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ABSTRACT
Assistive devices (ADs) are products intended to overcome the difficulties produced by
the reduction inmobility and grip strength entailed by ageing and different pathologies.
Nevertheless, there is little information about the effect that the use of these devices
produces on hand kinematics. Thus, the aim of this work is to quantify this effect
through the comparison of kinematic parameters (mean posture, ROM, median
velocity and peak velocity) while performing activities of daily living (ADL) using
normal products and ADs. Twelve healthy right-handed subjects performed 11 ADL
with normal products and with 17 ADs wearing an instrumented glove on their right
hand, 16 joint angles being recorded. ADs significantly affected hand kinematics,
although the joints affected differed according to the AD. Furthermore, some pattern
effects were identified depending on the characteristics of the handle of the ADs,
namely, handle thickening, addition of a handle to products that initially did not have
one, extension of existing handles or addition of handles to apply higher torques. An
overview of the effects of these design characteristics on hand kinematics is presented as
a basis for the selection of themost suitable ADdepending on the patient’s impairments.

Subjects Geriatrics, Kinesiology, Orthopedics, Rheumatology
Keywords Assistive device, Activities of daily living, Hand kinematics, Hand posture,
Instrumented glove

INTRODUCTION
Ageing and different pathologies reduce hand mobility and grip strength, affecting the
normal performance of activities of daily living (ADL) (Brand & Hollister, 1999) and
thus limiting personal independence. To overcome these difficulties, there are different
commercially available assistive devices (ADs). According to the WHO (World Health
Organization, 2019) ADs are those devices and technologies whose primary purpose
is to maintain or improve an individual’s functioning and independence to facilitate
participation and to enhance overall well-being.Bauer, Elsaesser & Arthanat (2011) propose
a classification of ADs in health state ADs (HS ADs) and health-related states (HRS ADs).
While the HS ADs aim to increase the level of functioning within a health domain which
pertains to an individual’s body functions and body structures (e.g., a corneal implant),
the HRs ADs are focused on health domains that pertain to an individual’s activities
and participation (e.g., screen magnifiers). Additionally, HRS ADs are sub-classified in
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disability-specific (e.g., screen readers) and cross-disability (e.g., accessible bathrooms).
In particular, this work is focused on HRS cross-disability mobility ADs, intended to
overcome difficulties to perform ADLs experienced by users with reduced mobility, lack
of grip strength or sensorimotor impairments, among others. Since there are several types
of HRS cross-disability mobility ADs (referring to them as simply ADs from now in the
manuscript) aimed at helping to perform the same ADL, the prescription process is not
an easy task, and therapists must make decisions based on their own clinical experience.
Therefore, any information about the effect of the ADs is essential in order to ensure that
the prescribed AD will help to overcome the user’s limitations and improve his/her quality
of life. Nevertheless, there is still little quantifiable information about the effect produced
by the use of ADs.

Several works in the literature have presented reviews of ADs from different fields such
as feeding (Holt & Holt, 2011), personal care (Harman & Craigie, 2011; Hepherd, 2011) or
mobility (Stowe, Hopes & Mulley, 2010), but they only offer qualitative descriptions of the
products and the difficulties that are presumably overcome. The use of ADs during the
performance of ADL has been studied mainly through user surveys or group discussions
(Mann, Hurren & Tomita, 1993; Kraskowsky & Finlayson, 2001; Hoffmann & McKenna,
2004; Wielandt et al., 2006; Hemmingsson, Lidstrom & Nygard, 2009; Skymne et al., 2012),
focused on the identification of the reasons for rejection. Several useful conclusions
were drawn from these works, such as the importance of the occupational therapist’s
involvement in selecting devices due to inadequate information about the patients (Mann,
Hurren & Tomita, 1993) and also the importance of considering the user’s perceptions and
opinions during the AD selection process in order to prevent non-use (Wielandt et al.,
2006). Nevertheless, the results remain qualitative.

