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Abstract

Background: Chromatin immunoprecipitation (ChIP) coupled to high-throughput sequencing (ChIP-Seq)
techniques can reveal DNA regions bound by transcription factors (TF). Analysis of the ChIP-Seq regions is now a
central component in gene regulation studies. The need remains strong for methods to improve the interpretation
of ChIP-Seq data and the study of specific TF binding sites (TFBS).

Results: We introduce a set of methods to improve the interpretation of ChIP-Seq data, including the inference of
mediating TFs based on TFBS motif over-representation analysis and the subsequent study of spatial distribution of
TFBSs. TFBS over-representation analysis applied to ChIP-Seq data is used to detect which TFBSs arise more
frequently than expected by chance. Visualization of over-representation analysis results with new composition-bias
plots reveals systematic bias in over-representation scores. We introduce the BiasAway background generating
software to resolve the problem. A heuristic procedure based on topological motif enrichment relative to the
ChIP-Seq peaks’ local maximums highlights peaks likely to be directly bound by a TF of interest. The results suggest
that on average two-thirds of a ChIP-Seq dataset’s peaks are bound by the ChIP’d TF; the origin of the remaining
peaks remaining undetermined. Additional visualization methods allow for the study of both inter-TFBS spatial
relationships and motif-flanking sequence properties, as demonstrated in case studies for TBP and ZNF143/THAP11.

Conclusions: Topological properties of TFBS within ChIP-Seq datasets can be harnessed to better interpret regulatory
sequences. Using GC content corrected TFBS over-representation analysis, combined with visualization techniques and
analysis of the topological distribution of TFBS, we can distinguish peaks likely to be directly bound by a TF. The new
methods will empower researchers for exploration of gene regulation and TF binding.

Keywords: Chromatin immunoprecipitation, ChIP-Seq, Motif prediction, Over-representation analysis, Regulation,
Sequence analysis, Transcription factor, Transcription factor binding site, Visualization

Background
Delineating the specific cis-regulatory elements governing
gene transcription has been at the forefront of genome
research. The landmark release of the ENCODE project
findings supports the long-standing view that a greater
portion of the human genome contributes to the regula-
tion of gene activity than the ~2% encoding proteins.

High-throughput chromatin immunoprecipitation (ChIP)
analysis of protein-DNA interactions has been trans-
formative, highlighting the genomic regions that contain
regulatory elements, and thus reducing the computational
search space for transcription factor binding sites (TFBSs)
many fold. The coupling of ChIP to high-throughput
sequencing (ChIP-Seq) is empowering researchers to
investigate DNA binding transcription factors (TFs)
and their regulation of the genome. We present here a
set of convenient, practical visualization and bioinformat-
ics approaches, which facilitate interpretation of ChIP-Seq
TF binding data.
The bioinformatics foundations of generating ChIP-Seq

data have been well explored. Given mapped DNA
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sequence reads from a ChIP experiment, “peak calling”
software is applied to quantitatively delineate regions
within which a greater frequency of mapped reads are
observed than expected. The peak regions are reported
as a pair of coordinates, ranging from 1 bp to >5000 bp
wide, often accompanied by a score and the position at
which the read frequency local maximum is observed.
Within the peak regions, the coordinates of specific
TF-DNA interactions can be computationally inferred,
using a TFBS profile for the indicated TF. Such profiles,
most commonly in the form of Position Frequency Matri-
ces (PFMs), are available for a subset of TFs from data-
bases like JASPAR [1] or HoCoMoCo [2], or can be
computationally identified from the ChIP-Seq data using
de novo motif discovery tools [3-6]. Analysis with a PFM
converted to a weighted TFBS profile (Position Weight
Matrix – PWM) yields a score that reflects the similarity
of the sequence of interest to the modeled binding sites.
Although ChIP-Seq data reduces the acknowledged speci-
ficity problem of detecting short (6-15 bp), degenerate
motifs bound by a TF in the genome, the problem of TFBS
prediction is not perfectly resolved as the ChIP-Seq peaks
are often 20-fold or greater in length than the TFBS being
searched for. As they become more widely used, higher
resolution methods, such as ChIP-exo [7], are expected to
reduce the difficulty.
A proportion of ChIP-Seq peaks may not contain a ca-

nonical TFBS for the ChIP’d TF above background expect-
ation; a confounding property of the data that presumably
arises from a combination of biological, experimental, and
computational influences. While these regions may result
from indirect interactions between the TF and the DNA,
the multi-epitope specificity of polyclonal antibodies and
the tendency for chromatin to shear at promoter regions
[8,9] may give rise to peaks not specific to the ChIP’d TF.
The subset of peaks lacking the TF’s canonical motif is
commonly treated as equivalent to the subset with motifs.
The segregation of a ChIP-Seq dataset into the two classes
could lead to insights into individual TFs mechanisms of
regulation and reveal common properties of regions lack-
ing TFBS. The analysis of specific TF bound regulatory re-
gions and TFBSs from ChIP-Seq defined peak regions can
be refined, and such improvement will consequently in-
form and improve our utilization of ChIP-Seq data across
a spectrum of analyses.
In this report, we introduce a set of visualization

methods and bioinformatics approaches to improve the
study of TFBSs within ChIP-Seq regions, and demonstrate
the application of these methods for the generation of
new insights into regulatory sequences. We focus on three
key challenges: known motif over-representation analysis,
spatial visualization of TFBS positions, and determination
of parameters for TFBS analysis. For over-representation
analysis, we introduce the BiasAway tool to account for

the non-random properties of regulatory sequences; such
accounting has strongly informed the design of de novo
motif discovery methods, but has been inadequately ad-
dressed for over-representation studies. We introduce a
set of visualization approaches that reveal topological pat-
terns of motif positions within ChIP-Seq data, helping to
delineate the subset of peaks likely to be directly bound by
the ChIP’d TF. The visualization methods directly inform
the selection of parameters for motif prediction, a long-
standing challenge in regulatory sequence analysis. Appli-
cation of the procedure reveals that on average 61% of
ChIP-Seq peak regions contain the canonical motif for the
ChIP’d TF. The methods are applied to two cases related
to TBP and ZNF143/THAP11. Access to the new methods
and visualization approaches will provide the research
community with improved capacity to analyze and in-
terpret TF ChIP-Seq data.

Results
Composition studies reveal the influence of non-random
properties of the metazoan genome on the interpretation
of ChIP-Seq data
The non-random properties of genome nucleotide se-
quence composition have been the subject of extensive
investigation over decades. Key to the study of regulatory
sequences, are observations that promoters and other open
chromatin tend to have higher GC content, and that the
observed composition has a wide distribution. We evalu-
ated the relationship between mononucleotide composition
and TF ChIP-Seq data (see Additional file 1: Text S1).
We found that each TF exhibits a range of nucleotide
composition environments in which it binds. The GC
content distributions differ between TFs profiled in the
same cells and between different cell types profiled for
the same TF (Additional file 2: Figure S1). There is a
clear relationship between the GC content of the peak
regions and the multiplicity of TFBSs (Additional file 1:
Text S1, Additional file 3: Figure S2).

Consequences of biased composition for TFBS motif
over-representation analyses
It is a central practice in the analysis of regulatory regions
to evaluate the frequency of predicted TFBSs in the regions
of interest. This type of analysis depends on comparing
predicted motif frequencies against a reference background.
Such analysis of TFBS over-representation could be influ-
enced by the compositional properties of the peaks and
the background sequences. While accounting for back-
ground composition properties has been explored for de
novo pattern discovery, the best approaches for and im-
pact of composition correction on over-representation
analysis of known motifs have not been resolved.
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Visualizing composition bias in TFBS over-representation
analyses
To assess composition corrective measures for TFBS
over-representation analysis, we generated a visualization
method, which we term Composition-Bias plots (CB-plots).
The CB-plots are a method for alerting a researcher to
the impact of composition on the reported TFBS over-
representation results, and are generally more informative
than a ranked list of TFs and motif over-representation
scores. A CB-plot presents the average GC content of a
TF’s binding profile (the PFM) on the x-axis and the over-
representation score of the TF’s predicted binding sites on
the y-axis. If an unsuitable background has been used in
the over-representation analysis, the CB-plot distribution
of motif over-representation scores will reveal a bias toward
whichever end of the nucleotide composition spectrum
(GC-rich or AT-rich) that the target sequences dominate
relative to the background. Figure 1 illustrates the CB-plots
and provides examples of over-representation results from
an E2F1 ChIP-Seq dataset. Figure 1a presents results that
need to be corrected for over-representation score bias, as
outlined in the next section, while Figure 1b presents the
end results after correction.

