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Abstract

Oscillatory and sequential processes have been implicated in the spatial patterning of many

embryonic tissues. For example, molecular clocks delimit segmental boundaries in verte-

brates and insects and mediate lateral root formation in plants, whereas sequential gene

activities are involved in the specification of regional identities of insect neuroblasts, verte-

brate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes

take place in various tissues and organisms, and, hence, raise the question of what common

themes and strategies they share. In this article, we review 2 processes that rely on the spa-

tial regulation of periodic and sequential gene activities: segmentation and regionalization of

the anterior–posterior (AP) axis of animal body plans. We study these processes in species

that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes

(segmentation and regionalization) in species that belong to 2 distantly related phyla (arthro-

pods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequen-

tial gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a

mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequen-

tial gene activities, providing an opportunity to study the evolution of pattern formation

mechanisms.

Introduction

Segmentation, also known as metamerism, refers to the organization of the body into repeat-

ing units of similar structure along the anterior–posterior (AP) axis. Among bilaterian ani-

mals, several clades feature segmented body plans, including annelids, arthropods, tardigrades,

cephalochordates, and vertebrates, among others [1]. Segmentation is usually coupled with

regionalization, a process in which the animal body plan is divided into several fates, such that

different segments along the AP axis of segmented organisms acquire different identities and

develop distinct morphological features.
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Insects could be classified into 2 broad categories: simultaneously segmenting (or long-

germ) insects and sequentially segmenting (or short-germ) insects [2,3]. Recently, it has been

shown that segmentation and regionalization in both vertebrates and short-germ insects share

common mechanistic themes, a natural consequence of the fact that these processes rely on

translating temporal gene and signaling pathway activities into spatial patterns [3–14]. Trans-

lating a temporal sequence into a spatial pattern seems to be a common strategy in develop-

ment, as it has been discovered in other developmental processes such as lateral root

formation in plants [15,16] and fate specification in insect neuroblasts [17–20], the vertebrate

neural tube [21–23], and (arguably) the vertebrate limb bud [24–27]. This strategy is usually

mediated by the interaction between a morphogen gradient and either a clock (to generate a

periodic pattern) or a genetic cascade (to produce a nonperiodic pattern).

In this review, we use the processes of segmentation and regionalization in short-germ

insects and vertebrates as model systems to investigate the basic principles of embryonic pat-

terning via clocks and genetic cascades. We also investigate the evolution of such mechanisms

into other modalities, such as those involved in the segmentation and regionalization in long-

germ insects. We focus on the flour beetle Tribolium castaneum as a representative of short-

germ insects and the fruit fly Drosophila melanogaster as a representative of long-germ insects,

since they are the most studied species of their respective categories. We should bear in mind,

however, that segmentation and regionalization in insects show remarkable evolutionary flexi-

bility [28–32], and studying these processes in other insects, therefore, is necessary to gain a

more comprehensive view of AP patterning in insects. We would like also to stress that our

review is a study of the parallels between segmentation and regionalization in insects and ver-

tebrates, rather than a comprehensive coverage of these processes. For more specialized in-

detail coverage of these processes, we refer the reader to recent reviews such as [11,12,33–37].

In this review, we start by introducing an overview of segmentation and regionalization in

insects and vertebrates and the associated morphogenetic movements and patterns of gene

expression, contrasting along the way the analogous processes in the 2 groups of organisms.

Then, we discuss in more detail the mechanistic underpinnings of these processes, their cou-

pling, and their evolution. We find that vertebrates and short-germ insects share an impressive

number of features related to segmentation and regionalization mechanisms, but also have

important differences. We also find that segmentation and regionalization in long-germ and

short-germ insects and vertebrates share interesting mechanistic similarities, suggesting deep

similarities between pattern formation mechanisms that superficially seem radically different.

An overview of segmentation and regionalization in insects and

vertebrates

The main body axis of insects is organized into segments, and each group of segments (tagma)

has specific identity: gnathal, thoracic, or abdominal (other segmented structures like antenna

are not covered in this review). Segmentation of the insect AP axis is mediated by the periodic

expression of a group of genes called “pair-rule genes,” whereas regionalization is mediated by

the nonperiodic expression of a group of genes called “gap genes” (which also instructs/inter-

acts with segmentation in some insects) [12,33]. Expressions of both pair-rule and gap genes

are down-regulated shortly after they do their job, and segment boundaries and regional iden-

tities are further maintained by the expression of downstream segment polarity and Hox

genes, respectively. The spatiotemporal dynamics of both pair-rule and gap genes along the AP

axis differ among different insects, although the final expression patterns of downstream seg-

ment polarity and Hox genes are more or less conserved. For example, in a short-germ insect

like Tribolium, both gap and pair-rule genes are expressed sequentially, whereas in a long-
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germ insect like Drosophila, both gap and pair-rule genes are expressed more or less

simultaneously.

In vertebrate animals, 3 main distinct structures exhibit segmental organization along the

AP axis: the somites that give rise to the axial skeleton, the rhombomeres of the hindbrain, and

the pharyngeal arches [38]. Here, we focus on the segmentation of the musculoskeletal system

as it encompasses the entire trunk and tail and thus represents the most significant form of seg-

mentation in vertebrate animals. In adults, segmented tissues include the vertebral column

and ribs, as well as the associated skeletal muscle, tendons, and ligaments [39]. Somitogenesis

also provides the template for segmentation of other structures such as blood vessels and

nerves. Segmentation is first established through the process of somite formation. Somites are

bilaterally symmetric, epithelial blocks of paraxial mesoderm that bud off progressively from

the anterior end of the presomitic mesoderm (PSM) [40]. Thus, unlike insects, segmentation

always occurs in a sequential instead of simultaneous fashion in vertebrate organisms. The

regionalization of segments is under the control of Hox genes and is most clearly exemplified

by the distinct structure of vertebrae along the AP axis [41]. For instance, vertebrae at the tho-

racic level develop ribs, while those at the lumbar level do not. This morphological distinction

is specified by Hox expression at the molecular level.

Morphogenesis and gene expression patterns

Axis elongation

Paraxial mesoderm is the primarily segmented tissue in vertebrate organisms. It flanks both

sides of the axial structures (neural tube and notochord) in a bilaterally symmetrical manner.

In somitogenesis stage embryos, the posterior part of the paraxial mesoderm, also known as

the PSM, is unsegmented and includes highly motile mesenchymal cells [42] (Fig 1A). More

anteriorly, the paraxial mesoderm is segmented into epithelial somites, which form rhythmi-

cally and sequentially in the anterior most region of the PSM (Fig 1A). As vertebrate embryos

develop progressively from head to tail, somitogenesis takes place concomitantly with axis

elongation. As somites bud off one after the other from the anterior end of the PSM, new

mesodermal cells are continually generated from progenitors located in the posterior region of

the embryo [43]. During anterior body formation (i.e., neck and trunk), new PSM cells arise

by ingression in the anterior region of the regressing primitive streak or closing blastopore/

shield. PSM cell fate specification is Wnt dependent, as the fate determinants T and Msgn1 are

Wnt targets [44,45]. At these early stages, convergent cell movements toward the midline play

an important role in axial elongation [46]. Similarly, axial stem cells located in the tail bud and

known as the neuromesodermal progenitors (NMPs) are the source of new mesodermal tissue

during posterior body formation (i.e., sacrum and tail) [43]. At these later stages, elongation is

driven by a random motility gradient in the posterior PSM [42]. Importantly, however, cell

division is not limited to the progenitor domain nor oriented along a particular axis [47].