Little research has attempted to study the quantitative effect of usingADs on the hand and
upper limb posture (Van & Steenbergen, 2007; Ma et al., 2008; Ma et al., 2009b; McDonald
et al., 2016). These experimental studies were conducted on healthy subjects (McDonald
et al., 2016) and on subjects with pathologies such as Parkinson (Ma et al., 2008; Ma et
al., 2009a) or cerebral palsy (Van & Steenbergen, 2007). Some of these works studied the
effect of thickening products’ handle (Van & Steenbergen, 2007;Ma et al., 2008;McDonald
et al., 2016), while others were focused on varying products’ weight (Ma et al., 2009a). For
patients with Parkinson’s disease (Ma et al., 2008) the ADs aimed to mitigate the effect
of problems as joint rigidity or decreased hand aperture while in cerebral palsy patients
the aim is to increase grasp stability, independent finger control and force control (Van
& Steenbergen, 2007). In these studies, parameters such as hand posture (McDonald et al.,
2016), arm posture (Van & Steenbergen, 2007; Ma et al., 2009a) or hand-arm posture (Ma
et al., 2008) were analysed and some conclusions were drawn. The product handle diameter
was found to affect the speed and smoothness of upper limb movement (Ma et al., 2008),
evidencing a relationship between the product shape and hand kinematics. Furthermore, in
patients with Parkinson’s disease the small or medium handle size increased the speed and
smoothness (Ma et al., 2008) while in patients with cerebral palsy thicker handles increased
velocity of performance (Van & Steenbergen, 2007). Moreover, the kinematics were also
found to be affecting the perceived comfort, products that could be managed with higher
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speed and smoothness being better rated by the users (Ma et al., 2008). Nevertheless,
the hand kinematic analysis performed in all these studies had important limitations.
One of them only considered metacarpophalangeal and interphalangeal flexion angles,
which were measured manually with an electrogoniometer while performing a static
grasp representative of the AD usage (McDonald et al., 2016). The other works studied the
smoothness or velocity of arm movement with a three-dimensional ultrasonic measuring
systemusing a singlemarker attached to the wrist of the participant’s dominant hand, which
only allowed the arm movement to be studied, excluding the hand (Van & Steenbergen,
2007; Ma et al., 2008; Ma et al., 2009a). In addition, the ADL considered in the above
mentioned quantitative analyses were very limited, considering only the task of eating with
a spoon (Van & Steenbergen, 2007; Ma et al., 2008;McDonald et al., 2016).

However, there is little information in the literature about the kinematics of all the hand
joints during the entire task performance when using different ADs (owing to the wide
variety of products available) in comparison with normal products. Kinematic parameters
such as range of motion (ROM) or mean postures (Gates et al., 2015), as well as velocities
and smoothness ratio (Igo Krebs et al., 1998; Bosecker et al., 2010) are essential to quantify
the efficiency of the task performance and are therefore useful to assess the abilities of
individuals with impairments or in rehabilitation processes.

A continuous record of all joints during the entire task performance is required
for a representative study of the kinematics, which allows the calculation of velocities.
Nevertheless, recording all hand joint angles simultaneously without affecting the normal
use of products is challenging. In this respect, instrumented gloves or videogrammetry are
the techniques most commonly used for hand posture analysis when the study of a large
number of joints is intended. However, data acquisition with videogrammetry during ADL
is not feasible because of the occultation and collision of markers, instrumented gloves
being an alternative.

Therefore, the aim of this work is to analyze the effect of ADs on hand kinematics not
only focusing on the ROM, but also on the mean postures and velocities. To do so, hand
kinematics parameters (mean angle, ROM, median velocity and P95 velocity) of healthy
subjects when using ADs during the performance of a variety of ADL (opening cans and
bottle, pouring from a carton, drinking with a glass, eating with some spoons, using a fork,
carrying a dish, using a tap, brushing teeth and sliding zips) are compared with the same
parameters obtained when performing the same ADL with the standard product. This
comparison might be useful to contribute to a better assessment of ADs depending on the
pathologies or impairments that they are intended to supplement with their use, and it
can also be helpful to understand ADs users’ reasons for rejection. In addition, the study
of these effects may be useful during the process of designing new products intended to
improve the daily living of patients with specific pathologies.
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Table 1 ADL performed in the experiment, products used and body posture during their
performance.

ID Task Products Posture

T1 Opening cans 1 NP, 1 AD Sitting
T2 Unscrewing a bottle top 1 NP, 2 ADs Sitting
T3 Pouring from a bottle 1 NP, 1 AD Sitting
T4 Pouring from a carton 1 NP, 1 AD Sitting
T5 Drinking from a glass 1 NP, 1 AD Sitting
T6 Eating with a spoon 1 NP, 3 ADs Sitting
T7 Eating with a fork 1 NP, 3 ADs Sitting
T8 Carrying a dish 1 NP, 1 AD Standing
T9 Using a tap 1 NP, 1 AD Standing
T10 Brushing teeth 1 NP, 1 AD Standing
T11 Sliding a zip up 1 NP, 2 ADs Standing

Notes.
NP, normal product; AD, assistive device.

MATERIALS & METHODS
Twelve healthy right-handed subjects (sixmale, six female; age 35± 9.17 years) volunteered
to participate in the experiment, approved by the Universitat Jaume I ethical committee
(UJI-27/05/15-DPI201452095P). The subjects were previously informed about the
characteristics of the experiment and gave their written consent.

Selection of tasks and material
The different typologies of commercially available ADs for grasping were studied (such
as personal care, dressing, eating or drinking) and 17 products were chosen to be
representative of those intended to solve hand mobility or strength limitations during
product manipulation. Then, according to these ADs, 11 ADL associated with their use
were selected. Table 1 presents the list of specific tasks and products selected and the body
posture during each task performance. Tasks were carried out with the normal products
and with one, two or three ADs (Fig. 1). Design characteristics of each assistive device are
presented in Table 2.