The impact of background composition selection on TFBS
over-representation results
For many datasets the calculation of meaningful over-
representation scores requires correction of bias. We assessed
approaches to create and/or retrieve a background matched

to a set of target sequences’ compositional properties in
order to resolve the enrichment scoring bias engendered
by compositional extremes of some ChIP-Seq datasets.
For evaluation purposes we retained the naïve background
model of random genomic sequences in our assessment.
A second background was generated by a 3rd order
Markov model (RSAT package [10]). We implemented a
background sequence generator, BiasAway, to generate
6 additional background models; these backgrounds de-
rived from mono- and di- nucleotide shuffled sequences,
and genomic sequences matched to the GC content of the
target data (see Additional file 1: Text S1 for details). We
included one last set of backgrounds generated by “known
motif” over-representation analysis feature of HOMER 2
[11]. HOMER 2 is the only software of which we are
aware that uses GC composition matched backgrounds
for TFBS over-representation analysis. These backgrounds
were then evaluated against 43 human TF ChIP-Seq
datasets, with 166 PWMs (JASPAR 4.0_alpha develop-
ment database [1]) via the oPOSSUM 3.0 TFBS over-
representation software [12]. Four backgrounds were
re-evaluated for platform-independence of both bias
and bias correction with the ASAP tool (see Additional
file 1: Text S1 and Additional file 4: Figure S3).
We established several measures, based on the ideal

expectation of four properties pertaining to the results
of TFBS over-representation analyses. In essence, we ex-
pect to see few outlying over-representation scores for
TF binding models, one of which should be for the

Figure 1 Composition-bias plots reveal systematic TF PFM nucleotide content bias in motif over-representation analysis. Foreground
data was obtained from an E2F1 ChIP-Seq study and processed using the oPOSSUM TFBS over-representation analysis software. Each plot
presents a motif over-representation score (y-axis) relative to the GC content of the PFMs (x-axis). The over-representation scores reflect the
difference between the frequency of motifs in the foreground compared to a background (the background differs between panels). The names
of the 5 top ranked PWMs are displayed on the plot. The dotted line at over-representation score 100 is an arbitrarily placed visual point of
reference. The sequence logos represent the binding models for E2F1 and E2F4 respectively. (a) Background composed of randomly selected
mappable genome sequences. (b) Background generated, using BiasAway, with a GC composition matched to the ChIP-Seq sequences and
drawn from the set of mappable sequences.
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ChIP’d TF’s binding model, with the majority of binding
models scoring close to 0. We summarize the results for
each of the alternative background models using these
measures in Figure 2 and Additional file 5: Figure S4.
We summarize the background evaluations on 201 bp

sequences here, with further details available in Additional
file 1: Text S1 for both 201 bp and 401 bp sequences.
Additional file 6: Table S1 lists the rank of the ChIP’d TF
for each analysis, and Additional file 7: Figure S5 provides
the CB-plots of E2F1 for six background analyses. A naïve
background of randomly selected sequences resulted in
a systematic bias, or skew, of over-representation scores
towards GC-rich binding sites for some datasets. The
mononucleotide backgrounds were not as favourable as
the dinucleotide shuffled backgrounds, with or without
the sliding window. While neither suffered from bias to-
wards GC-rich binding sites, the dinucleotide shuffled
backgrounds produced results with over-representation
scores closer to zero and predicted the ChIP’d TF’s
motif in the top 5 results of more than 60% of the data-
sets. The 3rd order Markov model performed as well as

the dinucleotide background for all measures except
that of capturing the ChIP’d TF’s motif in the top 5 re-
sults. The best performing background was genomic se-
quences selected to match the GC nucleotide distribution
of the target sequences. The BiasAway GC nucleotide
background and HOMER generated backgrounds per-
formed comparably for most measures, with the exception
that the BiasAway background resulted in an 11 percent-
age point improvement for the inclusion of the ChIP’d TF
binding model as one of the top 5 over-represented.
The CB-plots have been incorporated into the oPOSSUM

over-representation analysis software, and BiasAway is avail-
able as open-source code posted on GitHub: https://github.
com/wassermanlab/BiasAway/archive/noRPY.zip, and is be-
ing incorporated into the oPOSSUM 3.0 web interface.

Assessing TFBS predictions within ChIP-Seq regions
Subsequent to motif over-representation analysis, attention
turns to investigating the candidate TFBS binding profiles.
We outline here a complementary set of enrichment as-
sessment methods specifically oriented to providing such

Figure 2 Background sequence selection impacts motif over-representation analyses. (a) For each background, the fraction of the 43
analyses that reported the ChIP’d TF in the top 5 enriched PWMs from a particular background (x-axis) is plotted against the average skew of the
over-representation results for each background’s 43 analyses. Skew is the negative slope of the line fitted to the over-representation scores versus
PFM GC content (i.e. values as displayed in Figure 1). The ideal is to have a large x-axis value (vertical dashed line) and an average skew of zero
(horizontal dashed line). (b) and (c) summarize the standard deviation (y-axis) and mean (x-axis) of the ‘non-outlier’ oPOSSUM over-representation
scores for 10 backgrounds against each of 43 ChIP-Seq datasets, where panel (b) displays the average value for each background across the 43
datasets and panel (c) displays the individual value of 430 analyses. The ideal result would be situated at the origin (the intersection of the
dashed lines). For all panels each of the 10 backgrounds tested is denoted as a single colour: Light green circle – randomly chosen background
from the dataset of mappable sequences, dark green cross – randomly chosen background from the dataset of DNase accessible sequences,
orange circle – mononucleotide shuffled background, brown cross – mononucleotide shuffled background within a sliding window, black
circle – dinucleotide shuffled background, gray cross – dinucleotide shuffled background within a sliding window, magenta triangle – 3rd
order Markov model generated background sequences, blue circle – background selected from the mappable sequences dataset to match
the GC composition of the target sequences, light blue cross – background selected from the mappable sequences dataset to match the
distribution of GC composition in sliding windows of the target sequences, and red triangle – GC background from HOMER 2.
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insights. We implement a heuristic algorithm for direct
binding (HADB) to determine the subset of ChIP-Seq
peaks with high confidence binding sites, based on TFBS
enrichment proximal to the peakMax, and to derive a
PWM-specific scoring threshold. As with the previous
section, visualization is a key method for discerning the
properties of the data. Within the R environment [13] we
implemented a set of plotting methods (TFBS-landscape
view, TFBS-bi-motif view, and Dinucleotide-environment
view) for displaying the properties of the ChIP-Seq regions
relative to the locations of predicted TFBS. The code and
user-guide for the visualization methods and calculating
the HADB thresholds are posted on GitHub: https://github.
com/wassermanlab/TFBS_Visualization/archive/master.zip.

TFBS-Landscape view
The TFBS-landscape view for ChIP-Seq data facilitates
qualitative assessment of the non-random relationship be-
tween predicted motif scores (for the top scoring motif in
each sequence) and the peakMax position. The informa-
tion in the TFBS-landscape view is translatable into a
quantitative assessment of TFBSs, as presented by the
HADB algorithm below. Motif proximity to the peakMax
has been demonstrated on 14 ChIP-Seq datasets by [14]
and for 3 datasets across 11 peak calling algorithms [15].
The global tendency for ChIP-Seq data to yield motifs for
the ChIP’d TF proximal to the peakMax is systematically
confirmed here with a study of ~340 ChIP-Seq datasets
for ~95 TFs (human and mouse).
In a TFBS-landscape view, the left plot displays the

distance of the maximum scoring TFBS to the peakMax
for each sequence on the x-axis (the peakMax is x = 0),
and the PWM predicted TFBS score on the y-axis
(Figure 3). This plot conveys both the quality of the mo-
tifs observed, and allows users to detect enrichment in a
threshold-independent manner. The right plot presents
the density of top-scoring predicted motifs (y-axis) ver-
sus the distance from the peakMax (x-axis), similar to
plots presented by CentriMo (MEME suite [14]) and
RSAT::peak-motifs tools [6]. The right side plots include
two lines: a 2 bp resolution density of all peaks’ motifs,
and a 5 bp resolution density of the subset of peaks con-
taining a motif with score equal to or greater than 85 to
capture cases with low enrichment of strong scoring
motifs. As shown in Figure 3a for the TF C/EBPB, a
ChIP-Seq experiment can show a strong enrichment for
the ChIP’d TFs binding motifs. Plots representing the
wide variety of enrichment characteristics are displayed
in Figures 3a–l. The unique shapes displayed in Figure 3
derive from a combination of properties for the pre-
sented TF’s binding motifs such as width of the binding
site, and the presence of other motifs enriched at the
peakMax (see Additional file 1: Text S1 for further de-
tail and discussion).