In insects, anterior segments form in the “blastoderm,” a single layer of nuclei (that eventu-

ally cellularize) covering the entire egg cortex. The embryo then enters the “germ-band” stage

where the AP axis elongates, and concomitantly, posterior segments form sequentially from a

segment addition zone (SAZ) [2] (Fig 2A). The number of segments that form in the blasto-

derm versus those that form in the germ-band is different in different species. In the so-called

“short-germ” insects, most segments form concomitantly with axis elongation during the

germ-band stage. In “long-germ” insects, most segments form during the blastoderm stage

before the transition into the germ-band stage where the whole (already segmented) embryo

undergoes axis elongation [2]. Many insects fall somewhere between these 2 extreme cases,

where short-germ embryogenesis is thought to be the ancestral mode of embryogenesis in
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Fig 1. Gene expression patterns in vertebrates. (A) Morphogenesis in the chicken embryo. Left: Epiblast stage. The primitive streak is shown as a

vertical line with the node on the top. Axial progenitors (blue) are located in the anterior region of the primitive streak. Middle panel: 3-somite stage.

Paraxial mesoderm is segmented into somites (pink) anteriorly, but unsegmented posteriorly (PSM; green). Axial progenitors (blue) are located in the

regressing primitive streak at the posterior end of the embryo, where axial elongation takes place. Right panel: 8-somite stage. Somites (pink) continue to

from sequentially from the PSM (green), as the embryo elongates posteriorly. (B) Signaling gradients in somitogenesis. FGF and Wnt signaling (yellow)
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insects and arthropods in general [12,48]. AP patterning in short-germ insects is usually (but

not always) sequential [3,6,7,49], whereas AP patterning in long-germ insects is usually (but

not always) simultaneous (with an occasional hint of sequentially [9,50–53]). Therefore, the

terms “short-germ insects” and “long-germ insects” are sometimes used synonymously with

activity is highest in the posterior progenitor domain and forms a posterior-to-anterior gradient along the PSM. The determination front (dotted line) is

positioned by these signaling gradients. (C) The segmentation clock. Waves of gene expression (orange) are initiated in the posterior domain and travel

anteriorly along the PSM. When the segmentation clock reaches the determination front (dotted line), a new pair of somites is specified (green). (D)

Hox gene spatial and temporal colinearity. The schematic depicts expression of a hypothetical Hox cluster in chicken embryos. Hox genes are first

expressed in the progenitor domain and spread anteriorly through cell ingression, thus leading to the formation of nested expression domains (colored

regions) through the sequential activation of more posterior Hox genes. Throughout the figure, for all embryo schematics: anterior to the top and

posterior to the bottom. PSM, presomitic mesoderm.

https://doi.org/10.1371/journal.pgen.1009812.g001
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Fig 2. Key gene expression patterns during segmentation and regionalization in Tribolium (as a representative of short-germ insects) and Drosophila (as a

representative of long-germ insects). (A) Expression patterns of segmentation clock genes in Tribolium (namely primary pair-rule genes: Tc-eve (shown in blue), Tc-
run (red), and Tc-odd (green)) across time (at 24˚C) during both the blastoderm and germ-band stages of embryogenesis. Tribolium clock genes are expressed

periodically as consecutive waves that propagate from posterior (right) to anterior (left) (frequency doubling of pair-rule gene expressions is not depicted). (B) Key

regionalization gene expression patterns in Tribolium (namely gap genes: Tc-hb (blue), Tc-Kr (red), Tc-mlpt (green), and Tc-gt (gold)) across time (at 24˚C) during both

blastoderm and germ-band stages of embryogenesis (head expressions of gap genes are not depicted for simplicity), in addition to Tc-cad (shown in gray), a master

regulator of both segmentation and regionalization in Tribolium. Tribolium gap genes are expressed as consecutive nonperiodic waves that propagate from posterior

(right) to anterior (left) within the expression domain of Tc-cad. (C) Expression patterns of selected Drosophila segmentation genes (namely the pair-rule gene Dm-eve
(shown in brown)) and regionalization genes (namely the gap genes: Dm-Hb (blue), Dm-Kr (red), Dm-kni (green), and Dm-gt (gold)) across time during the blastoderm

stage, in addition to master regulator gradients: Dm-Bcd (orange) and Dm-Cad (gray). Drosophila gap gene expression bands arise more or less simultaneously before

nuclear cycle 14 (NC14). Later during NC14, pair-rule gene expressions arise, also more or less simultaneously. Eventually, expression domains of both gap and pair-

rule genes undergo posterior-to-anterior shifts, reminiscent of the posterior-to-anterior propagation of gap and pair-rule gene expression waves in Tribolium. Finally,

and concomitantly with the degradation of Dm-Bcd and Dm-Cad gradients, gap and pair-rule gene expression domains stabilize, pair-rule gene expressions undergo

frequency doubling (not depicted), then both gap and pair-rule gene expressions eventually fade. Throughout the figure, for all embryo schematics: anterior to the left

and posterior to the right.

https://doi.org/10.1371/journal.pgen.1009812.g002
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“sequentially segmenting insects” and “simultaneously segmenting insects,” respectively. Axis

elongation of insect germ-bands is driven by convergent extension and/or cell proliferation

[7,54–59].

Segment formation in the insect blastoderm, when the embryo is not elongating, might be

compared with the formation of prechordal and head mesoderm in vertebrates. In chicken

embryos, these tissues are patterned at the epiblast stage before axis elongation ensues. Thus,

in both insects and vertebrates, patterning of the most anterior parts of the body tends to differ

from the rest of the axis.

Segmentation clock in vertebrates and short-germ insects

Segmentation of the AP axis in vertebrates and short-germ insects is achieved rhythmically

and sequentially through the oscillatory activity of a set of genes whose expression transverses

the AP axis from posterior to anterior, thus generating wave-like patterns (Figs 1C and 2A).

Each cycle of oscillatory gene expression triggers the specification of a single segment (in verte-

brates and some arthropods) or a pair of segments (in most insects).

In short-germ insects, most of segmentation genes with oscillatory expression belong to a

subset of a group of transcription factors (of different molecular classes) called “pair-rule

genes” (e.g., even-skipped (eve), runt (run), and odd-skipped (odd) in the flour beetle Tribolium)

[6,7,60] (Fig 2A). Other “secondary” pair-rule genes (e.g., paired (prd) and sloppy-paired (slp))

do not exhibit oscillatory expressions and are rather involved in later phases of segmentation

[60]. Components of the Notch signaling pathway and their target hairy (which is a pair-rule

gene in many arthropods) were also found to oscillate in some arthropods (e.g., cockroach

[61], spider [62,63], centipede [64,65], and a crustacean [66]) but not in others (e.g., Tribolium,

where notch and delta are not expressed periodically, while hairy, although expressed periodi-

cally, is, arguably, not involved in trunk segmentation [12,60,67–69]). In vertebrates, hairy/

enhancer of split (Hes/Her) transcription factors and components of one or several signaling

pathways have been shown to oscillate (e.g., Notch in zebrafish and Notch, Wnt, and FGF in

amniotes) [70]. Core components of the Hippo signaling pathway (Tead4, Amotl2, and Cyr61)

also appear to oscillate in mouse and human PSM [71,72]. However, not all vertebrate cyclic

genes are related to signal transduction pathways, as some Hox genes, histone modifiers, and

metabolic enzymes have also been detected to oscillate in amniotes [70]. Overall, the amniote

segmentation clock encompasses a much larger and more complex network of oscillating

genes compared to lower vertebrates and insects (although probably not all components of

insect segmentation clock have been discovered yet).