Three scenarios were prepared (Scenario 1: A chair with the objects to perform the
dressing tasks; Scenario 2: A table with the objects to perform the eating/drinking tasks;
Scenario 3: A sink and a table with the objects to perform the self-care tasks). The objects
were arranged in the same position for all the subjects, and the initial and final postures of
each subject were controlled to ensure they were the same (hands and arms relaxed when
standing, and with their hands lying relaxed on the table with the palm down when sitting).

Experiment
The subjects performed all the tasks wearing an instrumented glove CyberGlove R©

(CyberGlove Systems, San José, CA, USA) on their right hand (Fig. 2), and 16 hand
joint angles (described in caption of Fig. 3) were recorded. The tasks were performed with
both hands when needed, although the products were always used with the right hand. The

Roda-Sales et al. (2019), PeerJ, DOI 10.7717/peerj.7806 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.7806


Figure 1 Products used during the performance of the ADL (tasks (A) T1 to (K) T11) considered in the
experiment. The labels A1, A2 and A3 refer to the different assistive devices used for the task; the label N
refers to the normal product.

Full-size DOI: 10.7717/peerj.7806/fig-1
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Table 2 Design characteristics of the assistive devices used in each task.

Task Product Characteristics

T1 A1 Handle to apply higher torque and reduce precision
requirements when pulling the tin ring.

A1 Additional handle to apply higher torque.
T2

A2 Rubber cap over the original cap, to improve grip.
T3 A1 Vertical additional handle to the bottle.
T4 A1 Vertical additional handle to the carton.
T5 A1 Vertical additional handles (both sides) to the glass.

A1 Thickened and bended plastic cylindrical handle (8= 30
mm, bent angle= 40◦).

A2 Thickened and bended rubber conical handle. (81= 33
mm, 82= 24 mm bent angle= 60◦)T6, T7

A3 Thickened sponge cylindrical handle (8= 30 mm).
T8 A1 Horizontal additional handle to the dish (section 31 mm×

24 mm).
T9 A1 Additional handle to apply higher torque (section 35 mm×

25 mm).
T10 A1 Thickened sponge cylindrical handle (8= 30 mm).

A1 Cylindrical extension of the original zip (8= 16 mm).
T11

A2 Toroidal extension of the original zip.

order of the tasks for each subject was randomized. In all, 336 (12 subjects× 28 products)
continuous records (acquired at a frequency of 100 Hz) of 16 gauges were the data collected
while performing the tasks. Note that each record had a different duration.

Data analysis
A previously validated protocol (explained in detail in Gracia-Ibáñez et al. (2017) was used
to calculate 16 hand joint angles from the gauge data recorded by the CyberGlove. The
protocol consists of computing gains and corrections to avoid cross-coupling effect
by averaging those obtained from detailed subject-specific calibration involving 44
registrations. The angles were then low-pass filtered (2nd order Butterworth filter, cut-off
frequency five Hz). After that, initial and final data of each record (while there was no
movement detected) were discarded. The instant velocity of each joint was computed as the
joint posture variation within the data sampling period (T = 0.01s, as the data acquisition
frequency was 100 Hz). For each record and for each joint angle, four kinematic parameters
were computed: mean angle, ROM (calculated from percentiles 5 to 95 of joint angles),
median velocity and percentile 95 of velocity. The time taken to accomplish each task with
each product was also computed. For each of the four kinematic parameters (mean posture,
ROM, median velocity and P95 velocity) of each joint angle, 17 one-way repeated measures
ANOVAs were conducted, considering as the factor for the ANOVA each of the 17 ADs
against its corresponding normal product. In this way the effect of the type of product used
(normal or AD) on kinematic parameters in each joint angle can be checked.
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Figure 2 Subject wearing the instrumented glove performing the task of eating with a spoon.
Full-size DOI: 10.7717/peerj.7806/fig-2

RESULTS
Regarding the analysis of postures, Fig. 3 presents the mean of the mean angles at each joint
when performing the tasks with normal products and different ADs. Significant differences
from the repeated-measures ANOVAs (bilateral asymptotic sig. ≤ 0.01) while performing
tasks with normal products (N) and the different ADs available (A1, A2 and A3) are marked
in each joint.

Joints studied were: thumb interphalangeal joint (IP1), carpometacarpal joint of thumb
(CMC1), metacarpophalangeal joints (1 to 5, thumb to little digits) (MCP1 to MCP5),
palmar arch (PalmAr), proximal interphalangeal joints (2 to 5, index to little digits) (PIP2
to PIP5), abduction between index and middle fingers (MCP2-3_A), abduction between
middle and ring fingers (MCP3-4_A), and abduction between ring and little fingers
(MCP4-5_A).

In addition, Fig. 4 presents the mean values of the ROM of each joint obtained when
performing each task with normal products and each AD, where significant differences are
also marked. Tables of mean values and standard deviation of mean postures and ROM
when performed with normal products and ADs are presented as Supplemental Files.

Significant differences in posture and ROM are found in all the ADs analyzed, except
for ROM of the bottle opener A2 (T2) and mean posture and ROM of the zip adapter A2
(T11). It can be observed that all the joint angles are affected by the use of some of the ADs.