Using the HADB algorithm to distinguish direct binding
and for the selection of PWM motif score thresholds
The TFBS-landscape plots present a finite zone of non-
random TFBS enrichment around the peakMax for the
ChIP’d TF. Quantitative analysis of the motif densities
for a given TF can delineate the width of sequence prox-
imal to the peakMax that is enriched for the TF’s motif
above chance expectation. The enrichment zone pro-
vides a region of confidence for predicted TFBSs and
thus provides a rational focus for downstream analyses.
As shown in Figure 4a-b, the HADB procedure (see
methods) determines the distance from the peakMax to
the point where the frequency of the top scoring motif
approaches the distal flank motif frequency (distal =
250-500 bp from the peakMax). Based on the pool of
human ChIP-Seq datasets and focusing on the top
ranked motif of each sequence, the width of enrichment
around the peakMax ranges from ~50-350 bp with an
average of 209 ± 34 bp or 194 ± 10 bp for human and
mouse respectively (mean width ±mean of width differ-
ences; Figure 4c and Additional file 8: Figure S6a). Asses-
sing enrichment with the inclusion of lower ranked motifs
did not change the width of the observed enrichment
zone.
Deciding upon an appropriate minimum scoring thresh-

old for PWM-based analysis is an ongoing challenge, as
each TF has unique characteristics. Quantitative analysis
of the peak TF motif densities relative to chance expect-
ation can delineate a suitable threshold for motif scores
for a given PWM. We set the motif score threshold as the
lowest motif score for which the count of motifs within
the heuristic enrichment zone consistently exceeded the
count of motif scores in comparably sized background
regions (see methods; Additional file 9: Figure S7a-b).
The motif score threshold does not vary greatly for an
individual PWM across multiple datasets. The average
relative score for each of the human and mouse datasets
was 82 ± 1 (mean score ±mean difference between scores;
Additional file 9: Figure S7c-d). A motif score threshold
specific to each TF PWM is important for downstream
analyses such as the study of TFBS altering mutations.
The PWM score thresholds for the studied TF binding
profiles are provided in Additional file 10.
We used the heuristic boundaries of enrichment and

motif score threshold for each dataset to estimate the
proportion of peaks that contain at least one TFBS for
the ChIP’d TF within the bounds of the thresholds. We
found that on average, for the datasets studied, ~61%
of a ChIP-Seq dataset contains the ChIP’d TF’s canonical
motif that is both within the peakMax enrichment zone
and greater than the motif score enrichment threshold
(Figure 4d – human mean 61%, and Additional file 8:
Figure S6b – mouse mean 65%). The source of the
remaining ~40% of peaks may be from such factors as
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Figure 3 TFBS-landscape views inform of motif enrichment and are diverse in shape and density. A TFBS-landscape view consists of a plot
(left) showing the location of the top scoring motif relative to the peakMax (x = 0) on the x-axis and the motif score on the y-axis; the right plot
presents a 2 bp resolution density of motif distances to the peakMax (black) and 5 bp resolution for motifs with a motif score equal to or greater
than 85 (green). All plots display some degree of enrichment at the peakMax and a lower limit on motif score enrichment. (a) C/EBPB motifs in a
C/EBPB ChIP-Seq dataset. (b) C-MYC motifs are enriched at the peakMax of the C-MYC ChIP-Seq dataset, but many top-scoring motifs are
randomly dispersed. (c) NFYA motifs in a NFYA ChIP-Seq dataset exhibit enrichment around the peakMax, with high scoring motifs distinct from
the majority of scores in the background regions (d) ZNF143 motifs in a ZNF143 ChIP-Seq dataset have low enrichment but some high scoring
motifs are distinct from the background. (e) and (f) present JUN motif enrichment in two JUN datasets from different cell types with distinct
background motif densities. (g) The REST motif is strongly enriched in a REST ChIP-Seq dataset across a large motif score range at the peakMax
with a low density of background motifs. (h) MYOD motif enrichment at the peakMax of MYOD ChIP-Seq data. (i) HNF4A motif enriched proximal
to the peakMax of HNF4A ChIP-Seq data. (j), (k) and (l) present motif enrichment for a TF that was not the ChIP’d target: (j) CTCF motifs are
slightly enriched offset from the peakMax of H3k4me3 ChIP-Seq. (k) CTCF motifs are enriched offset from the peakMax in RAD21::cohesin
ChIP-Seq data. (l) ELK4 motifs in a NELFE ChIP-Seq dataset show an enrichment offset from the peakMax.
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indirect binding, shearing properties of open chromatin,
peak calling errors, or antibody properties.

Regions predicted by HADB to directly bind the ChIP’d TF
are more likely to replicate between experiments
When available, replicate experiments are a useful valid-
ation of regions ChIP’d by a TF. While many experi-
ments lack replicates, ~100 ENCODE datasets included

replicates which we used to evaluate whether the HADB
method was differentiating between peaks that co-occur
between replicates (peakMax within 500 bp) versus those
peaks that occur in only one of the replicates (see
methods). We found that the set of peaks with the
ChIP’d TFs motif central to the peakMax were signifi-
cantly enriched for replicated peaks (92% of datasets
produced a Fisher exact test one tailed p-value <0.001
(91% produced scores <1e-09)) (see Additional file 1:

Figure 4 Defining the TFBS zone of enrichment around the peakMax. (a) A visual depiction of the enrichment zone determined with a
heuristic procedure, as described in methods. The x-axis presents the upper limit of each 5 bp bin, and the bins are the absolute distance of a
motif from the peakMax. The y-axis shows the proportion of peaks from the dataset with a motif in a 5 bp bin. The horizontal green line is fit to
the distal background bins, and the horizontal line in blue is the allowance line (see methods). The blue vertical dashed line indicates where the
proportion of peaks in a non-background bin approaches the allowance line without falling below it – this line is the heuristic distance threshold
for motif enrichment around the peakMax. (b) The NFYB sequence logo and the TFBS-landscape view for NFYB motifs in NFYB ChIP-Seq data.
The heuristic enrichment zone is between the blue vertical dashed lines. The black vertical lines indicate the beginning of the distal background
region (spanning 200-500 bp from the peakMax). (c) The width of the motif enrichment zone (y-axis) for human ChIP-Seq datasets (x-axis);
multiple datasets for a TF were averaged to obtain one enrichment zone value per TF. Vertical bars are the average differences between all of the
enrichment zone widths for a TF. The red horizontal line is the mean. (d) The proportion of peaks within the enrichment zone for a TF’s set of
ChIP-Seq datasets were averaged. The x-axis provides, for each of 85 TFs, the mean proportion of peaks with a motif scoring above the motif
score threshold and located within the zone of enrichment (mean 0.60, median 0.61).
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Text S1 for similar results with different peakMax separ-
ation parameter settings)).

Regions predicted by HADB to directly bind the ChIP’d TF
are enriched for GO terms related to the TF’s key
biological process
To assess the functional enrichment of peaks defined by
the HADB method, we performed GO enrichment ana-
lyses, using the GREAT software [16]. As GO enrichment
analysis for TFBSs is somewhat problematic due to the di-
versity of processes a TF may regulate and the proximity
of TFBS to the genes they regulate, we selected two TFs
known to be highly specific for a biological process: SRF, a
master regulator of the actin cytoskeleton and contractile
processes [17], and NFE2L2, a key regulator of oxidative
stress response [18]. We submitted peaks from the whole
ChIP-Seq dataset, peaks from the subset of regions in-
ferred by HABD to be directly bound by the ChIP’d TF,
and those not inferred to be directly bound. GREAT ana-
lyses reported an enrichment of terms for the expected
biological processes for SRF and NFE2L2 only in the sub-
set of peaks with inferred direct binding of the ChIP’d TF
(see Additional file 1: Text S1, Additional file 11: Figure S8
and Additional file 12: Figure S9). The results highlight
how the use of the HADB method can enhance the inter-
pretation of ChIP-Seq data.

Complementary visualization methods for spatial
ChIP-Seq patterns: TFBS bi-motif view and
Dinucleotide-environment view
We present two visualization methods that further em-
power investigation of spatial patterns in ChIP-Seq data
that build upon the foundation of peakMax-proximal
enrichment defined by HADB.

TFBS-bi-motif view
The prior TFBS-Landscape view focused on the ChIP’d
TF in isolation. A substantial body of literature focuses
on cooperativity between TFBS, both in homotypic and
heterotypic forms [19-21]. In developing the HADB ana-
lyses we had observed that in some cases a second motif
for the ChIP’d TF was enriched proximal to the peak-
Max, which motivated the creation of a TFBS-bi-motif
view (examples are presented in Figure 5). The view al-
lows qualitative assessment of both spatial relationships
between the two motifs and their distance from the
peakMax. If the first motif is enriched around the peak-
Max there is a horizontal band of enrichment along y =
0. If the 2nd motif is enriched around the peakMax
there is a negatively sloped band of enrichment on a di-
agonal. Where the origin displays increased enrichment
relative to the horizontal band (y = 0), there is an enrich-
ment of both motifs at the peakMax. The diagonal limits
of the plot arise from the uniform length of the peak

regions analyzed. The right plot in the TFBS-bi-motif
view presents a histogram of the distances between the
two motifs. The proximity of two motifs can indicate po-
tential interactions or relationships.
Three examples of bi-motif views are presented in

Figure 5. Homotypic clustering is observed for ESRRB and
NFYB. The NFYB clustering is consistent with published
findings for the NF-Y complex [22], while the ESRRB ob-
servation suggests that properties observed for ESRRG
may extend to other members of the TF family [23]. A
third plot for SRF and ELK4 (also called ‘SRF accessory
protein’), using SRF ChIP-Seq data, presents heterotypic
binding site results, consistent with known interactions
between these TFs [24].