Within a given short-germ insect or vertebrate species, all cyclic genes share the same oscil-

latory period (which might vary along the SAZ and PSM) but not the same oscillatory phase.

In the short-germ insect Tribolium, each pulse of the eve expression wave is chased in space

and time by a pulse of runt, which, in turn, is chased by a pulse of odd [7,60] (Fig 2A). In amni-

otes, Wnt targets oscillate in opposite phase to Notch and FGF pathway components in the

posterior PSM [70,73–75]. These phase relationships change in the anterior PSM and are

thought to potentially encode patterning information [76].

Morphogen gradients and segmental readouts in vertebrates and short-

germ insects

Segmentation clock genes are expressed in dynamic waves with fast dynamics at the posterior

end of the PSM in vertebrates and SAZ in short-germ insects. However, they gradually slow as

they exit the posterior PSM and SAZ to form transiently stable gene expression domains. The

transiently stable segmentation gene expressions just anterior to the PSM and SAZ regulate
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the expression of boundary markers, such as Mesp and Ripply in vertebrates [77,78] and seg-

ment polarity genes (e.g., wingless and hedgehog) in insects [79–81]. The posterior PSM and

SAZ are believed to possess certain qualities that keep cells undifferentiated and their anterior

border is thus known as a “determination front,” since cells passing through it assume their

segmental fate [82]. In both vertebrates and arthropods, genes involved in setting up segment

boundaries (Mesp and segment polarity genes, respectively) are also responsible for patterning

the AP polarity of segments by specifying rostral/caudal compartments [83,84].

An important difference between vertebrates and short-germ insects is that while each tick

of the segmentation clock specifies 1 segment in vertebrates, it specifies 2 segments in short-

germ insects. Upon crossing the determination front, however, the expression of primary pair-

rule genes undergoes frequency doubling and regulate the late expressions of secondary pair-

rule genes [6,13,49,60]. The now segmental expression of both primary and secondary pair-

rule genes specify the segmental expressions of segment polarity genes [80].

In both short-germ insects and vertebrates, the determination front is (possibly indirectly)

positioned by the posterior-to-anterior signaling gradients of Wnt (e.g., Wnt3a in vertebrates

and Wnt1 and Wnt8 in Tribolium), which activate a downstream gradient of caudal (cad/cdx)

[3,8,73,85–89] (Figs 1B and 2B). In vertebrates, but in none of the insects examined so far [90],

a parallel gradient of FGF (e.g., Fgf8 and Fgf4) forms a positive feedback loop with Wnt in the

PSM and is similarly crucial to specify the determination front [91]. These signaling molecules

are most highly expressed in the posterior progenitor domain, resulting in a continuous regres-

sion of the determination front coordinately with the elongation of the vertebrate PSM and

germ-band of short-germ insects [3,13,92,93]. During the blastoderm stage of insects, however,

the Wnt/Cad gradient exhibits a buildup followed by decaying dynamics but does not retract

until the onset of gastrulation [8]. Whereas classical models conceptualized the wavefront as a

simple threshold of signaling activity, more recent work suggests that cells actually read out the

spatial fold change in FGF signaling rather than the absolute ligand concentration [94].

In vertebrates, a counter gradient of retinoic acid (RA), which is secreted by the somites

and anterior PSM, antagonizes the FGF gradient and contributes indirectly to positioning the

determination front at early stages [95,96]. However, this RA counter gradient is expendable

for wavefront positioning after E9.5 in mouse embryos as well as in zebrafish embryos [94,97].

Counter gradients of axin (axn) [85], zerknüllt (zen) [98], orthodenticle (otd) [99], and Hunch-

back (Hb) [100] exist only in the initial phase of segmentation (the blastoderm stage) in Tribo-
lium. Recently, the expression of Dichaete and the pioneer factor odd-paired (opa) where

reported to form staggered wavefronts along with the Wnt/Cad gradient throughout segmen-

tation in Tribolium [13].

Regionalization in vertebrates and short-germ insects

Across bilateria, in both segmented and unsegmented animals, Hox genes are responsible for

dividing the AP axis into different fates (e.g., thoracic and abdominal fates), a process usually

termed “regionalization.” In segmented animals, Hox genes are expressed in nested domains

along the AP axis (Fig 1D) and specify segmental identity. Even though the number and com-

plexity of Hox clusters varies significantly across phyla, the patterning role of orthologous Hox

genes is subject to deep evolutionary conservation. For instance, in all the model organisms

described in this review (Drosophila, Tribolium, zebrafish, chicken, and mice), orthologs of

AbdB specify the identity of the most posterior body segments [101]. A central property of

Hox genes is their spatial colinearity: In animals with intact Hox clusters (like all vertebrates

and insects such as Tribolium), the 30 to 50 arrangement of Hox genes along the chromosome

matches the order of their expression along the AP body axis [102,103]. In animals with a
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partially fragmented Hox cluster (like Drosophila), it is common that the principle of colinear-

ity is preserved within each intact subcluster. In animals whose AP axis is segmented sequen-

tially (e.g., vertebrates and short-germ insects), Hox genes also appear sequentially in time in

an order that matches their arrangement along the chromosome, a phenomenon called “tem-

poral colinearity” [104–107]. However, no temporal colinearity was observed in animals with a

simultaneous mode of segmentation like Drosophila.

Whereas Hox genes are the final determinant of axial identity in all animals, they do not

always play a specifying role. In insects, the initial driver of AP regionalization is a group of

genes called “gap genes” (e.g., hb, Krüppel (Kr), and giant (gt)), whose expression precedes and

regulates those of Hox genes [33,108–114]. In vertebrates and noninsect arthropods, a gene

category corresponding to insect gap genes, to our knowledge, has not been identified [115],

and Hox genes are likely to play both specification and determination roles. In the short-germ

insect Tribolium, gap genes are expressed in sequential nonperiodic waves that propagate from

posterior to anterior during both the blastoderm and germ-band stages [3] (Fig 2B). Although

Hox genes are expressed sequentially in Tribolium, they exhibit no (or limited) wave dynamics

and arise later in time within the anterior margin of the SAZ, suggesting that Hox genes act as

readouts of gap genes in this insect.

An important point of comparison between AP patterning in vertebrates and short-germ

insects is the timing of regionalization compared to segmentation. In all segmented animals,

segmentation and regionalization have certain species-specific registry that grant each segment

the appropriate AP fate. In Tribolium, gap gene sequential activation runs in parallel to the seg-

mentation clock so that the temporal registry of gap and pair-rule genes matches their spatial

registry along the AP axis [3,6,33,113] (compare the timing in Fig 2A and 2B). In amniotes, on

the other hand, Hox genes are sequentially activated before (and in fact regulate) cell ingres-

sion into the PSM, and therefore, precede the corresponding ticks of segmentation clock

[116,117].

