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A B S T R A C T   

We compared plasma and dried blood spots for detection of SARS-CoV-2 IgG antibodies. There was a good 
correlation between IgG values measured by both sampling methods, r = 0.935 and 0.965 for Receptor Binding 
Domain and full-length spike protein of SARS-CoV-2. Bland-Altman assessment showed good agreement between 
two sampling methods. Dried blood spots is a more pragmatic method for collecting samples for sero- 
epidemiological surveys of SARS-CoV-2 infection.   

Undertaking venesection to obtain blood samples to perform com
munity based sero-surveys, including to quantify the force of infection 
by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) 
in different communities is resource intensive and requires skilled staff 
in phlebotomy. Furthermore, other logistical constrains to obtaining 
whole blood samples for sero-surveys include the need for transporting 
under controlled temperature from the time of venesection to the lab
oratory, processing of blood for serum/plasma separation and storage in 
the laboratory (Ostler et al., 2014). Dried blood spot (DBS) samples on 
filter cards has been used for sero-surveys of measles antibody, and also 
sero-surveys and diagnosis of HIV, hepatitis B and hepatitis C (Soulier 
et al., 2016; Tuaillon et al., 2020; Uzicanin et al., 2011). In this study we 
evaluated the correlation and agreement of IgG mean fluorescent signal 
(MFI) against the Receptor Binding Domain (RBD) and full length spike 
protein of SARS-CoV-2 measured on paired DBS and plasma samples. 

The study was conducted at Chris Hani Baragwanath Academic 
Hospital, Soweto, South Africa. The study participants included hospi
talised adults between April 2020 and December 2020 with respiratory 
tract symptoms independent of duration, who tested positive for SARS- 
CoV-2 on nasal swab by PCR test, and for whom paired blood and DBS 

specimen were collected. Sixteen participants were included in the 
study. The study was approved by the Human Research Ethics Com
mittee of the University of the Witwatersrand (reference number 
200313). 

Plasma was separated from whole blood by centrifugation at 2000 g 
for 10 min and stored at − 70 ◦C until analysis. DBS’s were collected 
using a single use lancet needle for pricking of the finger, with 2–4 DBS 
collected on filter cards (Munktell TFN, cat# 2.460.B00023) for each 
individual. The DBS were dried for 3 h at room temperature, then 
packed in plastic pouches with silica gel sachets and stored at − 20 ◦C 
until analysis. 

The elution of antibodies from DBS was performed as described 
(Mercader et al., 2006). Briefly, using a 6 mm hole punch, one spot was 
cut from the filter card and added to 600μl of assay buffer, assuming 6μl 
of plasma in each 6 mm blood spot. The spot was kept in a shaker at 
2− 8 ◦C overnight for elution and the following day centrifuged at 
2000 g for 10 min before analysis. 

Paired plasma samples and DBS elutes were inactivated at 56 ◦C for 
1 h before analysis. The IgG concentrations against SARS-CoV-2 RBD 
and whole length spike proteins were measured on Luminex platform for 
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inactivated serum, inactivated DBS elute and normal DBS elute. The 
expression plasmid encoding for RBD and full length spike protein were 
obtained from the Krammer’s laboratory (Mount Sinai, USA). The re
combinant RBD protein was expressed as described previously (Stadl
bauer et al., 2020) and was coupled to the magnetic microsphere beads 
(Bio-Rad, USA) using a two-step carbodiimide reaction as described 
(Simani et al., 2014). Assays were performed in duplicate, optimal 
plasma dilution for the assay was 1:100. The results for RBD and full 
length spike IgG were expressed in MFI. Bead fluorescence was read with 
the Bio-Plex 200 instrument using Bio-Plex manager 6.2 software 
(Bio-Rad). 

Nasopharyngeal swabs were tested by PCR for the presence of SARS- 
CoV-2 which target two regions within the nucleocapsid gene and a 
third assay which detects the human RNase P gene 1, 2 as described 
previously (Lu et al., 2020). The correlation coefficient between MFI 
values obtained from plasma and DBS was determined by Spearman 
rank correlation. To assess agreement between two different methods 
Bland Altman analysis was performed. Data was analysed using 
GraphPad software Version 8.0.02. 

The mean age (Standard Deviation) of the 16 participants at enrol
ment was 50.6 years (± 16.0 years). The plasma and DBS results for 
SARS-Cov-2 IgG are compared in Fig. 1. There was significant positive 
correlation between IgG MFI values measured on inactivated plasma and 
the normal DBS elute. The correlations for IgG measured by these two 
method were 0.935 (95 %CI: 0.814− 0.978) for RBD and 0.965 (95 %CI: 
0.895− 0.988) for full length spike protein; p < 0.001 for both. 