Dinucleotide-environment view
Given the position of the motif of interest within a re-
gion, it can be informative to visualize the nucleotide
composition properties in the flanking sequence. Di-
nucleotide sequence properties flanking TFBSs can be
evaluated by aligning sequences at the TFBS (or a fea-
ture near the TFBSs, such as transcription start sites)
and scoring the dinucleotide frequencies in the adjacent
flanks. As shown in the Dinucleotide-environment view
for an IFN-γ induced STAT1 TF ChIP-Seq experiment
(Figure 6), there is increased nucleotide patterning in
the sequences adjacent to the HADB-inferred directly
bound motifs, compared to the peaks without peakMax-
proximal motifs. Further analysis of the data reveals the
presence of a common repeat sequence within a large
subset of the peaks containing the highest scoring STAT1
motifs, consistent with literature which reports that
STAT1 binding at MER41 repeat elements increases with
IFN-y induction [25]. Further illustration of insights pro-
vided by the dinucleotide-environment view is provided in
the case studies.

An Applied Case Study of ChIP-Seq Analyses
To demonstrate how over-representation analysis and
the visualization methods are complementary, and en-
hance the analysis of ChIP-Seq data, we applied the
TFBS-landscape view and the Dinucleotide-environment
view to two case studies. The first focuses on the TATA
binding protein (TBP) in the MEL mouse cell line, while
the second explores the sequence properties proximal to
ZNF143 TFBSs.
Employing both a motif over-representation analysis and

TFBS-landscape view, we noted that the TBP ChIP-Seq ex-
periment had a low occurrence of the canonical TBP
TATA motif proximal to the peakMax (<12% of the data-
set using the HADB method described above; Figure 7a).
However, TFBS motif over-representation analysis also in-
dicated a large number of secondary TFBSs are enriched.
We investigated the reported enriched motifs using the
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Figure 5 TFBS-bi-motif view for visualization of motif spatial arrangements. The left plot of a TFBS-bi-motif view presents the distance of
the primary motif to the peakMax of each sequence on the y-axis, and the distance of a second motif relative to the primary motif on the x-axis.
A band of enrichment at y = 0 indicates enrichment near the peakMax for the primary motif, while a diagonal band of enrichment (with a
negative slope) indicates enrichment near the peakMax for the second motif. The diagonal limits of the plot arise from the uniform length of the
sequences (here 1001 bp). The right plot is a histogram of the distances between the two motifs. The gap in both plots results from the exclusion
of overlapping motifs. (a) ESRRB motifs in an ESRRB ChIP-Seq data set. The top-scoring ESRRB motif is the primary motif, and the second-best
motif is the second motif. (b) NFYB motifs in a NFYB ChIP-Seq data set. The top-scoring NFYB motif is the primary motif, and the second-best
motif is the second motif. (c) SRF ChIP-Seq dataset. The SRF top-scoring motif is the primary motif, and the ELK4 top-scoring motif is the
second motif.
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TFBS-landscape view, and saw an unusual pattern emerge:
spikes of lower scoring motif enrichment at distances from
the peakMax specific to each tested TF (Additional file 13:
Figure S10). As shown in Figure 7b, there are TF motif en-
richment patterns up to 200 bp from the peakMax. A
Dinucleotide-environment view, using the subset of peaks
with a high scoring TATA motif, presented an enriched se-
quence pattern up to 100 bp either side of the TATA motif
and an AA-rich sequence ~200 bp distant on the motif
strand (Figure 7c). The pattern was subsequently identified
to arise from enrichment of SINE elements (predomin-
antly B2-B4). The percentage of peaks containing SINE

elements is 14.1% in the TBP peaks, while in GC content
matched controls or DNase accessible regions it drops to
5.2% and 5.6% respectively. While SINE elements are
known to contribute to the formation of promoter regions
for genes [26], the 14.1% fraction of the TBP ChIP-Seq se-
quences is striking.
The seven zinc finger ZNF143 TF has been reported

to bind to an ~18-21 bp nucleotide sequence [27,28].
The ZNF143 ChIP-Seq dataset, like the TBP dataset, ex-
hibits a low enrichment of the canonical ZNF143 motif
around the peakMax (~5% of the dataset; Figure 3d).
We extracted the subset of regions with a motif in the
HADB enrichment zone, repeat-masked the sequences,
and generated a Dinucleotide-environment view aligned
on the top-scoring motif in each region (Figure 8a). This
display reveals additional striking features not captured
in the initial model, including a strong 5’ pattern outside
the PWM-covered positions. This 5’ flank pattern is
present in about 35% of the aligned sequences, and is not
present in alignments of motifs outside of the HADB en-
richment zone. A Dinucleotide-environment view of se-
quences with a high scoring (score >85) ZNF143 motif,
reveals an increased enrichment of the 5’ flanking pattern
from 35% to ~50% of the sequences (Figure 8b). A subse-
quent search of the literature revealed a recent study by
Ngondo-Mbongo et. al. [29], showing that a 2nd protein,
THAP11, binds to the extended flank seen in the
Dinucleotide-environment view and half of the ZNF143
motif in a manner mutually exclusive to ZNF143.

Discussion
We have introduced methods that allow researchers
confronted with ChIP-seq data for TF binding to extract
more insights into TFBS. The first challenge in such
studies is often the identification of contributing TFs
based on known motif over-representation analysis. Such
methods can both support the quality of data based on
the identification of the ChIP’d TF’s motif, as well as
highlight additional TFs that may be cooperatively acting
with the former. In this report we present two key com-
ponents related to over-representation analysis. First,
Composition-bias (CB) plots are introduced to display
skew in the GC-content of the enriched motifs, a com-
mon occurrence that reflects the non-random compos-
ition properties of the ChIP-Seq regions recovered.
Second, the BiasAway software tool is introduced to
generate composition-matched background sequence
sets that correct for the skew. Once relevant TF binding
profiles are identified, the challenge shifts to the identifi-
cation of reliable TFBS within the broader ChIP-Seq
regions. Every ChIP-Seq dataset is a mixture of directly
bound segments and regions that may reflect alternative
influences. We introduce TFBS-landscape plots as a
convenient form for the visualization of the topological

Figure 6 Dinucleotide-environment view plots the dinucleotide
enrichment of the dataset around the motif of interest. The
x-axis shows the dinucleotide offset from the centre of the motif,
and the y-axis is the proportion of the dinucleotide in the ChIP-Seq
sequences. The STAT1 motif is the high frequency pattern in the
centre of the plot. The sequence logo for STAT1 is above the high
frequency pattern. (a) The subset of STAT1 ChIP-Seq peaks containing
a STAT1 motif in the enrichment zone with a motif score greater than
or equal to 85. The magenta box highlights the enrichment of
dinucleotides in the flanking regions of STAT1 motifs proximal to
the peakMax. (b) The subset of STAT1 peaks with a motif outside
the enrichment zone and a motif score of 85 or greater. The
magenta box highlights the lack of dinucleotide enrichment in
the flanking regions of motifs found distal to the peakMax.