Segmentation, regionalization, and morphogen gradients in long-germ

insects

The final expression patterns of segmentation genes (i.e., pair-rule genes) in both short-germ

and long-germ insects are quite similar and are in the form of periodic stripes [49]. The final

expression patterns of regionalization genes (i.e., gap genes) in both short-germ and long-

germ insects are similar as well and are in the form of nonperiodic gene expression bands

[113]. However, the spatiotemporal dynamics leading up to these final gene expression pat-

terns are different in the 2 groups of insects. In the long-germ insect Drosophila, unlike Tribo-
lium, the early determinants of regionalization (namely gap genes) are expressed earlier than

(and regulate) segmentation, and both gap and pair-rule gene expressions arise more or less

simultaneously during the blastoderm stage [29,33,34,118,119] (Fig 2C; compare with Fig 2A

and 2B).

Four maternal gradients exist in the Drosophila blastoderm that have been implicated in AP

patterning [33,120]: (i) the anterior-to-posterior gradient of Bcd [121–123]; (ii) the anterior-

to-posterior gradient of maternal Hb [124–126]; (iii) the posterior-to-anterior gradient of Cad

[127,128]; and (iv) the posterior-to-anterior gradient of Nanos (Nos) [33] (shown for Bcd,

Cad, and Hb in Fig 2C). At the end of the blastoderm stage, and during gastrulation, all AP

gradients (shown Bcd and Cad gradients in Fig 2C) decay along with gap gene expression

domains [129], and concomitantly, the expressions of some of pair-rule genes undergo fre-

quency doubling and segment polarity, and Hox gene expressions arise simultaneously (with a

slight posterior to anterior progression).
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Mechanisms of segmentation and regionalization in insects and

vertebrates

In the previous section, we described the spatiotemporal dynamics of gene expression and sig-

naling pathway activities during regionalization and segmentation of the AP axis in insects

and vertebrates. Here, we describe the mechanisms that mediate these expression patterns.

Mechanisms of regionalization and segmentation in the long-germ insect

Drosophila
Regionalization in Drosophila: Gap and Hox gene regulation. The French Flag model,

in which different concentrations of a morphogen gradient turn on or off different genes

(Box 1; Fig 3) [130], has been the prime theoretical framework for how gap gene expressions

are initialized in the early Drosophila embryo. Modulating the maternal expression of Hb alters

the positioning of gap gene expression domains, in a fashion consistent with a French Flag

model in which maternal Hb acts as a master morphogen gradient (Fig 4A) [125,126,131].

Box 1. The French Flag model

The French Flag model is one of the earliest models of pattern formation in development

[130]. In this model, a morphogen gradient spans a tissue, and different morphogen con-

centrations specify different fates along the gradient (represented by different colors in

Fig 3A (top)), where each fate is typically specified by the activity of 1 or more genes.

Consequently, borders between consecutive gene expression domains along the tissue

are specified by a series of thresholds of the morphogen gradient (e.g., T1 and T2 in Fig

3A, bottom left).

In the earliest formulation of the French Flag model, the morphogen gradient was

assumed to be static (i.e., does not change in shape or concentration in space and time),

suitable for partitioning a nonelongating tissue (Fig 3A, bottom left). In this scheme,

long-range morphogen gradients are required to pattern large tissues. This is, however,

hard to achieve in cases where tissue sizes are much larger than the range of influence of

typical signaling pathways. Large tissues, in fact, are usually patterned during tissue

growth. In such cases, a signaling center tethered at the elongating end of the tissue

results in a regressing short-range gradient.

The French Flag model, however, can be modified to mediate patterning using a regress-

ing short-range gradient (Fig 3A, right) [135]. In this scheme, a regressing short-range

gradient (shown in black in Fig 3A, right) activates a gene whose product is of negligible

decay rate (shown in gray in Fig 3A, right). In this way, a long-range gradient will span

the full length of the tissue by the end of the tissue elongation phase. Such long-range

gradient can then mediate patterning via a typical French Flag mechanism (Fig 3A,

right).

We note here that the French Flag model can also mediate periodic patterning, if a pat-

terning gene (like the one shown in brown in Fig 3B) is repeatedly activated then inacti-

vated by a continuous range of morphogen gradient concentrations (Fig 3B). This

scheme, however, requires patterning genes to be under the control of complex cis-regu-

latory logics. Alternatively, such a scheme can be mediated by an intermediate stage of

nonperiodic patterning, a mechanism implicated in regulating pair-rule genes in

Drosophila.
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Later in time, cross-regulatory interactions between gap genes themselves refine their final

expression patterns [34]. However, recent data, while confirming the primary role of the Hb

gradient in regulating gap gene expression, indicate that gap gene regulation is much more

dynamic [50,52,132] and follows a temporal mode of patterning similar to that observed in

short-germ insects [9,51]. We discuss this point in more detail in the section “Toward recon-

ciliation of simultaneous and sequential models of patterning.”

Approaching the end of the blastoderm stage, gap genes initialize downstream Hox genes

[108]. Hox gene expressions are then refined by cross-regulatory interactions among Hox

genes themselves [133] and modulated by the periodic expression of pair-rule genes [109,134].

Segmentation in Drosophila: Pair-rule and segment polarity gene regulation. The sim-

ple periodic pattern of pair-rule genes tempted computational modelers to postulate that they

are elegantly regulated by a reaction–diffusion mechanism (Box 2; Fig 5; [136,137]). However,

experimental evidence showed that pair-rule genes are mainly regulated (rather inelegantly,

[138]) by another round of the French Flag model. In this scheme, each pair-rule stripe (or

pair of stripes) is mediated by a separate “stripe-specific enhancer.” Each stripe-specific

enhancer is regulated in a dose-dependent manner by the upstream gradients of gap genes and

various maternal factors (e.g., Bcd and Cad), whose identities are different depending on the

specific location of the stripe along the AP axis of the embryo [139,140] (Fig 4B) (see [12,119]

for more detailed discussion of pair-rule gene regulation in Drosophila).

After this initial phase of stripe specifications, the full expression pattern of pair-rule genes

is then stabilized and/or refined and goes into a phase of frequency doubling. These late effects

seem to depend on a rewiring of the pair-rule network, mediated by late-acting enhancers.

Each of these late-acting enhancers drives the full pair-rule pattern (7 stripes in Drosophila) in

enhancer reporter assays, and, hence, are sometimes called “7-stripe” or “zebra” elements

[141] (Fig 4B). This rewiring of the pair-rule network (and possibly other genes involved in AP

and dorsoventral patterning in the early Drosophila embryo) seems to be mediated by timing
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Fig 3. The FF model (see also Box 1). (A) Top panel: In the FF model, different concentrations of a morphogen
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nonelongating tissues (bottom left) via a nonregressing gradient (shown in gray), as well as elongating tissues (bottom

right) if a retracting short-range gradient (shown in black) activate a slowly decaying morphogen (gray). (B) In a

similar fashion, the FF model can generate periodic patterns if a complex regulatory logic of periodically expressed
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Flag.

https://doi.org/10.1371/journal.pgen.1009812.g003
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[140]. (C) A sketch of the genetic wiring of the Tribolium segmentation clock, composed of the 3 primary pair-rule genes: Tc-eve, Tc-run, and Tc-odd,

wired into a negative feedback loop. Note that this is a parsimonious wiring explaining observed gene expression dynamics in WT and knockdown

phenotypes. Actual wiring might differ from the one shown, especially that pair-rule genes are known to act as repressors rather than activators. (D)

Experimental evidence of segmentation clock wiring in Tribolium. (E) A sketch of the genetic wiring of the Tribolium gap gene cascade. Note that this is
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shown, especially that most gap genes are known to act as repressors rather than activators. (F) Experimental evidence that gap genes are wired into a
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reduced, shifted toward anterior, and stretched; concomitantly, Tc-eve oscillation frequency is reduced and Tc-eve waves are shifted toward anterior
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factors encoded by 2 pioneer factors: Zelda and Opa, where Zelda is responsible for activating

the early network and Opa for the late network [142–144]. Indeed, in opa mutants, the fre-

quency doubling of pair-rule genes is lost in Drosophila [142]. Dichaete was also recently sug-

gested to mediate the transition from early to late patterning [13]. Interestingly, cad
(potentially along with zelda), dichaete, and opa were found to be activated sequentially in the

Drosophila embryo, reflecting a similar sequential activation in space and time in the Tribo-
lium embryo [13,145].

