the RGC electrical responses, and dem-

onstrate their functions using MEA ex vivo results of wild-type (WT) mice. The RGC

responses of three wild-type mice are calculated, and the percentage of responsive RGC units

at different distances is analyzed to obtain an effective stimulation range. The relationship

between RGC response and electrical pulse amplitude is also analyzed to determine the best

electrical pulse amplitude for effective retinal stimulation.

Methods

Experiments

Sample preparation. In this study, three 12-week-old C57BL/6J wild-type (WT) mice

were used for the ex vivo experiment. The mice were dark adapted for more than 1 hour,

deeply anesthetized by the injection of a mixture of ketamine (50 mg/kg) and xylazine (10 mg/

kg). The eyeballs were removed under very dim red light, and the retina was peeled from the

pigment epithelium in Ames’ medium (95% O2 and 5% CO2), finally cut into four parts. The

ganglion cell layer was fixed upward, and attached to a filter membrane (Millipore, Cat. No.

AABP02500) against the photoreceptor layer. The membrane was inverted onto a commercial

MEA (120MEA100/30iR-ITO-gr, Multichannel System, Reutlingen, USA) (Fig 1). The animal

experiments in this study had been approved by Institutional Animal Care and Use Committee

of Shenzhen Institution of Advanced Technology, Chinese Academy of Sciences (approval

number SIAT-IRB-180301-YGS-XUZHEN-A0244).

Electrical stimulation and recording. The MEA covered with retinal slices was con-

nected to the MEA2100 data processing system and the MC_Rack software (Multichannel
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System, Reutlingen, USA) was used for electrical stimulations and signal recording from 120

electrodes. The sampling rate was configured to be 10 kHz/channel. The biphasic voltage

pulses were always cathode-first, the voltage amplitude A for the cathode-side was from 0.15 to

1.65 V with a 0.15 V step, and the time duration T was constant (25 ms). Correspondingly, the

anode pulse had a voltage amplitude of A/2 and a duration of 2T so that all injected charges

were neutralized. The stimulation was repeated 20 times for all pulses of voltage, and the time

interval between each stimulation was 10 s. In addition, the spontaneous activity trace of 0.1 s

before stimulation and the induced activity trace of 1 s after stimulation were recorded, respec-

tively. In this paper, a total of 3 WT mice retinas were stimulated with 17 center electrodes,

and the response signals were recorded.

Data processing

The major processes for the proposed algorithm to achieve spike-sorting and electrical

response identification are shown in Fig 2, composed of preprocessing, spike detection, feature

extraction and clustering, and electrical response identification. Each step is described as

follows.

Fig 1. Experimental setup and illustration. (a) The MEA and its electrode layout. (b) A typical stimulation pulse with biphasic voltage and two typical RGC responses.

When the cathode voltage is 0.45 V (the anode voltage is 0.225 V), the evoked spikes generated by RGC in 20 trials are scattering and irreverent. While for the 1.05 V

amplitude, the evoked spikes have a clear cluster pattern. (c) Illustration of the experimental setup. One electrode performs electrical stimulation on the retinal ganglion

layer (marked in red), and all other electrodes can record neural signals from the ganglion cells.

https://doi.org/10.1371/journal.pone.0246547.g001
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Signal preprocessing. Before spike detection, the activity signal train recorded needs to

be preprocessed by removing the artifact (Fig 2(A)). Generally, there may be artifacts at the

stimulus and the end of the recorded signal, whose amplitude is much higher than all spikes of

neural responses. Therefore, the maximum amplitude of the signals for 120 channels is con-

centrated in a period of time, indicating that there are artifacts and reset them to zero.

Spike detection. Stationary wavelet transform (SWT) and Teager energy operator (TEO)

were used for the spike detection (Fig 2(B)) [28], and their roles will be explained as follows.