Worsley Hunt et al. BMC Genomics 2014, 15:472 Page 10 of 19
http://www.biomedcentral.com/1471-2164/15/472



distribution of TFBS within ChIP-Seq segments. Based
on the topology, we present the HADB method for the
selection of PWM thresholds for the selection of can-
didate TFBS consistent with direct binding events. The
HADB approach provides a quantitative method for
selecting PWM thresholds – an enduring challenge in
regulatory sequence analysis. Systematic analysis over ~340
ChIP-Seq datasets indicates that an average of 61% of
peaks are classified as directly bound. The biochemical,
experimental, and/or computational influences that ac-
count for the remaining 39% of regions remain to be
resolved in future investigation. In the third stage of
analysis, spatial properties relative to the defined TFBS
and peakMax are analyzed. Bi-motif plots allow the
study of inter-TFBS spacing concurrent with HADB as-
sessment. To gain insight into additional properties at
the edges of reliable TFBS, Di-nucleotide-environment
views are introduced through which compositional en-
richment in the flanking regions can be revealed. In
combination, the software and methods allow for

researchers to launch deeper explorations of TFBS
within ChIP-Seq data.
The work builds on a substantial foundation of bio-

informatics approaches to regulatory sequence analysis.
Over-representation analysis of known TF motifs comple-
ments de novo motif discovery methods such as MEME.
The later methods often incorporate better background
representation to account for the non-random properties
of sequences. The CB-plots highlight the problem for
over-representation methods, providing a useful means
for researchers to rapidly assess the quality of results. We
introduced the BiasAway tool to correct for the bias. The
HOMER 2 package includes an unpublished option for
background correction of over-representation analysis,
which does not perform as well as the GC composition
matched option in BiasAway (HOMER was originally de-
scribed in [11]). The open-access BiasAway provides a
general purpose background generation capacity, which
can be used as a component in other tools going forward.
Both BiasAway and the CB plots are being incorporated

Figure 7 Case study of TBP in the mouse MEL cell-line. (a) TFBS-landscape view for TBP PWM on a TBP dataset. The top plot presents the top
scoring motif distance to the peakMax (x-axis) and the motif relative score on the y-axis. The bottom plot presents a histogram of motif distances
to the peakMax: black line – 2 bp resolution of the top scoring motif distance per peak; green line – 5 bp resolution of distances for the top
scoring motifs with a score equal to or higher than 85. The sequence logo is for TBP. (b) TFBS-landscape view density plots for 15 PWM’s are
overlaid on a single plot, for visualization purposes. The black line is the enrichment of the TBP motif, the coloured lines are NR2F1, MYC::MAX,
CTCF, GABPA, TAL1::TCF3, FOSL2, FOXD3, NRF1, MEF2A, AP1, SPI1, ZNF143_b, E2F1, and NFYB motifs, as noted on the plot. (c) The
Dinucleotide-environment view around the TBP motif. The x-axis is the location of the dinucleotide with respect to the TBP motif, and the y-axis is the
fraction of sequences with the dinucleotide at a given position. The coloured lines each represent one of 16 dinucleotides, as specified in the plot
legend. The magenta box highlights the dinucleotide enrichment in the regions flanking the TBP motif.
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into the online oPOSSUM-3 motif over-representation
analysis tool [12].
The spatial analysis of TFBS positions within ChIP-Seq

data has been a central focus in the development of sev-
eral bioinformatics methods. The MEME Suite includes
the CentriMo software which can evaluate both known
motif collections and de novo pattern discovery derived
motif models based on the centrality of predicted TFBS
within ChIP-Seq peak regions [14]. The SpaMo compo-
nent of the same package evaluates the statistical signifi-
cance of spacing between predicted pairs of TFBS across

ChIP-Seq regions [30]. The GEM system performs de
novo pattern discovery of spatially correlated motif pairs
[31]. While these approaches touch on the same theme,
they are not directly comparable to the work presented
here. Our methods are complementary to the published
work, allowing researchers to more fully explore the
properties of ChIP-Seq data.
We introduced the HADB procedure for the selection

of appropriate PWM score thresholds for the prediction
of TFBS within ChIP-Seq data. The threshold parameter
for TFBS calling with PWMs is treated in diverse ways
in the research literature. In some cases thresholds are
individually selected for each matrix based on the deter-
mination of empirical p-values based on distributions of
scores observed for a sequence pool [32]. This has been
extended to generating empirical p-value thresholds for
composition-matched pools of sequences [33]. In other
cases, percentile-based scores are applied uniformly across
diverse matrices [12]. Biophysical approaches based on
the calculation of binding energies have also been intro-
duced [34]. The HADB procedure provides an experimen-
tal basis for the selection of the threshold parameter for a
TF that can be applied to the matrix in multiple data sets,
as the results show little variation in the value for different
ChIP-Seq studies for the same TF.
The prevalence of directly bound regions in ChIP-Seq

data has received increasing attention. The ChIP-Seq
protocol is undeniably successful at retrieving TF bound
regions, however, the data from these studies of sequence-
specific TFs is invariably shaped by a mixture of biological,
experimental and computational influences. From our
perspective, TF ChIP-Seq data is effectively bi-partite: a
subset of ChIP’d regions have a direct relationship to the
ChIP’d TF made evident by the presence of the TF’s bind-
ing motif near the peak local maximum, while the
remaining subset of regions are lacking the motif. We
found that on average, for the ~340 datasets studied, a
third of peak regions lack canonical motifs proximal to
the peakMax. Some of these peaks may result from indir-
ect interactions (in which the ChIP’d TF interacts with a
different DNA bound protein) or result from a change to
the ChIP’d TF’s binding properties due to an interaction
partner. Methods have been proposed to infer indirect
binding by the enrichment of secondary TFs motifs, such
as [35], but the presence of secondary motifs do not reli-
ably confirm the presence of the ChIP’d TF at the regions.
We have observed that the motifs of some TFs are enriched
at the peakMax for more than 10 other unique TFs
ChIP-Seq datasets across diverse cell lines (Worsley-Hunt,
submitted), suggesting that some peaks in ChIP-Seq
datasets may result from a mechanism that is not specific
to the ChIP’d TF. Some additional potential sources of
non-direct ChIP-Seq regions, unrelated to indirect bind-
ing, include chromatin structure properties, antibody

Figure 8 Case study of ZNF143 DNA binding preferences. The
sequence logo presents the binding site characteristics of ZNF143.
(a) Dinucleotide-environment view of ZNF143 ChIP-Seq repeat-masked
regions aligned on motifs with a motif score of 85 or greater. The
x-axis is the nucleotide position and the y-axis is the frequency of the
dinucleotide. The coloured lines each represent one of 16 dinucleotides,
as specified in the plot legend. The vertical magenta lines frame the
positions of the sequence logo. (b) Dinucleotide-environment view of
ZNF143 canonical motifs with a motif score of >85. The x-axis is the
nucleotide position and the y-axis is the frequency of the dinucleotide.
The coloured lines each represent one of 16 dinucleotides, as specified
in the plot legend. The orange horizontal line above the plot indicates
the overlapping THAP11 binding profile.
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properties, stochastic noise, or peak calling software. Two
recent papers have identified highly transcribed regions as
enriched in the non-direct subset of ChIP-Seq data in
yeast [9,36]. We do not suggest that any peaks be dis-
missed, as all are potentially informative. However, we
believe that it is appropriate to use the methods intro-
duced in this report to segregate the direct-binding subset
that can be explained by the ChIP’d TFs motif within the
limited range of confidence around the peakMax, allowing
the two subsets to be individually analyzed.
We highlighted the investigative potential of the methods

and visualization approaches in two case studies. First, a
study of TBP (TATA binding protein) ChIP-Seq data,
where an enrichment of SINE elements and many second-
ary TFs’ motifs suggests that the adaptive use of repetitive
sequences as promoters may be more frequent than
widely thought. Second, a study of ZNF143 that revealed
the ZNF143 canonical motif is part of a wider pattern than
presented by the existing PWM, which has been shown by
[29] to be the binding site for THAP11, a protein that
works antagonistically with ZNF143.

Conclusion
This broad survey of ChIP-Seq data from diverse studies
provides greater clarity about the properties of the data
that impact the quality of interpretation. Using the methods
presented here, the applied researcher can visualize the
distribution of predicted TFBSs and calculate thresholds
for both the maximum motif enrichment distance from
the peakMax, and the PWM scores, for classifying TFBS-
containing peaks. In addition to ChIP-Seq peak classifica-
tion, the PWM scores thresholds set a lower limit on the
range of motif scores expected for functional sites, which
will be useful for downstream analyses such as binding site
mutation analysis. These methods and approaches will im-
prove TFBS enrichment analyses and the applied analysis
of ChIP-Seq data, particularly for the annotation of reli-
able TFBSs within ChIP-Seq peaks.