As gap gene expressions provide positional information for downstream pair-rule genes,

pair-rule gene expressions, likewise, have been suggested to provide positional information for

downstream segment polarity genes in a yet another round of the French Flag model [146].

However, it was recently suggested that pair-rule gene expression concentrations are not read

out in an ON–OFF fashion, but rather the temporal sequence of some of pair-rule gene expres-

sions (mediated by the posterior-to-anterior shifts of gap genes, discussed in section “Toward

reconciliation of simultaneous and sequential models of patterning”) encode the positional

information for other pair-rule genes as well as segment polarity genes [14].

and stretched. In Tc-zen RNAi embryos: Tc-cad gradient has the same peak level and slope as in WT, but just shifted toward anterior; concomitantly,

Tc-eve waves are shifted toward anterior without any sign of spatial stretch or time dilation. (H) Further evidence that gap genes are wired into a genetic

cascade in Tribolium. Upon reinducing the leading gap gene in the cascade (Tc-hb) using a transgenic line where Tc-hb minigene is placed downstream

of a heat-shock promoter, the whole gap gene sequence is reinduced in the SAZ. (I) A possible model for how the speed of the pair-rule clock or the gap

gene cascade is modulated by a Wnt/Cad gradient in Tribolium: Wnt/Cad activates the pair-rule clock and/or gap gene cascade, but represses a

multistable gene regulatory network. The gradual switch between the 2 gene networks results in the gradual slowing down of pair-rule oscillations and/

or gap gene sequential activation. Throughout the figure, for all embryo schematics: anterior to the left and posterior to the right. RNAi, RNA

interference; WT, wild-type.

https://doi.org/10.1371/journal.pgen.1009812.g004

Box 2. The reaction–diffusion model

Reaction–diffusion is a pattern formation mechanism in which a set of diffusible mole-

cules interact and spontaneously pattern an initially homogeneous tissue [148–151]. The

simplest and most popular instance of the reaction–diffusion model is the “local autoac-

tivation and lateral inhibition” mechanism [147,152], where a slowly diffusing molecule

(say, A; see Fig 5) can activate itself as well as a fast-diffusing molecule (say, B). Molecule

B in its turn can inhibit A’s activity. Due to the ability of molecule A to self-activate, ran-

dom fluctuations in A’s activity are occasionally amplified, forming localized domains of

high A concentration in space, activating in their turn, corresponding domains of B

activity. Due to the high diffusivity of molecule B, its activity domains then inhibit

nearby A activity domains. This eventually leads to the formation of periodic patterns of

A and B concentrations (Fig 5). The shapes of these activity domains (whether dotted or

striped) and their characteristics (e.g., spacing between activity domains) are determined

by system parameters and boundary conditions. The “local autoactivation and lateral

inhibition” model, however, is one instance of the reaction–diffusion model, and it has

been shown recently that the condition of differential diffusivities of molecules A and B

can be relaxed if systems with more than 2 components are utilized [149,153].

Reaction–diffusion models have been implicated in the formation of various patterns

during development, most of which are periodic [154,155]. The formation of nonperio-

dic patterns within the reaction–diffusion framework would require the employment of

large number of diffusing molecules and/or signaling pathways, a condition that is hard

to realize in most embryonic tissues.
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Finally, the reaction–diffusion model (Box 2; Fig 5), although had long been denied to play

a role in Drosohpila segmentation, was later suggested to stabilize and maintain the final

expression patterns of segment polarity genes [147].

Mechanisms of segmentation in vertebrates and short-germ insects

The predominant view is that segmentation takes place in vertebrates and short-germ insects

through a clock and wavefront mechanism (Box 3; Fig 6B, bottom right panel). This model

was first proposed by Cooke and Zeeman in 1976 to be the underlying mechanism of verte-

brate segmentation [156]. The basis of this model as originally formulated was that a catastro-

phe leading to abrupt changes in cellular properties takes place in the anterior PSM and

underlies somite formation. The periodicity of this catastrophe is controlled by an oscillator

that interacts with a slowly regressing maturation front, also known as the wavefront [156].

When a specific phase of the oscillator hits the wavefront, the catastrophe is triggered and

results in somite individualization. Experimental evidence for the clock and wavefront model
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Fig 5. The RD model (see also Box 2). In the RD model (top panel), a slow-diffusing molecule (molecule A) activates

itself as well as a fast-diffusing molecule (molecule B), which is also an inhibitor of A. The RD model can pattern

nonelongating (bottom left) as well as elongating tissues (bottom right). RD, reaction–diffusion.
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Box 3. The speed regulation model

Model

The speed regulation model is a synthesis of various patterning schemes that all rely on a

single core mechanism [3,174]: the ability of a morphogen gradient to modulate the

speed of a temporal sequence, either periodic or nonperiodic. In the nonperiodic version

of the speed regulation model, each cell within a tissue has the capacity to transit through

successive states (shown in different colors in Fig 6A, top; each state is defined by the

expression of 1 or several genes), where the speed of state transitions is regulated by a

molecular factor (shown in gray at the top of Fig 6A, and henceforth called a “speed reg-

ulator”). At very low or zero concentration of the speed regulator, state transitions

become so slow that states are indefinitely stabilized (Fig 6A, top left). If a group of cells

is subject to a gradient of the speed regulator (Fig 6A, bottom left), all cells go through

successive states, but with slower and slower speed as we go from higher to lower values

of the speed gradient. This gives the appearance that cellular states propagate as waves in

the high-to-low direction of the gradient. Note that such waves do not require diffusion

or cell–cell communication and, hence, are called “kinematic” or “pseudo-waves” [175–

180]. We call this version of the model “gradient-based speed regulation,” which is well

suited for patterning nonelongating tissues (Fig 6A, bottom left). The speed regulation

model can also pattern elongating tissues if the gradient is retracting as a wavefront

(henceforth called “wavefront-based speed regulation” model; Fig 6A, bottom right). In

the same fashion, the speed regulation can partition a tissue into periodic structures if

the sequential gene activation process is simply replaced with a clock (Fig 6B). Note that

in the wavefront-based version of the speed regulation, if the wavefront is in the form of

a tapered gradient (which can be seen as superposition of the gradient-based and the

wavefront-based modes of the speed regulation model), kinematic waves will propagate

from high to low concentrations of the gradient (opposite to the direction of wavefront

retraction) as the tissue is elongating.

The speed regulation model in development

Special cases of the speed regulation model have been previously implicated in pattern-

ing various embryonic tissues. A nonperiodic version of the wavefront-based speed reg-

ulation model (Fig 6A, bottom right) was termed the “progress zone” model [27,181]

and was (arguably [182,183]) suggested to pattern the vertebrate limb bud and was again

termed the “temporal regulation” model and implicated in Drosophila neurogenesis

[19,20].