For SWT, the pre-processed signal is convolved with a high-pass filter (HF) and a low-pass fil-

ter (LF) to obtain the approximate coefficient (AC) and the detail coefficient (DC), respec-

tively. Further, HF and LF filters are required for up-sampling (zeros are filled in adjacent data

points) and are applied to AC, which can acquire other AC and DC [29]. In addition, SWT is

data-redundant and translation-invariant, i.e., the length (time information) of the two

Fig 2. The processing flow of the proposed algorithm. (a) Remove artifacts from the raw data during the data preprocessing. (b) Spike detection, then a

sliding window is used to obtain spikes of the same length. (c) The signal obtained is separated into single-units by feature extraction and clustering. (d)

The response analysis to determine whether RGC units were activated or not after an electrical stimulation.

https://doi.org/10.1371/journal.pone.0246547.g002
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coefficients is the same as the preprocessed signal, which can effectively reduce the adverse

effects caused by the noise. The decomposition process of SWT is described by Eqs (1–2) and

the three-level decomposition is illustrated in Fig 3.

ajþ1ðkÞ ¼
X

n

hjðn � kÞajðkÞ; ð1Þ

djþ1ðkÞ ¼
X

n

gjðn � kÞdjðkÞ: ð2Þ

Where aj represents AC, dj represents DC, n is the signal length, while hj and gj represent

HF and LF, respectively.

To separate the spikes from the background noise and reduce the false detection rate, TEO

is employed as the estimation of the transient energy of the signal. The spike transient behavior

(the abrupt change in amplitude) shows higher instantaneous energy, so that the TEO coeffi-

cient of the spike is greater than the background noise [30]. For discrete signals, TEO can be

expressed by Eq 3, where x(n) represents the signal amplitude at timestamp n:

cðxðnÞÞ ¼ x2ðnÞ � xðn � 1Þxðnþ 1Þ ð3Þ

The block diagram and corresponding results of the spike detection algorithm based on

SWT and TEO are shown in Fig 4. A HF using Level 1 and Level 2 of SWT approximate coeffi-

cients is firstly applied, then TEO is applied to each frequency sub-band, and the Hamming

windows are used to smoothen each independent convolution to eliminate spikes caused by

the noise [28]. Finally, all sub-band are combined, and the spike detection process is completed

through the comparison of the spike peaks with a given threshold.

By setting different threshold values, we can achieve different spike detection results as

shown in Fig 5. A small value of the threshold will over-estimate the spike peak numbers,

while a larger one may result in under-estimation. Therefore, a proper threshold is critical.

The threshold is obtained by comparing the results of detection algorithms and manual opera-

tions. The criterion for manual marking is that the spike amplitude is more than 2 times of the

baseline bandwidth. There is a difference between the threshold setting and the result of man-

ual judgment, and the relationship is described in Fig 5 (C). The result of manual marking is

considered reliable, so the optimal threshold value is defined as the one with lowest difference.

In addition, the signal-to-noise ratio (SNR) is an essential factor in the detection algorithm

and is defined as Eq 4 in this study [31]. The SNR cost of changing thresholds (Fig 5(C)) shows

that when the SNR is 2.79, the performance of the detection algorithm reaches optimal.

SNR ¼ ð
peak � to � peak value of detected signal
peak � to � peak value of noise segment

Þ
2

ð4Þ

Feature extraction and clustering. After the spike detection, feature extraction and clus-

tering of the obtained spikes are required, the clustering iterative process of extracting features

is shown in Fig 6. The method used for the feature extraction is wavelet packet decomposition

(WPD), which has been used to analyze electroencephalography signals [32]. WPD is also a

wavelet transform, but provides more frequency resolution than the discrete wavelet trans-

form, i.e., both AC and DC are further decomposed [33]. Fig 7 shows the three-level decompo-

sition with WPD, it is used to perform a new parameterized wavelet decomposition on the

spike signal, and then the wavelet packet coefficients extracted from the five scales are used as

the basis of clustering features [34], i.e., the K-means method [35] in our case.
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The K-means method is based on conventional distance measurement by dividing the

extracted wavelet packet coefficients into single-unit through clustering centers, and assigning

each feature to a corresponding class. The algorithm is described in detail as follow:

1. K samples are randomly selected from the dataset of wavelet packet coefficients as the initial

centroid of the K-means, i.e., {μ1,μ2,. . .,μk}

2. Each sample is sorted to the cluster with the closest centroid. Further, the distance between

the sample and the centroid is calculated by Eq 5:

dij ¼ kxi � mjk
2

2
ð5Þ

Where xij represents a sample of dataset, when dij is the minimum value, xij belongs to the

cluster of μj.