Regarding the analysis of velocities, Fig. 5 presents the mean values of the median
velocities at each joint obtained when performing the tasks with normal products and ADs,
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Figure 3 Mean values of the mean angle (deg) obtained for each joint, task ((A) T1 to (K) T11) and
product. Joints with significant differences for all the ADs are underlined. Joints with significant differ-
ences for some ADs are underlined and marked with an asterisk of the corresponding colour. Tasks and
products labelled as described in Table 1 and Fig. 1. Joints labelled as described in main text. Positive val-
ues for flexion, abduction of fingers and palmar deviation of thumb.

Full-size DOI: 10.7717/peerj.7806/fig-3

and Fig. 6 presents the mean values of the P95 in the same way. Significant differences
(bilateral asymptotic sig. ≤ 0.01) found in the repeated-measures ANOVAs are marked
in both figures. Tables of mean values and standard deviation of median velocities
and peak velocities when performed with normal products and ADs are presented as
Supplemental Files.

In general, all the significant differences found in median velocity imply a reduction,
and differences are obtained for almost all joints and movements.
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Figure 4 Mean values of the ROM (deg) obtained for each joint, task ((A) T1 to (K) T11) and prod-
uct. Joints with significant differences for all the ADs are underlined. Joints with significant differences for
some ADs are underlined and marked with an asterisk of the corresponding colour. Tasks, products and
joints labelled as described in Fig. 3.

Full-size DOI: 10.7717/peerj.7806/fig-4

Figure 7 shows the box-and-whiskers plot of the time of accomplishment of each task
when performed with the normal product and with the different ADs.

After applying a repeated-measures ANOVA to the time of accomplishment, significant
differences (bilateral asymptotic sig. ≤ 0.01) are found for the tasks of opening a can (T1),
unscrewing a bottle top (T2), pouring from a bottle (T3), eating with a spoon (only for A2
and A3) (T6), carrying a dish (T8) and sliding a zip up (T11) (only for the A1 adapter). It
can be observed that the time of accomplishment in all of these tasks with differences is far
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Figure 5 Mean of the median velocity (deg/s) obtained for each joint, task ((A) T1 to (K) T11) and
product. Joints with significant differences for all the ADs are underlined. Joints with significant differ-
ences for some ADs are underlined and marked with an asterisk of the corresponding colour. Tasks, prod-
ucts and joints labelled as described in Fig. 3.

Full-size DOI: 10.7717/peerj.7806/fig-5

higher when performed with ADs except for the task of pouring from a bottle and eating
with a spoon.

DISCUSSION
Firstly, in order to assess the goodness or disadvantage of the effects observed in the
posture analysis, it is important to analyze whether they favor using a more neutral or
awkward (extreme) posture. In this sense, the significant increase in flexion at the thumb
interphalangeal (IP) joint by some of the ADs considered leads to a more comfortable
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Figure 6 Mean values of the percentile P95 values of velocities (deg/s) obtained for each joint, task
((A) T1 to (K) T11) and product. Joints with significant differences for all the ADs are underlined. Joints
with significant differences for some ADs are underlined and marked with an asterisk of the correspond-
ing colour. Tasks, products and joints labelled as described in Fig. 3.

Full-size DOI: 10.7717/peerj.7806/fig-6

posture, as they allow the user to move away from a posture that is too extended. In fact,
in some pathologies, such as stroke, the subject finds it difficult to perform digit extension,
and this is considered as an indicator of recovery (Smania et al., 2007). The observed
increase in flexion in proximal interphalangeal (PIP) and metacarpophalangeal (MCP)
joints in tasks such as pouring from a bottle (T3), pouring from a carton (T4) and drinking
from a glass (T5) is more critical than that observed in tasks like opening a can (T1), since
the mean postures used with the ADs are far less neutral in the first ones. Looking at finger
abduction, the tap adapter (T9) generates an increase in abductions of fingers index to
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Figure 7 Box-plots of time of accomplishment of the tasks when performed with the different prod-
ucts. Tasks and products labelled as described in Table 1 and Fig. 1.

Full-size DOI: 10.7717/peerj.7806/fig-7

little, while the bottle adapter (T3) gives rise to a reduction. An increase in abduction
between middle and ring fingers when using the AD spoons (T6) and between index and
middle fingers when using the adapted forks A1 and A3 (T7) is also observed. Nevertheless,
these increases may not imply any negative effect since in all cases the joint angles when
using ADs are lower than 10 deg. In particular, the use of the AD for the task of using a tap
(T9) solves the negative abduction values required with a normal product, which implies
a less neutral posture. The significant differences obtained for the thumb flexion show
coordination between the MCP and carpometacarpal (CMC) joints. Looking at flexion of
the palmar arch and the thumb CMC joint, significant differences always correspond to a
decrease in these joint angles when using the ADs, except for the tap adapter (T9). This can
be attributed to the general thickening of the handles in ADs and the shape modulation
function of the palmar arch during grasping (Sangole & Levin, 2008), which is translated
into more neutral postures for this joint complex.