Methods
Datasets
We downloaded ChIP-Seq datasets from the GEO data-
base: 1) GSE11431 - thirteen mouse ES cell datasets [37]; 2)
GSE25532 – mouse NFYA data in ES cells [38]; 3)
GSE17917 and GSE18292 – human KLF4, POU5F1,
C-MYC, NANOG, and SOX2 data [39]; and 4) GSE22078 –
human and mouse C/EBPA and HNF4A [40]. A dataset for
mouse FOXA2 was downloaded from http://www.bcgsc.ca/
data/histone-modification/histone-modification-data [41].
We also used ENCODE ChIP-Seq datasets (human and
mouse), and human ChIP-Seq controls [42] downloaded
from the UCSC ENCODE database [43]. The ENCODE

broadPeak datasets frequently occurred in replicate; we se-
lected the larger replicate for our analyses. Where only the
mapped sequence data was available (5 datasets), we called
peaks using FindPeaks 4.0 [44] with the following param-
eter options: −dist_type 1 200 -subpeaks 0.6 -trim 0.2
-duplicatefilter.
As the downloaded ChIP-Seq peaks were reported with

a multitude of lengths, ranging from 1 bp to >5,000 bp,
we trimmed or extended all peaks to a constant length
(201 bp, 401 bp, or 1001 bp) centered at the local peak
maximum, or at the peak centre for datasets which do not
have peakMax positions provided.
A control set of “mappable” regions was generated from

the CRG Alignability (36mer) data [42] downloaded from
the UCSC ENCODE database [43]. Unique, contiguous
CRG Alignability 36mer regions were merged, and the
resulting larger regions were then split into multiple
non-overlapping regions of length 201 bp or 401 bp. This
yielded two datasets of mappable regions, to be used as a
source of background sequences in later analyses.
The DNase accessible control datasets used in over-

representation analyses were generated from DNase I
hypersensitivity datasets (UW DNase: University of Wash-
ington) [42] downloaded from the UCSC ENCODE data-
base [43]. To obtain a dataset that reflected a broad range
of DNase accessibility, DNase I hypersensitive segments
from multiple cell lines were concatenated, and contiguous
or overlapping regions merged. The resultant sequences
were split into one of the two lengths, 201 bp and 401 bp,
to generate two large datasets of DNase accessible se-
quences to be used as a source of background sequences
in later analyses.
The Ensembl Perl API was employed to retrieve sequences

from GRCh37/hg19 and NCBI37/mm9 assemblies. Where
the genome coordinates first needed conversion to GRCh37/
hg19 or NCBI37/mm9, we used a locally installed version
of the UCSC lift-over tool [45].
Position frequency matrices (PFMs) were obtained from

the JASPAR [1] development 4.0_alpha database of tran-
scription factor models (April 2013). As the development
set has been subsequently revised for a curated release, we
provide the entire set of matrices as used in this report in
Additional file 14. The PFMs were converted to position
weight matrices (PWMs) using the TFBS Perl modules
[46], with default background values for a uniform nucleo-
tide background.

Motif prediction
Motif prediction was performed with C code adapted
from the TFBS Perl Modules [46], which scans sequences
for TFBS instances and reports both the motif location
and a PWM relative motif score. Where multiple motifs
per sequence per PWM were predicted, the reported
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motifs were not permitted to overlap by more than one-
fifth the PWM length (e.g. a 7 bp motif could only overlap
a neighbouring motif by 1 bp).

Nucleotide composition
The mononucleotide GC content of sequences was deter-
mined from a count of each nucleotide type in the se-
quence, based on single stranded DNA. The composition
of the TF profiles was determined similarly; from a count
per each nucleotide base in the position frequency matrix
(PFM), and subsequently obtaining the ratio of GC
nucleotides.

Motif over-representation analyses
Motif over-representation analyses were performed on
201 bp and 401 bp sequences with a locally installed ver-
sion of oPOSSUM 3.0 [12] and the online ASAP tool [47].
Within oPOSSUM we used the sequence-based analysis
default settings, aside from supplying our own set of 166
PFMs. The oPOSSUM software converts the PFMs to
PWMs using the default setting of the TFBS Perl modules
[46]. Over-representation scores of “infinite” value were set
to the greater of either 500 or to the maximum non-infinite
enrichment score plus 100. For ASAP analyses, we chose
parameter values similar to those used for the oPOSSUM
analyses. The ASAP tool limited the number of nucleotides
submitted for each analysis, therefore our input was limited
to a randomly selected subset of 10,000 sequences on each
submission.
The backgrounds used for the over-representation

analyses were individually generated for each set of target
sequences to be analyzed, and matched to the length of
the target sequences. The backgrounds were derived from
either the target sequences (e.g. dinucleotide shuffle
methods, or a Markov model), a dataset of uniquely map-
pable sequences, or DNase accessibility data (see Datasets,
above).

Naïve backgrounds
For evaluation purposes we retained naïve backgrounds
in our assessment, which were composed of randomly se-
lected sequences from either the uniquely mappable por-
tion of the human genome, or DNase accessible regions.

3rd order Markov model background
A 3rd order Markov model background was generated
using a combination of the oligo-analysis and random-seq
programs from a local installation of the RSAT package
[10]. The target sequences of interest were submitted to
RSAT::oligo-analysis with the parameters: −l 4 -1str (word
length 4 bp, and single strand), and the results file was in
turn submitted to RSAT::random-seq with the parameter:
−ol 4. The RSAT::random-seq program then used a 3rd
order Markov model trained on 4 bp oligo-nucleotides to

generate sequences that matched the GC content and
length of the target sequences. While Markov models have
been previously introduced to generate background se-
quences, the ideal order of the models is not clear. If the
order is too high, the model will simply recapitulate the
frequency of the TFBSs in the target dataset, which is why
we restricted the model to 3rd order.

HOMER 2 GC background
HOMER 2 [11] was downloaded from http://homer.salk.
edu/homer/ and installed on a cluster. The findMotifs-
Genome.pl tool was used to perform a known motif over-
representation analysis on each of the 43 datasets using
the following options: −N number_of_seqs –nomotif –
dumpFasta –size length_of_sequence. The number_of_se-
quences was the number of sequences in each dataset,
and the length_of_sequence was either 201 bp or 401 bp,
dependent on the analysis. The –dumpFasta option was
set in order to retrieve the backgrounds after the analysis
was finished running. We provided the hg19 human gen-
ome (from UCSC) and the coordinates of the peaks for
each dataset.

BiasAway Background Generating Tool
Six background models were implemented as a back-
ground sequence generator: BiasAway. The BiasAway tool
has been implemented in Python using BioPython mod-
ules [48], and is available as open source code from
GitHub https://github.com/wassermanlab/BiasAway/arch-
ive/noRPY.zip. The tool provides a user with six ap-
proaches for generating a background useful to over-
representation analyses: 1) mononucleotide shuffled se-
quences, 2) dinucleotide shuffled target sequence to pre-
serve the dinucleotide composition of the target
sequences, 3) genomic sequences matched to the mono-
nucleotide GC content of each target sequence to preserve
the non-random association of nucleotides, 4) sliding win-
dows of mononucleotide shuffled sequence, 5) sliding win-
dows of dinucleotide shuffled target sequence, and 6)
genomic sequences matched in windows of internal
mononucleotide GC content for each target sequence.
The latter two backgrounds (BiasAway 5–6) are variants
of the former two backgrounds (BiasAway 2–3), in which
we utilized a sliding window over the ChIP-Seq sequences
to determine a distribution for local regions of com-
position. The background sequence set is then generated
(dinucleotide shuffle) or selected from a pool of genomic
sequences (genomic composition match) to match the
distribution of window compositions for each target se-
quence. These latter backgrounds were considered because
due to evolutionary changes such as insertion of repetitive
sequences, local rearrangements, or biochemical missteps,
the target sequences may have sub-regions of distinct
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nucleotide composition. See Additional file 1: Text S1 Sup-
plemental Methods for greater detail.

Measures to evaluate over-representation analysis results
To summarize the impact that the choice of background
has on the reported over-representation results, we assessed
the over-representation results by four measures: 1) the
skew of the over-representation scores, 2) the count of
datasets with the ChIP’d TF’s binding profile reported in
the top 5 over-representation results, 3) the mean of the
over-representation scores (excluding outlying scores), and
4) the variability of the over-representation scores (exclud-
ing outlying scores). The first measure, the skew of the
over-representation scores, is the negative of the slope of
the line fitted to the over-representation scores (y-value)
and the associated PFM GC content values (x-value; see
Figure 2a for reference). The skew informs us of the degree
to which a dataset is biased towards extreme composition
motifs i.e. GC-rich or AT-rich; the more negative the skew,
the greater the bias. The second measure calculates the
proportion of datasets for which the over-representation
analysis (using a given background type) reports the ChIP’d
TF’s motif in the top 5 results. The skew and the propor-
tion of datasets are plotted together (Figure 2a). Back-
ground types that consistently yield a low skew value and
return the ChIP’d TF in the top results, are ideal. We used
the third and fourth measures to assess the tendency for
the over-representation analysis to report the majority of
TF’s motifs as having a low over-representation score.
Therefore we set a threshold of the mean plus one standard
deviation, to remove the highest over-representation scores
from further analysis. We then obtained the mean and
standard deviation of the remaining scores. Ideally the
results would display both a low mean and a low standard
deviation, as this indicates that the majority of TF’s motifs
are close to an enrichment score of 0.

Enrichment visualization plots and HADB boundaries of
enrichment
For the evaluation of ChIP-Seq datasets with the HADB
method, we restricted to those datasets for which we had
a PWM for the ChIP’d TF.

Composition-Bias plots
Composition-Bias (CB) plots are generated to detect
\whether GC-rich or AT-rich PWMs are over-represented
in a TFBS motif over-representation analysis. The GC
content of the PFM’s submitted to the over-representation
analysis are presented on the x-axis, and the over-
representation score of the predicted TFBSs on the y-axis.

TFBS-landscape view
TFBS-landscape views were generated to visualize central
enrichment of a TF’s motifs within a ChIP-Seq dataset.