3. The new centroid is obtained by recalculating the average of the samples in each cluster. It

can be expressed by Eq 6, where Cj represents the cluster j:

mj ¼
1

jCjj

X

x2Cj

x ð6Þ

4. Step (2) is returned to iterate, until the new centroid is the same as the centroid acquired in the

previous iteration, this step is terminated and outputs the clustering results, i.e., {C1,C2,. . .,Ck}.

Since the K-means method needs a manual determination of the cluster numbers, the

Mean Silhouette Coefficient (SC) method [36] is used to solve this problem. For mean SC, the

Fig 3. The tree structure of three-level decomposition with SWT. CA a1 and CD d1 are obtained by convolution of the signal S with HF h1 and

LF g1, respectively. HF h2 and LF g2 (up-sampling of h1 and g1) are used to process a1 to acquire CA a2 and CD d2 of level 2. Finally, based on the

up-sampling of h2 and g2, CA a3 and CD d3 of level 3 can be gained from a2.

https://doi.org/10.1371/journal.pone.0246547.g003
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intra-cluster and inter-cluster distances can be used to evaluate the quality of the clustering

results, and the process is illustrated as follow.

1. For each sample i, the average distance a(i) from all other samples in the same cluster is

calculated.

2. The average distance between sample i and all samples in the external cluster is computed,

and all of the external clusters are traversed. The smallest distance is denoted as b(i).

3. The SC of sample i can be obtained by Eq 7, and the value is in the range of [–1, 1].

sðiÞ ¼
bðiÞ � aðiÞ

maxfaðiÞ; bðiÞg
¼

1�
aðiÞ
bðiÞ

; aðiÞ < bðiÞ

0; aðiÞ ¼ bðiÞ
bðiÞ
aðiÞ
� 1; aðiÞ > bðiÞ

ð7Þ

8
>>>>><

>>>>>:

4. The mean SC of the dataset is acquired by the average SC for all samples.

Fig 4. The processing algorithm for spike detection. (a) The flow chart of the algorithm based on SWT and TEO. (b) The typical processing results

based on the algorithm. (i) Preprocessed result of the original signal. (ii) The amplitude of the spike increases after the level 1 of SWT processing. (iii) The

TEO algorithm and window smoothing are used. The spikes become larger while the noises become smaller. (iv) The two-level output of SWT is

processed by TEO and smoothing, respectively, and their corresponding results are combined. Then spikes (red) are detected using a given threshold.

https://doi.org/10.1371/journal.pone.0246547.g004
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A large mean SC indicates a good performance of the clustering, therefore, the optimal

number of clusters in K-means can be determined by maximizing the value of the mean SC.

Identification of RGC responses. After the clustering process the single-unit spike

sequence was obtained. Then the raster plots (20 trials) and the post-stimulus time histogram

(PSTH) of RCG responses can be also obtained. For WT mice, the criteria to define a respon-

sive RGC unit should be met according to electrophysiological experiences: (1) The firing fre-

quency within 300 ms after stimulation is more than 3 times of that within 100 ms before

stimulation. (2) The RGC must meet criteria 1 for at least 10 times during the 20-time repeti-

tive stimulation trials. According to these criteria, data from 20 trials are selected for the calcu-

lation (Fig 8).

Data processing and analysis

As a comparison, some commercial softwares were used for the manual processing. The spike-

sorting software Offline Sorter™ was used to process the same dataset offline to classify the

action potentials into single units. In the Offline sorter™, the original signals were processed by

low-cut filter, and the threshold was continuously adjusted and set to detect spikes for each

channel. Based on PCA, the clustering algorithm was used to perform classification of the

units. In addition, Spike2 (Cambridge Electronic Design Co., Ltd., UK) was used to complete

offline data analysis (spike binning and alignment with stimuli), and Prism 7 (GraphPad

Fig 5. Determination of the optimal threshold. (a) The spikes (red) in the signal are marked out manually as RGCs responses. (b) The output results using

different threshold values (blue) (i) When the threshold value is 90, there are 4 over-estimated spikes (green) in the detection result. (ii) Setting the threshold value

to 150, all spikes are identical to those in Fig 5 (A). (iii) There are 6 under-estimated spikes (orange) for the threshold value of 330. (c) The peak number difference

and SNR cost with different thresholds (the average of 20 trials for each threshold). In this case the threshold value 150 is corresponding to the lowest point of the

curve, which is defined as the optimal threshold. When the SNR is lower than 2.79, false detection is prone to occur.