The ROM results allow the posture analysis to be completed. Although significant
differences are found for the ROM when using any of the ADs, fewer joint angles are
affected in comparison to those affected when looking at mean postures. For the analysis,
it is important to have in mind that high ROM values make manipulation difficult in
patients with reduced hand mobility. Some of the ADs decrease the ROM of all the joints
that are significantly affected: the can opener (T1), the bottle opener A1 (T2), all the AD
spoons (T6), the AD forks A1 and A2 (T7), the tap adapter (T9) and the toothbrush
adapter (T10). However, the differences obtained when using the dish adapter (T8) and
the zip adapter A2 (T11) only imply increases in the ROM. And other ADs increase the
ROM at some joint angles while they decrease it at others. However, these increases are not
critical when looking at the final ROM values used with the ADs, except for pouring from
a bottle (T3), pouring from a carton (T4) and drinking from a glass (T5), which may be a
problem for patients with pathologies presenting reduced mobility, such as osteoarthritis
or rheumatoid arthritis.

A detailed analysis by task allows us to identify some groups of tasks providing similar
posture outcomes. It can be clearly seen that there is an increase in flexion of all the PIP
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joints when using the bottle adapter (T3), the carton adapter (T4) and the glass adapter
(T5), with higher flexion ROM at the PIP joints, and lower abduction ROM at the thumb
CMC joint. These results are coherent since all these adapters consist in adding a handle
to the objects to be grasped, thus reducing the effective grasping diameter (a handle is
grasped instead the object itself). All the spoons (T6) present lower flexion of the palmar
arch, middle MCP and index PIP joints, and higher abduction between middle and ring
fingers, along with ROM reduction of flexion at the middle MCP joint and index PIP joint.
Furthermore, all the forks (T7) reduce the flexion of the thumb MCP, thumb CMC, index
MCP and little PIP joints and forks A1 and A3 increase the abduction between index and
middle fingers, thereby reducing the ROM of flexion of little PIP joint. The results obtained
for the spoons are coherent with previous works focused on the effect of spoon handle
diameter on ROM, finding that performing feeding tasks with spoons with thicker handles
required lower ROM (McDonald et al., 2016). Owing to the similarity of the handles of the
AD spoons and that of the AD toothbrush (and also the similarity of the grasp performed
in both tasks), it can be extrapolated that for this product a lower ROM would also be
required, which is also coherent with the results obtained.

A detailed analysis of velocities by task reveals two groups of products with clear patterns
of changes that can be associated to their shape and design. The first group, composed of
products with designs that add additional handles to products that initially did not have
one (or significantly extend the existing ones), shows a general increase in peak velocities:
the dish adapter (T8) (additional horizontal handle) or the tap adapter (T9) (additional
handle to apply higher torque). Another finding worth noting is the increase in the peak
velocity produced by those products with additional vertical handles (bottle adapter (T3),
carton adapter (T4) and glass adapter (T5)) on almost all the PIP joints. Conversely, for
the products with designs that involve thickened handles (AD spoons (T6) and toothbrush
(T10)), or just a wider hand opening (bottle opener A1 (T2)), a general decrease in peak
velocities is observed. It is notable that the decrease in median velocities found when using
AD spoons (affecting the flexion rate in thumb IP and CMC) may be produced by the
significant decreases obtained in peak velocities of the flexions in almost the same joints
(index PIP, thumb IP and CMC). Therefore, a relationship can be established between the
product diameter and the peak velocities, owing to the fact that the product diameter to be
grasped is generally reduced in the ADs where an additional handle is added (carton, bottle,
glass, dish, tap), with the exception of the zip adapter. This relationship is supported by
the results obtained from ROM and P95 velocities analysis, and the relationship previously
found between ROM and handle diameter. While in products such as the bottle opener A1
(T2), spoons (T6) and toothbrush (T10) a general decrease in ROM and P95 is found, in
others such as the dish (T8) (and also in all the PIPs for the bottle (T3), carton (T4) and
glass adapters (T5)), a general increase in both parameters is found. Nevertheless, these
last tasks were initially found to be performed with almost static grasps, which means that
these increases in velocities may take place during the phase of reaching for the product,
rather than during manipulation.

It can be observed from Fig. 5 that when using normal products the hand is almost static
in some tasks because the movement is being performed by the shoulder, elbow and/or
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wrist, as in the cases of pouring from a bottle (T3), pouring from a carton (T4), drinking
from a glass (T5), carrying a dish (T8) and using a tap (T9). But other tasks present higher
median velocity values, especially the task of unscrewing a bottle top (T2), which presents
the highest values for all the joints. These median velocities are coherent with the type
of grasp and manipulation performed during these tasks (in the aforementioned tasks,
static grasps are usually performed, while in the task of opening a bottle a special grasp is
performed combined with fine manipulation).