The clock and wavefront model [156], originally suggested as an underlying mechanism

of vertebrate somitogenesis, is, in fact, a periodic version of the wavefront-based speed

regulation model (Fig 6B, bottom right). Careful inspection of the axis elongation phases

of vertebrate and insect segmentation indicated that segmentation genes in these species

are expressed in waves that propagate opposite to the direction of wavefront retraction

[4]. This observation was reconciled with the clock and wavefront model by assuming

that the wavefront is mediated by a tapered concentration gradient that modulates the

frequency of clock oscillations (a model developed by Julian Lewis in [4]), which is a

superposition of the gradient-based and wavefront-based modes of a periodic speed reg-

ulation model (Fig 6B). Indeed, FGF signaling was to found to fit the proposed criteria
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was not available until more than 20 years after its initial publication, when oscillations in the

expression of the transcription factor cHairy1 were discovered in the chicken PSM [4], and

later on, oscillations in the expression of pair-rule genes eve and odd were discovered in the

Tribolium SAZ [6,7]. Since then, molecular characterization of the clock and wavefront com-

ponents has lent credibility to the model.

for a speed regulator, as its activity level was found to modulate the speed of the segmen-

tation clock in an in vitro assay [184]. Similar oscillatory waves were observed during

the blastoderm stage of Tribolium segmentation [6]. These waves were hypothesized to

be mediated by a static frequency gradient, which is a periodic version of a gradient-

based speed regulation model (Fig 6B, bottom left) [6]. A similar model was used to

explain the oscillatory waves observed in PSM ex vivo cultures [185]. Nonperiodic ver-

sions of these models were then suggested to mediate gap gene regulation in Tribolium
[3]. Finally, a nonperiodic version of the gradient-based speed regulation model (Fig 6A,

left) was coined the “temporal/spatial patterning” model and was implicated in pattern-

ing the vertebrate neural tube [21] (although it is not clear if the underlying mechanism

is truly a speed regulation model or a dynamic version of the French Flag model; see [10]

for a discussion).
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fashion (top panel, right). At a very low or zero concentration of the speed regulator, cellular state transitions are

arrested (top panel, left). (A) Bottom panel: The SR model can operate in a gradient-based mode to pattern

nonelongating tissues (left) or in a wavefront-based mode to pattern elongating tissues (right). (B) If the processes

driving cellular state transitions is periodic (i.e., driven by a clock, which expression is shown in brown; top panel), the

SR model can generate periodic patterns in both elongating and nonelongating tissues (via a wavefront-based and

gradient-based modes of the model, respectively). SR, speed regulation.

https://doi.org/10.1371/journal.pgen.1009812.g006
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The clock. Irrespective of the details of the clock and wavefront model, which are still

actively debated, it is clear that a molecular oscillator is at work in the PSM of vertebrates and

SAZ of short-germ insects. Such oscillations in cyclic gene expression are thought to be gener-

ated by negative feedback loops with delays [157] (Fig 7A). In vertebrates, for instance, bHLH

Hes/Her transcriptional repressors can inhibit their own promoters [158]. Once induced, accu-

mulation of HES/HER protein leads to transcriptional silencing until such time as the proteins

are degraded and transcription can resume once more. Synchronization of individually oscil-

lating cells in vertebrates is then mediated by cell–cell coupling through Delta–Notch interac-

tions. Inhibiting Delta–Notch signaling disrupts traveling waves and leads to a salt and pepper

expression pattern of Hes/Her genes in both mouse and zebrafish [159–161]. In some (but not

all) arthropods, Notch signaling has been shown to be involved in segmentation [61,63,66–68].

In amniotes, oscillations of targets of the FGF and Wnt signaling pathways are thought to

arise from similar time-delayed negative feedback loops. FGF and Wnt ligands provide con-

stant pathway activation in the posterior PSM, resulting in the induction of target genes like

Dusp or Axin2, respectively. As these genes are involved in feedback inhibition (i.e., dual-spec-

ificity phosphatase (DUSP) dephosphorylates mitogen-activated protein (MAP) kinases;

AXIN2 is a component of the β-catenin destruction complex), their expression shuts down

pathway activity, and, hence, their own transcription [75,161]. However, negative feedback

loops cannot fully account for the mechanism of segmentation clock oscillations, as overex-

pressing constitutively active β-catenin does not impair Wnt or Notch oscillations in the

mouse PSM [162]. Thus, oscillations might be generated by noncanonical regulation of Wnt

and FGF targets. In mouse embryonic stem cells, desynchronized oscillations of many genes

with the same period as the mouse segmentation clock have been observed [163]. This suggests

that oscillatory gene expression dynamics might be more widespread than currently

appreciated.

In Tribolium, 3 primary pair-rule genes (eve, run, and odd) are thought (arguably, [12,113])

to be wired into a genetic clock that produces their oscillatory expressions [60] (Fig 4C). This

hypothesis is supported by RNA interference (RNAi) knockdown experiments: Knocking

down eve results in the down-regulation of both run and odd, knocking down run leads to the

down-regulation of odd and the overexpression of eve, and knocking down odd leads to the

overexpression of both eve and run [60] (Fig 4D). These experiments suggest that Tribolium
eve, runt, and odd are wired into a negative feedback loop in the same order as they appear in

the SAZ (Fig 4C). Knocking down 1 or more of the primary pair-rule genes has been found to

have a similar (but not identical) disruptive effect on the overall pair-rule pattern in other

short-germ insects as well [31,32,164,165]. So far, there is no evidence that Notch signaling is

involved in segmentation in Tribolium [67,68].

The wavefront. The segmentation clock must interact with the determination front (or

wavefront) to establish segment boundaries (Box 3). In vertebrates, this determination front is

positioned by gradients of FGF, Wnt, and RA signaling [166]. Experimentally manipulating

these gradients artificially displaces the wavefront. For instance, transient FGF inhibition shifts

the wavefront posteriorly and results in larger somites [91,167]. These signaling gradients are

formed by a combination of localized ligand production, progressive ligand decay, and ligand

diffusion. In the case of FGF signaling, Fgf8 mRNA is actively expressed at high levels in the

posterior progenitor zone [92]. However, once cells are specified as mesodermal and ingress

into the PSM, they cease to express this gene (Fig 7B). As the embryo continues to elongate

posteriorly and cells progressively acquire more anterior positions, dilution and degradation

of existing Fgf8 mRNA molecules give rise to the posterior–anterior gradient. FGF8 protein

decay has not been directly measured, but also certainly plays a role in establishing the
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Fig 7. Mechanisms of segmentation and regionalization in vertebrates. (A) Delayed negative feedback loop giving rise to oscillations in Hes/Her expression.

In the absence of transcriptional repression by autoinhibition (1), Hes/Her genes are activated and mRNA transcribed (2). This leads to HES/HER protein

translation (3) and accumulation. After a time delay associated with gene expression steps, HES/HER proteins reach sufficient levels to bind the Hes/Her

regulatory regions and inhibit transcription (4). Autoinhibition is relieved by HES/HER degradation (5) and the cycle begins again. (B) Mechanism of FGF

gradient formation. Only progenitor cells (pink) actively express the fgf8 ligand. Once cells ingress into the PSM (purple), they cease to transcribe fgf8.