Comparing MFI measured on inactivated plasma and inactivated DBS 
elute yielded correlation of 0.962 (95 %CI: 0.889− 0.986) for RBD and 
0.959 (95 %CI: 0.879− 0.986) whole length spike protein; p < 0.001 for 
both. Bland-Altman assessment also showed good agreement between 
IgG MFI values measured on inactivated plasma and the normal DBS 
elute with 6.25 % (1/16) of observations for both RBD IgG and spike IgG 
falling outside 95 % limits of agreement (LoA) (Fig. 2). The observed 
bias was 1.19 ± Standard deviation (SD) 0.36 (95 % LoA; 0.48–1.90) and 
1.25 ± 0.24 (95 % LoA; 0.77–1.72) for MFI measured on inactivated 
plasma and normal DBS elute for RBD and Spike IgG, respectively. 
Similarly, the observed bias was 1.29 ± 0.38 (95 % LoA; 0.54–2.05) and 
1.37 ± 0.29 (95 % LoA; 0.78–1.95) for MFI measured on inactivated 
plasma and inactivated DBS elute for RBD and Spike IgG, respectively. 

The heat inactivation of DBS elute did not affects IgG antibody 
determination for both RBD and full length spike. The correlations for 
IgG measured between normal and inactivated DBS elute were 0.987 (95 
%CI: 0.962− 0.995) for RBD and 0.967 (95 % CI: 0.904 – 0.989) for full 
length spike protein; p < 0.001 for both (Supplementary Fig. 1). Bland- 
Altman assessment also showed good agreement between IgG MFI 
values measured on normal DBS elute and inactivated DBS elute. The 
observed bias was 1.11 ± 0.24 (95 % LoA; 0.62–1.60) and 1.10 ± 0.15 
(95 % LoA; 0.79–1.40) for RBD and Spike IgG, respectively (Supple
mentary Fig. 2). 

Population-based sero-epidemiological surveys of SARS-CoV-2 
infection could help inform the prevalence of past infection and assist 
in determining the ongoing susceptibility of communities for COVID-19. 

Fig. 1. Correlation between mean florescent intensity (MFI) between plasma and Dried blood spots (DBS) for SARS-Cov-2 RBD (A, B) and full length Spike protein (C, 
D) IgG antibody. 
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Our results demonstrate the utility of DBS instead of whole blood ob
tained by venesection to quantify the presence of SARS-CoV-2 IgG 
against the RBD and full length spike proteins. Several other studies 
using ELISA-type immunoassays reported good corelation and agree
ment between Serum/Plasma and DBS sampling method to detect SARS- 
CoV-2 antibody detection(Amendola et al., 2021; Brinc et al., 2021; 
Weisser et al., 2021; Zava and Zava, 2021). A Study by Amendola et al., 
compared paired serum and DBS samples from health care workers and 
found high correlation and agreement between both sampling methods 
in detection of SARS-CoV-2 antibodies using ELISA (Amendola et al., 
2021). In another study by Weisser et al., analysed paired serum and 
DBS samples, high correlation and agreement was observed for both 
Spike 1 and Nucleocapsid IgG (Weisser et al., 2021). A recent study by 
Brinc et al., reported high concordance in between Matched Plasma and 
DBS Fingerprick from PCR-confirmed COVID-19 patients using Roche 
Elecsys Anti-SARS-CoV-2 assay measuring antibodies to RBD (Brinc 
et al., 2021). 

The DBS approach offers advantages over venesection, including 
being logistically easer to collect, transport, process and storage in the 
laboratory than is the case for whole blood samples obtained by vene
section. Collection of DBS on filter paper is therefore a more pragmatic 
approach to collect samples for community-based sero-surveys and 
mitigates many of the challenges of whole blood collection (Ostler et al., 
2014). Antibodies become stabilized once dried on filter cards, making it 
easier to ship DBS especially from remote sites to central facilities, and 
requires minimal processing at the laboratory upon receipt and subse
quent testing (Su et al., 2018). Nevertheless, precautions must be taken 
with DBS collection, including that samples should be dried for at least 

3 h and stored in Zip lock bags with desiccant to prevent atmosphere 
humidity damage (Smit et al., 2014). Also, the quality and integrity of 
the filter cards should be checked and maintained before using them for 
analysis, as they can vary because of incorrect or inadequate blood spots 
on the filter card (Su et al., 2018). 

In conclusion, these data support the use of DBS’s as a method to 
evaluate the prevalence of covid 19 sero-positivity in community-base 
sero-surveys as is currently being undertaken in South Africa. 
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Fig. 2. Bland-Altman plot of plasma and dried blood spots (DBS) MFI ratios compared to average Plasma and DBS MFI for SARS-Cov-2 RBD (A, B) and full length 
Spike protein (C, D) IgG antibody. The line representing the bias is presented as a solid line, and the 95 % limits of agreement are presented as dashed lines. 
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