https://doi.org/10.1371/journal.pone.0246547.g005
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Fig 6. The extracted features are separated into single-unit. (a) The standard deviation and first quartile of the wavelet packet coefficients are displayed. (b) shows the

relationship between the mean SC and the number of clusters, and the optimal number of K-means corresponds to the maximum value of mean SC. (c) The clustering

process of the K-means method.

https://doi.org/10.1371/journal.pone.0246547.g006

Fig 7. The three-level decomposition with WPD. S is the spike, while AC and DC are represented by capital A and D, respectively.

https://doi.org/10.1371/journal.pone.0246547.g007
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Software, USA) was used for graphing [21]. Finally, the number of RGC units with and with-

out electrical responses were manually counted and compared with the results automatically

calculated by our proposed algorithm for validation.

In order to obtain the optimal pulse parameters for effective electrical stimulation, the rela-

tionship between the RGC responses and the input voltage amplitude is drawn and fitted using

a graphing software Origin™ (OriginLab Corporation, USA). The number of evoked spikes

from 20 trials and the corresponding voltages can be determined from the fitted curve.

Results

Statistical results of RGC electrical responses

The total and responsive RCG units (which describes the corresponding electric response

intensity to the stimulation) obtained by our method and the commercial software are com-

pared in Table 1. It can be seen that the sums of RGC units for the 17 stimulation trials are

both 1193, while the total numbers of responsive RGC units in two results are 151 and 149,

respectively. In addition, the maximum of all number difference using these two methods is

only 3 which indicates a good consistence.

Characterization of RGC responses

In order to analyze the relationship between the electrical responses and the distance from the

stimulation electrode, the percentage of responsive RGC units among the total RGC units

recorded at different distances between stimulating electrode and recording electrode is

shown in Fig 9(A). Obviously, the number of responsive RGC units gradually decreases with

the increasing distance, which agrees with previous studies [26, 27]. Specifically, when the dis-

tance is d, the percentage is 49.96%. As the distance increases to 3d, the percentage declines

rapidly. The responses are fairly low when the distance exceeds 3d, and disappear for 11d. In

Fig 8. Identification of RGC responses. (a) The sample meeting the criteria is defined as an electrical response RGC unit. (b) The sample is inconsistent with the

mentioned criteria and cannot be considered as a responding RGC unit. The raster plot is generated from the spike firing time of the clustered RGC units, and the

total number of spikes in different time periods in the raster plot is displayed by the post-stimulus time histogram. In addition, -0.1s-0s: pre-stimulus time, 0s-0.9s:

post-stimulus time.

https://doi.org/10.1371/journal.pone.0246547.g008
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this case, it can be considered that the electrical stimulation affects RGCs within a radius of 3d,

i.e., this method can be used to characterize the influential range of electrical stimulation. In

general, the retinal electrical stimulation becomes precise with the decreasing radius.

Fig 9(B) shows the relationship between the spike per pulse (defined as the average number

of spikes within 300 ms after stimulation, which indicates the RGC response frequency) and

the stimulation voltage amplitude (the cathode voltage is used as the typical case). The range of

cathode voltage amplitude was from 0.15 V to 1.65 V, and the pulse duration was 25 ms. 151

responsive RGC units in total were measured. As seen, when the pulse amplitude raised from

0.45 V to 1.20 V, the average number of spikes increases monotonically until the voltage

reached 1.35 V and it tends to be saturated. When the average number of spikes was 0.5, the

cathode voltage amplitude was calculated to be 0.43 V according to the fitting curve, which

was defined as the threshold voltage. Fig 9(C) shows an example of the spike sequences corre-

sponding to the three voltage amplitudes. It further shows that the number of spikes will

increase with increasing voltage.

Discussions

Through the comparison in Table 1, the accuracy of our proposed method is verified for the

RGC electrical response analysis. Compared with traditional methods, since this algorithm can

automatically perform spike classification and electrical response identification, the data pro-

cessing time is greatly reduced. Although Chung et al. also proposed an automatic method [37,

38], but their method can only complete spike detection and classification. The algorithm pro-

posed in this paper has taken RGC electrical responses identification and practical applications

one step further.