The analysis of velocities requires taking into account the peak velocities (Fig. 6). When
using normal products, the highest values of peak velocities correspond to the unscrewing
a bottle tap task (T2), and the ADs allow a significant reduction in these peak velocities. In
general, the peak velocities of thumb decrease for the tasks of opening a bottle (with A1
opener) (T2) and eating with a spoon (T6), and increase in carrying a dish (T8). Regarding
the MCP flexion, the values also decrease in the tasks of opening a bottle with A1 (T2) and
eating with a spoon (T6), and increase when pouring from a bottle (T3) and carrying a
dish (T8). The MCP abductions present fewer significant differences, the only remarkable
ones being the reduction in the abduction between fingers when using the bottle opener
A1 (T2) and the carton adapter (T4) or the increase when using the dish adapter (T8), only
the differences found between index, middle and ring fingers being significant. Finally, a
general increase in the PIP peak velocities is found in the tasks of pouring from a bottle
(T3), pouring from a carton (T4) and drinking from a glass (T5).

As for the time of accomplishment analysis, the increase shown when using ADs can
be attributable to the lack of experience of healthy subjects with this type of products.
This increase in time of accomplishment is coherent with the general decrease in median
velocities observed. Nevertheless, it is remarkable that for the task of eating with the spoons
A2 and A3 (T6), apart from being performed in less time with ADs, all the significant
differences in median and peak velocities imply a decrease in the values, which can be an
indicator of grasp stability. In contrast, in the case of the dish adapter (T8), where time is
higher and peak velocities increase significantly in the majority of joints, the smoothness
of the movement is clearly lower. In this sense, a smoothness indicator can be determined
from the difference between the peak and the median velocities, the lowest differences
being taken as more beneficial. Thus, all those tasks with significant decreases in mean
velocities and increases in peak velocities—the bottle adapter (T3) and the carton adapter
(T4)—will have less movement smoothness. Additionally, low differences between peak
and median velocities are observed in tasks such as opening a can (T2), brushing teeth
(T10) and using a zip (T11), revealing a smooth operation. Nevertheless, these tasks are
already smooth when performed with normal products, so it seems that no AD produces
a significant improvement in movement smoothness.

Overall, taking into account all the results of the different parameters and the design of
the ADs, a five-group classification of ADs can be established: ADs with additional vertical
handles (T3, T4, T5), with additional horizontal handles (T10), with handles to perform
higher torques (T9), with extended handles (T11) and with thickened handles (A1 of T2,
T6, T7 and T10). Figure 8 presents an overview of the global results obtained for each
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Figure 8 AD design characteristics and global results obtained across the different studies.
Full-size DOI: 10.7717/peerj.7806/fig-8
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group from the different analyses of posture and velocity, as well as a brief example of
pathologies that can benefit from the use of these ADs.

It can be observed that the design characteristics that imply the most changes are those
with additional (vertical or horizontal) or thickened handles. The ADs that involve more
neutral postures and lower velocities than the normal ones are those that have thickened
handles or require a wider hand opening for the grasp, such as the bottle opener A1 (T2),
the AD spoons (T6), the AD forks (T7) and the AD toothbrush (T10). However, the
ones that consist in adding handles to products without one (the bottle adapter (T3), the
carton adapter (T4), the glass adapter (T5) and the dish adapter (T8)) produce less neutral
postures, higher velocities and less smoothness than the normal ones. These results may
lead us to identify the latter as more suitable when strength is reduced and a grasp with
more flexed PIPs and MCPs is needed in order to ensure that the object is not going to slip
from the hand, but not for those patients with reduced hand mobility. Nevertheless, those
with thickened handles may be in general more beneficial for all the pathologies, especially
when hand mobility is reduced, since, in some studies, upper limb ROM analysis was
found to allow therapists to assess the abilities of their patients (Gates et al., 2015), while
peak and mean velocity were also commonly used when evaluating post-stroke patients
(Alt Murphy & Häger, 2015). Smoothness was also identified as an important marker of
patients’ motor recovery (Igo Krebs et al., 1998; Bosecker et al., 2010), as well as a parameter
directly related with users’ rating when assessing the use of the product during studies
focused on upper limb joints (Ma et al., 2008). Thus, in these cases special attention is
needed when prescribing ADs to patients with the entire upper limb affected, since some
products that help to overcome hand impairments may not be beneficial to the arm joints.
Nevertheless, this work is an approach to AD assessment and the design of products and
their kinematic implication should be studied individually before prescribing. Different
pathologies may present different impairments such as reduced strength. In these cases,
products with additional and thinner handles, despite increasing ROM or leading to less
neutral postures, may be making performance of the task easier.