TFBS prediction was done on 1001 bp regions, to extend
sequences sufficiently far into the flanks to present the
background rate of TFBS prediction. The view’s left plot
presents the motif score of the top scoring predicted motif
in each peak for the given TF PWM on the y-axis, and the
motif ’s signed distance from the peakMax on the x-axis,
where the peakMax is x = 0. The right plot presents two
densities depicting: 1) the distances of the top scoring mo-
tifs to the peakMax for all peaks, and 2) the distances to
the peakMax for the subset of peaks for which the top
scoring motif was equal to or greater than 85 to capture
cases with low enrichment of strong scoring motifs. The
value of 85 was based on the default parameters of the
oPOSSUM software, for which 85 was chosen to best dis-
criminate known TFBS from background. The x-axis of
the right plot is the distance of the motifs to the peakMax
(x = 0), and the y-axis is the probability density, which is a
reflection of peak frequency for given distances. The de-
fault peak length was 1001 bp. For the TBP case study, we
overlaid multiple smoothed densities of motif-to-peakMax
distance enrichments on one plot (Figure 7b).

HADB motif enrichment threshold
The data used for the TFBS-landscape plots (TFBSs and
1001 bp sequences), was also used by the HADB
method. To calculate a heuristic enrichment threshold
we identified the distance from the peakMax at which
the density of the top scoring motifs (one motif per se-
quence) falls below the density of motifs in the back-
ground regions, such as we see in the TFBS-landscape
plots (Figure 4b). The background is the region spanning
200–500 bp from the peakMax. We created 5 bp bins of
the absolute distance from the peakMax, and counted
the number of peaks with a top scoring motif within
each bin. The count in each bin was converted to the
proportion of peaks in the dataset and a regression line
was fitted to the background bins, where x was the upper
limit of the 5 bp bin, and y was the proportion of peaks in
the bin. To adjust for the variation in the y-values, we cre-
ated an ‘allowance line’ by shifting the regression line
along the y-axis by 2-fold the 3rd largest residual value
(we omitted the two most extreme residuals as they were
generally outliers). We then selected the largest non-
background bin (X) that had a y-value greater than the al-
lowance line’s predicted y-value at bin X (Figure 4a). The
heuristic threshold for motif enrichment was set at the
greatest distance represented by bin X (e.g. bin X is
100 bp-105 bp, therefore the threshold is 105 bp).

HADB motif score lower threshold
A similar procedure was used to determine a lower limit
threshold for a PWM’s motif scores (Additional file 9:
Figure S7). We generated bins of the top motif scores (one
per peak) and compared the bins in the enrichment zone to

Worsley Hunt et al. BMC Genomics 2014, 15:472 Page 15 of 19
http://www.biomedcentral.com/1471-2164/15/472



bins in the background zone. Bins were populated with the
count of peaks corresponding to a bin’s motif score range.
Each bin’s range was 1 score point e.g. for bin81, the range
was 80 <X < =81. ‘Central bins’ were within the enrichment
zone as defined using the heuristic enrichment thresholds
described above. An equal number of ‘control bins’ were
generated using background regions outside of the enrich-
ment zone, of the same width as the central enrichment
zone (e.g. if the central enrichment zone was 180 bp, then
180 bp of background motif scores were also sampled and
binned). The two sets of bins were compared to identify all
the central score bins that exceeded the number of peaks in
their matching control bin by greater than 20% of the max-
imum control bin; the maximum was selected from the set
of control bins equal to or of higher value than the bin of
interest (i.e. to the right of the bin of interest on the x-axis
of Additional file 9: Figure S7a). By using the set of control
bins of higher value than the bin of interest, we limited
cases where low scoring bins with few peaks in the bin were
selected as a threshold. The array of bins that passed the
aforementioned 20% threshold was then used to determine
the lower boundary of motif score enrichment. Proceeding
from the upper score bins to the lower score bins, we iden-
tified the lowest set of 5 consecutive central bins (centered
on the bin of interest) where at least 4 of the bins, including
the bin of interest, exceeded the control bins. The latter re-
quirement was to reduce the chance of the algorithm
selecting a central bin that was an outlier in the sur-
rounding neighbourhood of bins. The central bin pre-
ceding the flagged bin was selected as the threshold. We
provide two PWM thresholds in Additional file 10: a
threshold based on signal 20% above the background, as
outlined above, and a threshold based on signal 5%
above the background; the median absolute difference
between the two different thresholds is 2 points (e.g. a motif
score of 80 versus 82). The parameter of >20% signal was a
heuristic limit selected to reduce stochastic noise in the
HADB results.
The diversity of enrichment zones and relative motif

score thresholds from the datasets were summarized in
Figure 4c, Additional file 8: Figure S6a and Additional file 9:
Figure S7c-d. The enrichment zone thresholds for mul-
tiple datasets of a given TF were averaged to select one
threshold value per TF. To assess the similarity of the
thresholds for a given TF, we calculated the average of the
differences between every dataset’s threshold for the given
TF, and plotted the average difference as bars above and
below the average threshold. We used the same approach
for reporting the average motif score and the similarity of
motif scores per TF.

TFBS-bi-motif view
For each given sequence, the left plot reports the location
of the first motif relative to the peakMax on the y-axis,

and the location of the second motif relative to the first
motif on the x-axis. A horizontal band of enrichment
around y = 0 shows that the first motif is enriched at the
peakMax, while a band of enrichment on the diagonal is
the second motif ’s enrichment at the peakMax. A gap at
x = 0 is due to restricting the overlap of motifs. The diag-
onal limits of the plot arise from the sequence length
limit, here 1001 bp. Increased density at the origin indi-
cates that a number of peaks have both motif 1 and motif
2 enriched at the peakMax. The x-axis on the left plot was
set as the distance between motifs in order to mirror the
right plot, The right plot is a 10 bp resolution histogram
of the distances between the two motifs.

Dinucleotide-environment view
To create a Dinucleotide-environment view, we wrote a
Perl script to align a set of sequences on the motif of inter-
est with the motif oriented in the same direction, and as-
sess the frequency of dinucleotides at every position of the
aligned sequences. The file of dinucleotide frequencies is
submitted to an R script (R version 2.14.1). The R script
calculates the proportion of sequences with a particular
dinucleotide at each position of the alignment, and plots
the position on the x-axis and the proportion of sequences
on the y-axis.
Visualization was performed using the statistical package

R (version 2.14.1) [13]. The R functions for generating the
four visualization plots and the perl code for generating
dinucleotide frequencies from motif-anchored sequence
alignments are available at GitHub https://github.com/was-
sermanlab/TFBS_Visualization/archive/master.zip. Plots for
visualizing the heuristic threshold decisions, as seen in
Figure 4a and Additional file 9: Figure 7a, are included in
the provided R code.

Analysis of broadPeak replicate experiments
The ENCODE broadPeak datasets are available as repli-
cates, which allowed us to determine whether the peaks
predicted to be directly bound by the ChIP’d TF due to
the presence of the TF’s motif were enriched for occur-
rence in both replicate experiments. Replicate experiments
were pooled together, with neighbouring peaks (two peak
maximums within 500 bp or 1000 bp) flagged as a single
instance of a region. The 500 bp distance was selected to
be inclusive of the ~400 bp median width of the broad-
Peak regions; 1000 bp was selected to explore the sensitiv-
ity to longer settings. Using a Fisher exact test, we then
compared the proportion of replicated regions versus re-
gions unique to a single experiment for the set of peaks
with the ChIP’d TFs motif within the heuristic enrichment
zone, and for the set of peaks without the ChIP’d TFs
motif. Peaks that had been flagged as having the ChIP’d
TFs motif in one experiment but without the ChIP’d TFs
motif in the other experiment were rare (median 0.28% of
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the pooled replicates for an experiment), and we chose to
omit these from the analysis.

GO term enrichment analysis
We used the default settings of the web-based version
of GREAT [16] http://bejerano.stanford.edu/great/public/
html/splash.php. We submitted those peaks predicted to
contain the ChIP’d TF’s motif by the HADB method, the
peaks without the HADB predicted ChIP’d TF’s motif and
peaks from the whole dataset. We used the Binomial Re-
gion Set Coverage and the number of terms related to
actin and oxidative stress, to assess differences between
the three sets of peaks.

TBP case study – repeat elements analysis
Repeat elements in the TBP peaks were assessed using
data downloaded from the UCSC mm9 Repeat Masker
track via the UCSC Table Browser [49].

Additional files

Additional file 1: Text S1. Supplemental Data and Methods.

Additional file 2: Figure S1. Nucleotide composition is variable
between ChIP-Seq datasets. (a) The y-axis presents the GC content of
ChIP-Seq datasets (x-axis) generated from the K562 cell line; one dataset
per TF. (b) The GC content (y-axis) of datasets from multiple samples
(source cell lines indicated along the x-axis) for the JUN-D TF.