Progressive degradation of fgf8 mRNA and protein leads to gradient formation as cells acquire more anterior positions within the paraxial mesoderm. (C)

Genomic organization of the HoxA cluster. HoxA1-13 genes are arranged colinearly within the cluster in the 30 to 50 orientation. Chromatin opening and gene

expression start at the 30 end and proceed in the 30 to 50 direction. Genes are colored according to the vertebral identities they specify. The 2 TADs (30 and 50) are

shown as gray triangles. Anterior Hox genes are activated by Wnt signaling (red), central Hox genes by Wnt/Cdx (green), and posterior Hox genes by Gdf11/

TGFβ (blue). PSM, presomitic mesoderm; TAD, topologically associated domain.

https://doi.org/10.1371/journal.pgen.1009812.g007
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gradient. In addition to this decay mechanism, FGF ligand diffusion takes place in the PSM

and contributes to gradient formation [94]. A similar mechanism probably underlies the

Wnt3a gradient, as this signaling molecule is only transcribed in the tail bud and posterior

PSM [73]. Given that Cdx genes are targets of both Wnt and FGF signaling in vertebrates, a

parallel posterior-to-anterior Cdx gradient is formed downstream of these pathways [168–

170]. Progressive Cdx mRNA and protein degradation also contributes to Cdx gradient forma-

tion [171]. In the case of the anterior-to-posterior RA gradient, the RA-synthesizing enzyme

Raldh2 is expressed in the somites and anterior PSM, whereas the RA-degrading enzyme

Cyp26A1 is expressed in the tail bud [172,173]. This gradient is thus formed by a source-and-

sink mechanism coupled with high RA diffusivity.

In Tribolium, the wavefront is thought to be encoded by Wnt and/or Cad gradients, since

their expressions overlap pair-rule oscillations in the SAZ [8,13] (see cad expression in Fig 2B;

compare with pair-rule gene expressions in Fig 2A). Once out of the domain of Wnt/Cad

expression, pair-rule oscillations are fixed into stripes. The expressions of opa and dichaete
were recently shown to form staggered wavefronts along with Wnt/Cad [13]. Whereas opa was

suggested to mediate the frequency doubling of pair-rule stripes upon their exit from the SAZ

(see below), it is not clear if opa and/or dichaete are involved in slowing down and arresting

pair-rule waves intro stripes, nor how they interact with the Wnt/Cad gradient.

Posterior Wnt activity in Tribolium is mediated by both wnt1 and wnt8 ligands, which are

expressed posteriorly in the embryo [85–87]. Wnt then activates cad resulting in a parallel Cad

gradient that itself activates wnt1, forming a positive feedback loop [8,85]. In the Tribolium
blastoderm, the Wnt/Cad gradient is first established by a maternal counter gradient of the

Wnt negative regulator axn and is additionally modified by the repressing effect of zen and otd
counter gradients [8,85]. Wnt/Cad gradient formation and retraction during the germ-band

stage is not well studied, but in principle could be mediated through RNA/protein decay, simi-

lar to FGF gradient formation in the vertebrate PSM.

Segment specification and polarity. In vertebrates, the determination front set up by

Wnt and FGF signaling pathways functions to endow cells with the competence to respond to

the clock signal and establish the future somite prepattern. Upon stimulation by the segmenta-

tion clock, cells in the determination front transiently stabilize Notch signaling in the form of

a bilaterally symmetric stripe of Notch activation that can be visualized by Notch intracellular

domain (NICD) expression [186]. Notch activity results in the TBX6-dependent expression of

Mesp1/2, the master regulators of the segmental program [187]. Following segment specifica-

tion, Mesp1/2 become restricted to the rostral part of the future somite, whereas Delta-like1

(Dll1) and NICD are restricted to the caudal part [77,188]. This results in the establishment of

somite rostral–caudal polarity. Mesp1/2 expression is eventually down-regulated through a

negative feedback loop involving its target Ripply2 and Tbx6 [189,190]. Somite polarity is sub-

sequently maintained by the transcription factors Tbx18 (rostral) and Uncx4.1 (caudal), which

functionally antagonize each other [191].

In Tribolium, as the expression waves of the primary pair-rule genes eve, run, and odd prop-

agate out of the SAZ, they slow down and eventually refine their expression patterns and

undergo frequency doubling [3,6,13,60]. In addition, primary pair-rule genes regulate the sec-

ondary pair-rule genes paired (prd) and sloppy-paired (slp) at the border of the SAZ [60]. The

later phase of pair-rule frequency doubling has been suggested to be mediated by opa, which is

expressed along with Wnt/Cad and dichaete in a staggered wavefront [13].

The refined expressions of the Tribolium primary and secondary pair-rule genes constitute

a combinatorial code that divides each clock-mediated pair-rule wave into 2 parasegments and

defines their polarities. The anterior of odd-numbered parasegments is demarcated by the

expression of segmental eve stripes and prd, whereas the anterior of even-numbered
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parasegments is demarcated by the expressions of eve, run, odd, and prd. The posterior of all

parasegments is demarcated by slp expression. This combinatorial code eventually regulates

the segment polarity genes en and wg at the anterior and posterior of each parasegment,

respectively [80], in a fashion similar to segment polarity gene regulation in Drosophila [192].

How do clock oscillations organize into traveling waves across vertebrate and short-

germ insect embryos?. When cHairy1 oscillations were first discovered in the chick PSM,

they were shown to be expressed in periodic waves that sweep the PSM from posterior to ante-

rior, progressively slowing down and becoming narrower as they approach the determination

front [4,193,194], an observation not accounted for in the original formulation of the clock

and wavefront model. These waves do not require diffusion or cell–cell communication, and,

hence, are called “kinematic” or “pseudo-waves” [4,195] (although the involvement of cell–cell

communication might still be necessary to ensure synchronous oscillations in neighboring

cells [159]). A simple model for how such waves are produced is to assume that the regressing

wavefront modulates the frequency of the segmentation clock in a dose-dependent fashion,

acting, consequently, as a regressing frequency gradient (Box 3) [4,179]. The mechanisms

underlying this frequency gradient are currently not well understood. Although there is some

evidence suggesting that traveling waves are initiated and controlled by FGF through a poste-

rior-to-anterior phase delay [196], traveling waves can still take place in the absence of an FGF

gradient [197]. Interestingly, different cyclic genes display distinct frequency profiles. For

instance, in mice, the Wnt target Axin2 displays rapid waves that slow down abruptly, whereas

waves of the Notch target Lfng travel more slowly [76].

The functional importance of the gradual slowing down of clock oscillations is unclear,

since, theoretically, the performance of the clock and wavefront model is basically the same

whether oscillations are arrested suddenly in a catastrophic event (as in the original formula-

tion of the model) or through a gradual slowdown [8,179]. However, during the blastoderm

stage, Tribolium pair-rule genes were shown to be expressed in waves in the absence of axis

elongation or a regressing wavefront (Fig 2A), a fact that cannot be explained by the original

formulation of the clock and wavefront, but rather by the action of a nonregressing frequency

gradient [6]. This highlights the importance of the gradual slowdown of clock oscillations in

certain scenarios. Oscillations of the segmentation clock, therefore, can be translated into peri-

odic spatial patterns either by a regressing wavefront or by a nonregressing frequency gradient,

a fact that is elucidated in a unified model for time-based patterning called the “speed regula-

tion” model (Box 3) [3,174]. The model describes a core regulatory mechanism in which a gra-

dient of a molecular factor (called the speed regulator) regulates the speed of the segmentation

clock (or any temporal process). A nonregressing gradient of this speed regulator can by itself

induce oscillatory waves, and, hence, pattern nonelongating tissues like insect blastoderms

(Fig 6B, left bottom panel; Box 3), whereas a regressing gradient of the speed regulator can pat-

tern elongating tissues like insect germ-bands and vertebrate PSMs (Fig 6B, bottom right

panel; Box 3). Interestingly, the formation of the prechordal and head mesoderm in vertebrates

is associated with 2 cycles of oscillatory gene expression that take place in the epiblast without

a regressing wavefront and might be conceptually similar to pair-rule pulses in the Tribolium
blastoderm [198].