Finally, it has to be highlighted that the instrumented glove may introduce some loss
of dexterity during the task performance that could have slightly affected the time of
accomplishment of the tasks and also hand kinematics. Nevertheless, this loss of dexterity
affects both the standard and the adapted product equally and, therefore, the comparison
during the use of both types of products is valid. In addition, the experiments have been
carried out on healthy subjects and may not reveal some of the difficulties experimented
by patients during the performance of the tasks, but it was thought to be representative of
the required kinematics under the best conditions. Performing more studies on subjects
with specific pathologies may be useful in order to explore the similarity of results between
healthy subjects and different pathologies. Moreover, it may reveal more accurate, but less
general, effects.
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CONCLUSIONS
A detailed objective study of how hand kinematic parameters of healthy hands are affected
when using different ADs during the performance of given tasks has been provided.
Knowing how healthy hands are affected may help determine the most suitable ADs for a
patient depending on the limitations derived from the pathology or the difficulties reported
on daily living. The appropriateness of each AD has been shown to depend on the joints
affected by the pathology, as not all the products affect the same joints in the same way, and
they can reduce the ROM or improve mean postures for some joints, but lead to higher
ROM or less neutral postures in others. Furthermore, an overview of the effects from using
the ADs depending on the handle design has been provided, which makes the selection
task considerably easier, thereby allowing therapists to prescribe the ADs objectively in a
faster way. Moreover, this information about handle design implications could also be used
by the AD manufacturers in order to ensure a better use of their products by establishing
recommendations and precautions for use.

ACKNOWLEDGEMENTS
The authors would like to thank Lydia Benages Grifo and Alejandro EdoMundina for their
help in data acquisition during the experiment.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by projects MINECO DPI2014-52095- P, UJI P1-1B2014- 10 and
UJI grant PREDOC/2016/08. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
MINECO: DPI2014-52095-P, UJI P1-1B2014- 10.
UJI: PREDOC/2016/08.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Alba Roda-Sales performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed
drafts of the paper, approved the final draft.
• Margarita Vergara and Joaquín L. Sancho-Bru conceived and designed the experiments,
authored or reviewed drafts of the paper, approved the final draft.
• Verónica Gracia-Ibáñez and Néstor J. Jarque-Bou performed the experiments,
contributed reagents/materials/analysis tools, approved the final draft.

Roda-Sales et al. (2019), PeerJ, DOI 10.7717/peerj.7806 17/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.7806


Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

This experiment was approved by the Universitat Jaume I ethical committee (UJI-
27/05/15-DPI201452095P).

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.7806#supplemental-information.

REFERENCES
Alt MurphyM, Häger CK. 2015. Kinematic analysis of the upper extremity after stroke—

how far have we reached and what have we grasped? Physical Therapy Reviews
20:137–155 DOI 10.1179/1743288X15Y.0000000002.

Bauer SM, Elsaesser LJ, Arthanat S. 2011. Assistive technology device classification based
upon the World Health Organization’s, International Classification of Functioning,
Disability and Health (ICF). Disability and Rehabilitation: Assistive Technology
6:243–259 DOI 10.3109/17483107.2010.529631.

Bosecker C, Dipietro L, Volpe B, Igo Krebs H. 2010. Kinematic robot-based evaluation
scales and clinical counterparts to measure upper limb motor performance in
patients with chronic stroke. Neurorehabilitation and Neural Repair 24:62–69
DOI 10.1177/1545968309343214.

Brand PW, Hollister AM. 1999. Clinical mechanics of the hand. St. Louis: Mosby
Publishing.

Gates DH,Walters LS, Cowley J, Wilken JM, Resnik L. 2015. Range of motion require-
ments for upper-limb activities of daily living. American Journal of Occupational
Therapy 70:7001350010p1–7001350010p10 DOI 10.5014/ajot.2016.015487.

Gracia-Ibáñez V, Vergara M, Buffi JH, MurrayWM, Sancho-Bru JL. 2017. Across-
subject calibration of an instrumented glove to measure hand movement for
clinical purposes. Computer Methods in Biomechanics and Biomedical Engineering
20(6):587–597 DOI 10.1080/10255842.2016.1265950.

Harman D, Craigie S. 2011. Gerotechnology series: toileting aids. European Geriatric
Medicine 2:314–318 DOI 10.1016/j.eurger.2011.01.017.

Hemmingsson H, LidstromH, Nygard L. 2009. Use of assistive technology devices in
mainstream schools: students’ perspective. American Journal of Occupational Therapy
63:463–472 DOI 10.5014/ajot.63.4.463.

Hepherd R. 2011. Aids for bathing and showering. European Geriatric Medicine
2:190–193 DOI 10.1016/j.eurger.2011.02.006.

Roda-Sales et al. (2019), PeerJ, DOI 10.7717/peerj.7806 18/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.7806#supplemental-information
http://dx.doi.org/10.7717/peerj.7806#supplemental-information
http://dx.doi.org/10.7717/peerj.7806#supplemental-information
http://dx.doi.org/10.1179/1743288X15Y.0000000002
http://dx.doi.org/10.3109/17483107.2010.529631
http://dx.doi.org/10.1177/1545968309343214
http://dx.doi.org/10.5014/ajot.2016.015487
http://dx.doi.org/10.1080/10255842.2016.1265950
http://dx.doi.org/10.1016/j.eurger.2011.01.017
http://dx.doi.org/10.5014/ajot.63.4.463
http://dx.doi.org/10.1016/j.eurger.2011.02.006
http://dx.doi.org/10.7717/peerj.7806


Hoffmann T, McKenna K. 2004. A survey of assistive equipment use by older people
following hospital discharge. British Journal of Occupational Therapy 67:75–82
DOI 10.1177/030802260406700204.