In spike detection, based on SWT and TEO, our method can significantly distinguish the

spike and noise. Therefore, the fluctuation of threshold has a slight influence on the results of

spike detection, and the optimal threshold obtained with experience is suitable for most of the

Table 1. The numbers of RGC units for our method and the manual operation software.

WT mice Stimulation Trials Our method Manual processing

Total Responsive Total Responsive

No.1 44 9 43 11

No.2 53 17 55 18

Sample 1 No.3 47 11 46 12

No.4 44 17 45 14

No.5 40 5 37 5

No.1 98 11 97 12

No.2 94 9 95 8

Sample 2 No.3 94 20 95 19

No.4 96 15 96 13

No.5 100 12 102 13

No.6 93 3 92 3

No.1 97 2 99 4

No.2 66 3 69 2

Sample 3 No.3 58 4 55 5

No.4 53 6 54 3

No.5 58 3 57 5

No.6 58 4 56 2

Sum 1193 151 1193 149

https://doi.org/10.1371/journal.pone.0246547.t001
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signals in this work. In contrast, the method proposed by Garcia et al. cannot increase the dis-

tinction between spikes and noise, and the threshold needs to be adjusted and updated for

each signal [39, 40]. From this perspective, our method is more efficient and robust.

In Fig 9(A), the intensity of the electrical responses of RGC decreases with increasing dis-

tance, and the neurons within 10d from the stimulation electrode can be evoked. Note that

with a distance of d-3d, the electrical response percentage has the greatest decreasing slope, so

further analysis within this distance range is important for electrophysiological studies. Arch-

ana et al. used a MEA with an electrode spacing of 200 μm which caused the difficulty to

Fig 9. Characterization of RGC response. (a) The responsiveness percentage versus the distances from the stimulation

electrode, where the distance between the stimulation electrode and the 8 electrodes adjacent to the first layer is regarded

as d, and the second layer is 2d, etc. d2 [100,141.4]. (b) The relationship between the average number of spikes and

cathode voltage amplitude. 151 RGC units in total were calculated and the number of spikes were averaged for different

stimulation voltage. (c) The time history illustration of spikes evoked by the responsive RGC unit upon different cathode

voltages (0.60 V, 1.05 V and 1.35 V).

https://doi.org/10.1371/journal.pone.0246547.g009
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observe the RGC responses with rich details (eg, 100μm) [3, 41]. While in our experiment, the

interelectrode spacing is 100 μm, which enables the analysis with more details.

In Fig 9(B), the threshold voltage and saturation voltage are 0.43 V and 1.35 V, respectively,

and the number of evoked RGC spikes within this range increases linearly. Hence, it is con-

cluded that the linear range for controllable stimulation is 0.43 V—1.35 V for WT mice. Yong

et al. also proposed an optimal range of 0.55 V—1.0 V [42], which is similar to our conclusion.

However, the pulse amplitude interval used in their experiment was 0.5 V, while is finer than

our voltage interval was only 0.15 V and presents more details on the voltage influence on the

electrical responses of RGCs.

The main limitation of this study is only analyzed the relationship between the pulse ampli-

tudes and their electrical responses, yet other stimulation parameters such as duration, pulse

shapes and so on need to be systematically explored. In addition, the low electrode density and

small coverage area of commercial MEA make it impossible to record enough signals, and a

larger and denser MEA will be required. Furthermore, the threshold is obtained empirically

and an adaptive setting method is needed for the subsequent research. Nevertheless, given the

many advantages in comprehensive electrical response analysis, we anticipate the algorithm

can be a facile and useful tool to develop improved stimulation strategies based on more types

of animals.

Conclusion

In this paper, an algorithm is developed to characterize the influential range of electrical stimu-

lation and determine the optimal electrical pulse amplitude for effective retinal stimulation.

The main function of this method includes spike detection, classification and electrical

response identification. The results obtained by our method are in good agreement with those

using manual operation softwares, yet the processing time is greatly reduced. This algorithm

can evaluate the stimulated influence of pulse parameters, electrode distance and other factors,

which is critical to be understood in the optimization of electrical stimulation parameters for

retinal prostheses. Due to its facile use and high efficiency, this method is powerful for opti-

mizing such parameters, and has the potential to be expanded for other electrophysiological

studies in neural stimulation.
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