Additional file 3: Figure S2. The multiplicity of predicted TFBS motifs
in ChIP’d sequences corresponds to the multiplicity +1 of control
sequences. The number of peaks with a given multiplicity are plotted on
the x-axis and the mean GC composition of the peaks is on the y-axis. ‘X’
is the motif multiplicity of the controls, and ‘X + 1’ is the motif multiplicity
of the ChIP-Seq peaks. (a) C/EBPB ChIP-Seq sequences (black) and control
sequences matching the average GC composition of the ChIP-Seq
sequences (red). (b) AP2γ ChIP-Seq sequences (black) and control
sequences matching the average GC composition of the ChIP-Seq
sequences (red).

Additional file 4: Figure S3. Binding site over-representation results
using the ASAP tool. The CB-plots present the PFM GC composition on
the x-axis and the ASAP over-representation score on the y-axis. The top
5 over-represented TF profiles’ names are written on the plot; the name
of the ChIP’d TF or related TF is highlighted in magenta, and the logos
are shown in (a) E2F1 and E2F4, (f) JUN-family (JUN, JUN-D, AP1, and
FOSL2), and (k) C/EBPA and CEBP/B. (b)-(e) E2F1 ChIP-Seq. (g)-(j) JUN-B
ChIP-Seq. (l)-(o) C/EBPB ChIP-Seq. The first CB-plot for each of the 3 TFs
(b), (g), (l) are results using a random background selected from a pool
of uniquely mappable sequences. The second CB-plot for each of the 3
TFs (c), (h), (m) are results using a background generated by a 3rd order
Markov model. The third CB-plot for each of the 3 TFs (d), (i), (n) are
results using dinucleotide shuffled target sequences as background. The
last CB-plot for each of the 3 TFs (e), (j), (o) are results using background
sequences from the mappable dataset, matched to the GC composition
distribution of the target sequences.

Additional file 5: Figure S4. Background impact on over-representation
analyses for 400 bp datasets. (a) For each background, the fraction of the 43
analyses that reported the ChIP’d TF in the top 5 over-represented PWMs
from a particular background (x-axis) is plotted against the average skew of
the over-representation results for each background’s 43 analyses. Skew is
the negative slope of the line fitted to the over-representation scores versus
PFM GC content (i.e. values visualized by Figure 1a axes). The ideal is to have
a large x-axis value (vertical dashed line) and an average skew of zero
(horizontal dashed line). (b) and (c) summarize the standard deviation (y-axis)

and mean (x-axis) of the ‘non-outlier’ oPOSSUM over-representation scores
for 10 backgrounds against each of 43 ChIP-Seq datasets, where panel (b)
displays the average value for each background across the 43 datasets and
panel (c) displays the individual value of 430 analyses. The ideal result would
be situated at the origin (the intersection of the dashed lines. For all panels,
each of the 10 backgrounds tested is denoted as a single colour: Light
green circle – randomly chosen background from the dataset of mappable
sequences, dark green cross – randomly chosen background from the
dataset of DNase accessible sequences, orange circle – mononucleotide
shuffled background, brown cross – mononucleotide shuffled background
within a sliding window, black circle – dinucleotide shuffled background,
gray cross – dinucleotide shuffled background within a sliding window,
magenta triangle – 3rd order Markov model generated background
sequences, blue circle – background selected from the mappable
sequences dataset to match the GC composition of the target sequences,
light blue cross – background selected from the mappable sequences
dataset to match the distribution of GC composition in sliding windows of
the target sequences, and red triangle – GC background from HOMER 2.

Additional file 6: Table S1. Rankings of the ChIP’d TFs binding profile
from over-representation analysis with 10 backgrounds. The table lists the
rank of the ChIP’d TFs profile from 430 over-representation analyses for
43 datasets and 10 backgrounds. The tendency for some backgrounds to
have a large bias towards TFs with GC-rich binding profiles is presented
as the average skew for each background. A background with a large
skew factor (>100) will favour TFs with GC-rich profiles.

Additional file 7: Figure S5. Background selection can correct the
over-representation score bias towards GC-rich or AT-rich TFBSs in motif
over-representation analyses. The results of over-representation analyses
for an E2F1 ChIP-Seq dataset using six distinct backgrounds (one background
per plot). The names of the 5 top ranked TF PWMs are written on the
plot. The horizontal line is set at over-representation score 100 as a
visual reference point. Points corresponding to E2F1 and E2F4 motifs are
highlighted in pink. The dotted line at over-representation score 100 is
for visual reference. The sequence logos are E2F1 and E2F4 respectively.
(a) Randomly chosen background from a pool of DNase accessible
sequences. (b) Randomly generated background sequences based a 3rd
order Markov model. (c) A background of dinucleotide shuffled target
sequences. (d) Selected regions from the mappable sequence dataset
matching the GC composition distribution of the target sequence set.
(e) Sliding windows of dinucleotide shuffled target sequence. (f) Genomic
sequences matched in windows of internal GC composition for each target
sequence.

Additional file 8: Figure S6. Zones of motif enrichment defined
around the peakMax of mouse ChIP-Seq datasets vary per TF. (a) Zones
of PWM motif enrichment defined by a heuristic enrichment threshold
for mouse datasets. The average width of the motif enrichment zone
around the peakMax for TF’s datasets are plotted on the y-axis; the differ-
ences between all widths, for all of a TF’s datasets, were averaged and
plotted on the y-axis as vertical bars. The datasets are along the x-axis.
The red horizontal line is the mean width of enrichment. (b) The propor-
tion of peaks within the motif enrichment zone for a TF’s set of ChIP-Seq
datasets were averaged. The x-axis provides, for each of 39 TFs, the mean
proportion of peaks with a motif scoring above the motif score threshold
and located within the zone of enrichment (mean 0.65, median 0.72).

Additional file 9: Figure S7. Defining a PWM’s lower bound of motif
score enrichment within the heuristic enrichment zone. (a) A visual
depiction of the motif score lower threshold determined with our
heuristic procedure. The x-axis indicates the upper bound of bins of PWM
motif scores for an NFYB ChIP-Seq dataset. The bins of motif scores are in
steps of 1 score point (e.g. bin80 is 79 < scores < =80). The y-axis is the
count of peaks in each bin. The black dotted line depicts scores for peaks
with top-scoring motifs within the enrichment zone around the peakMax,
while the red dotted line depicts scores for peaks with top-scoring motifs
from distal positions. The vertical blue line depicts the threshold for motif
score enrichment relative to the background. (b) The TFBS-landscape
view for the NFYB dataset. The x-axis is the distance of the top scoring
motif to the peakMax and the y-axis is the motif score. The blue line is
the calculated motif score threshold. (c) and (d) The mean motif score
threshold of multiple datasets. The motif score thresholds for a TF’s
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multiple datasets were averaged and plotted on the y-axis, with vertical
lines showing the average differences between the thresholds. The x-axis
is the TF. The red horizontal line is the mean. Left (c) is human data, and
right (d) is mouse data.

Additional file 10: Motif relative score thresholds for position
weight matrices (PWMs).

Additional file 11: Figure S8. GREAT analysis results on SRF ChIP-Seq
data. GREAT results from the analyses of three sets of SRF peaks. (a) All
peaks in the SRF dataset. (b) The subset of peaks identified by the HADB
method to have an SRF motif proximal to the peakMax. The red box
highlights the actin related GO term. (c) The subset of peaks that do not
have an SRF motif proximal to the peakMax. (PDF 3905 kb)

Additional file 12: Figure S9. GREAT analysis results on NFE2L2
ChIP-Seq data. GREAT results from the analyses of three sets of NFE2L2
peaks. (a) All peaks in the NFE2L2 dataset. (b) The subset of peaks identified
by the HADB method to have an NFE2L2 motif proximal to the peakMax.
The red box highlights the oxidative stress related GO terms. (c) The subset
of peaks that do not have an NFE2L2 motif proximal to the peakMax.

Additional file 13: Figure S10. TFBS-landscape view of four PWMs in a
TBP ChIP-Seq dataset from mouse MEL cell-line. TFBS-landscape views are
shown for four PWM’s on a TBP dataset. The left-side plots present the
top scoring motif distance to the peakMax on the x-axis, and the motif
score on the y-axis. The right-side plots present a histogram of motif
distances: black – 2 bp resolution of the top scoring motif distance per
peak, green – 5 bp resolution of the distances for the top scoring motifs
with a score equal to or higher than 85. Sequence logos indicate the
profile used to scan the TBP peaks: (a) ZNF143_b PWM. (b) NF2F1 PWM.
(c) CTCF PWM. (d) FOXD3 PWM. The data represent a subset of TF
profiles depicted in Figure 7b.

Additional file 14: Position frequency matrices (PFMs).
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