Holt RC, Holt RJ. 2011. Gerotechnology: kitchen aids. European Geriatric Medicine
2:256–262 DOI 10.1016/j.eurger.2011.01.019.

Igo Krebs H, Hogan N, AisenML, Volpe BT. 1998. Robot-aided neurorehabilitation.
IEEE Transactions on Rehabilitation Engineering 6:75–87 DOI 10.1109/86.662623.

Kraskowsky LH, FinlaysonM. 2001. Factors affecting older adults’ use of adaptive
equipment: review of the literature. American Journal of Occupational Therapy
55:303–310 DOI 10.5014/ajot.55.3.303.

MaH-I, HwangW-J, Chen-Sea M-J, Sheu C-F. 2008.Handle size as a task constraint
in spoon-use movement in patients with Parkinson’s disease. Clinical rehabilitation
22:520–528 DOI 10.1177/0269215507086181.

MaH-I, HwangW-J, Tsai P-L, Hsu Y-W. 2009a. The effect of eating utensil weight on
functional arm movement in people with Parkinson’s disease: a controlled clinical
trial. Clinical Rehabilitation 23:1086–1092 DOI 10.1177/0269215509342334.

MaH-I, HwangW-J, Tsai P-L, Hsu Y-W. 2009b. The effect of eating utensil weight on
functional arm movement in people with Parkinson’s disease: a controlled clinical
trial. Clinical Rehabilitation 23:1086–1092 DOI 10.1177/0269215509342334.

MannWC, Hurren D, Tomita M. 1993. Comparison of assistive device use and needs
of home-based older persons with different impairments. American Journal of
Occupational Therapy 47:980–987 DOI 10.5014/ajot.47.11.980.

McDonald SS, Levine D, Richards J, Aguilar L. 2016. Effectiveness of adaptive silverware
on range of motion of the hand. PeerJ 4:e1667 DOI 10.7717/peerj.1667.

Sangole AP, LevinMF. 2008. Palmar arch dynamics during reach-to-grasp tasks.
Experimental Brain Research 190:443–452 DOI 10.1007/s00221-008-1486-6.

Skymne C, Dahlin-Ivanoff S, Claesson L, Eklund K. 2012. Getting used to assistive
devices: ambivalent experiences by frail elderly persons. Scandinavian Journal of
Occupational Therapy 19:194–203 DOI 10.3109/11038128.2011.569757.

Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, Moretto G,
Bovi P, GambarinM. 2007. Active finger extension: a simple movement predicting
recovery of arm function in patients with acute stroke. Stroke 38:1088–1090
DOI 10.1161/01.STR.0000258077.88064.a3.

Stowe S, Hopes J, Mulley G. 2010. Gerotechnology series: 2. Walking aids. European
Geriatric Medicine 1:122–127 DOI 10.1016/j.eurger.2010.02.003.

Van D, Steenbergen B. 2007. The use of ergonomic spoons by people with cerebral palsy:
effects on food spilling and movement kinematics. Developmental Medicine & Child
Neurology 48:888–891 DOI 10.1111/j.1469-8749.2006.01940a.x.

Wielandt T, Mckenna K, Tooth L, Strong J. 2006. Factors that predict the post-discharge
use of recommended assistive technology (AT). Disability and Rehabilitation:
Assistive Technology 1:29–40 DOI 10.1080/09638280500167159.

World Health Organization (WHO). 2019. Assistive devices and technologies. Available
at https://www.who.int/disabilities/ technology/ en/ (accessed on 9 August 2019).

Roda-Sales et al. (2019), PeerJ, DOI 10.7717/peerj.7806 19/19

https://peerj.com
http://dx.doi.org/10.1177/030802260406700204
http://dx.doi.org/10.1016/j.eurger.2011.01.019
http://dx.doi.org/10.1109/86.662623
http://dx.doi.org/10.5014/ajot.55.3.303
http://dx.doi.org/10.1177/0269215507086181
http://dx.doi.org/10.1177/0269215509342334
http://dx.doi.org/10.1177/0269215509342334
http://dx.doi.org/10.5014/ajot.47.11.980
http://dx.doi.org/10.7717/peerj.1667
http://dx.doi.org/10.1007/s00221-008-1486-6
http://dx.doi.org/10.3109/11038128.2011.569757
http://dx.doi.org/10.1161/01.STR.0000258077.88064.a3
http://dx.doi.org/10.1016/j.eurger.2010.02.003
http://dx.doi.org/10.1111/j.1469-8749.2006.01940a.x
http://dx.doi.org/10.1080/09638280500167159
https://www.who.int/disabilities/technology/en/
http://dx.doi.org/10.7717/peerj.7806