Hence, a single model can explain both blastoderm and germ-band segmentation in short-

germ insects [3]. The Wnt/Cad gradient has been suggested to act as a speed regulator for the

pair-rule oscillator in Tribolium [3,8]. Experimentally manipulating the Wnt/Cad gradient in

several genetic backgrounds led to stereotypical changes in the spatiotemporal dynamics of

pair-rule waves [8] (Fig 4G). In most cases, reducing the intensity of the Wnt/Cad gradient led

to slower pair-rule wave dynamics, shifting the Wnt/Cad gradient anteriorly or posteriorly led

to a concomitant anterior or posterior shift of pair-rule waves, respectively, and stretching the
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Wnt/Cad gradient led to a stretch in pair-rule waves (Fig 4G). Using computational modeling,

these observations were shown to be consistent with the speed regulation model [3,8]. How-

ever, these conclusions are based on correlations between the Wnt/Cad gradient and pair-rule

wave dynamics, and it is still unclear whether other factors are also involved (like opa and

dichaete [13]) or what molecular mechanisms underlie such speed modulation of segmenta-

tion clock oscillations (more on that below). Most of these observations are made during the

early phase of segmentation in the Tribolium blastoderm, where other maternal and zygotic

gradients exists (e.g., otd and zen) that could be directly involved in regulating pair-rule gene

regulation. Moreover, it is unclear if the same model is applicable to later stages of segmenta-

tion in the germ-band. However, in axn RNAi embryos, the cad gradient was shown not to

regress in the Tribolium germ-band. Concomitantly, gap gene waves (discussed in section

“Mechanisms of regionalization in short-germ insects”), which are nonperiodic version of

pair-rule waves, were observed to continue propagating and shrinking without being arrested

into stable expression domains in this genetic background, as predicted by speed regulation

model [3]. This suggests that regionalization, and potentially segmentation, rely on the same

core mechanism in both the blastoderm and the germ-band.

In vertebrates, it has recently been reported that pharmacological inhibition of FGF leads to

a dose-dependent lengthening of the oscillatory period for the Lfng reporter LuVeLu in mouse

PSM explants [184]. Furthermore, treatment of mouse and chicken PSM with Wnt inhibitors

can alter the frequency profile of traveling waves [199]. These studies suggest that gradients of

FGF and Wnt signaling might act as speed/frequency regulators in vertebrate embryos similar

to how Wnt/Cad gradients have been suggested to act in short-germ insects [8].

In line with the role of Wnt/FGF signaling in frequency modulation in amniotes, sustained

oscillations were observed in mouse PSM explants cultured under experimental conditions that

maintained a uniform level of Wnt and FGF activities, without any sign of variability in frequency

[197]. On the other hand, explants under normal conditions, in which Wnt and FGF gradient are

established, a gradient of oscillation frequencies is observed [185]. Interestingly, however, in the

absence of Wnt and FGF gradients, oscillatory waves are still observed in mouse PSM explants

[197]. These waves, however, show no sign of progressive reduction in length as seen in explants

cultured under normal conditions. This indicates that in the absence of a frequency gradient (pre-

sumably mediated by Wnt/FGF signaling gradient), cells still self-organize into spatial waves,

potentially through the emergence of phase differences between neighboring cells.

But if the frequency of the segmentation clock is modulated along the AP axis via a speed

regulator gradient, how could this be achieved at the molecular level? In a recently devised

model of AP patterning in Tribolium [3,200], segmentation genes where proposed to be wired

into 2 different gene regulatory networks: a clock network and a multistable gene network (Fig

4I). If a Wnt/Cad speed regulator activated the clock network but repressed the multistable

network, a gradual slowdown in oscillation will result along the speed regulator gradient (Fig

4I). A similar model was suggested for gap gene regulation in Tribolium (replacing the clock

with a genetic cascade). In line with this model, reactivating the gap gene hb all over the

embryo resulted in 2 distinct responses [201]. Within the Wnt/Cad expression (defining the

SAZ), the gap genetic cascade was reset, and the whole gap gene sequence was reproduced.

Anterior to the SAZ, the already formed gap genes expressions were erased [10] (Fig 4H). The

2 different responses of the gap gene network to the same perturbation within and outside of

the SAZ indicates that gap genes are regulated by 2 different genetic programs: one within the

SAZ and one outside and were suggested to be mediated by 2 different groups of enhancers

active at the 2 regions [3,10]. This is in line with the observation that the gap gene Kr in Dro-
sophila is regulated by 2 enhancers, one initiates its expression and the other maintains it [52].

Interestingly, open chromatin at early acting enhancers in the Drosophila embryo has been
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shown to be mediated by the pioneer factor Zelda and at late-acting enhancers by the pioneer

factor Opa [143,144]. One could imagine then a scenario in which a gradual switch between

early and late-acting enhancers in Tribolium to be mediate by opposing gradients of opa [13]

and zelda [145], where the expressions of opa and/or zelda are regulated by (or interact with)

the Wnt/Cad gradient. Interestingly, in vertebrates, it was shown that some enhancers and/or

genetic programs mediate the initiation of segmentation clock waves posteriorly, and others

mediate their anterior expressions [202–204].

In an alternative hypothesis, the period of the segmentation clock could be spatially modu-

lated by a protein production time delay that increases along AP axis [205]. In yet another

hypothesis, the period of the segmentation clock is regulated by the intercellular coupling delay.

In vertebrates, individual PSM cells form a system of phase-coupled oscillators whose synchro-

nization is mediated by Delta–Notch signaling [159–161]. The strength of this coupling has

been proposed to modulate the period of collective oscillations [206,207], and, therefore, a gra-

dient of coupling strength could mediate the observed frequency gradient. In zebrafish, disrupt-

ing Notch signaling either genetically or pharmacologically leads to a moderate increase in

somitogenesis and clock period [207]. In Lfng mutant mice, the coupling delay is shortened,

and oscillatory period is concomitantly decreased in intact PSM tissue but not isolated PSM

cells [206]. Consistently, primary mouse PSM cells and in vitro–derived human PSM cells both

maintain their oscillatory period when cultured at low densities such that no cell–cell signaling

can take place [184,206]. The HES7 oscillatory period is unchanged even when isolated cells are

treated with Notch inhibitors or obtained from Lfng mutant mice [184,206]. These results indi-

cate that the segmentation clock pacemaker acts in a cell autonomous way, but the collective

period can be modulated in the tissue context through cell–cell coupling.

Inter- and intraspecies plasticity of segmentation clock frequency. Clock-based seg-

mentation programs enable the conversion of periodic temporal patterns (oscillations) into

spatial patterns (segments). However, the pacemaker mechanisms that control the periodicity

of the clock itself remain poorly understood. Strikingly, the oscillatory period of cyclic genes

displays great plasticity in both vertebrates and arthropods. First, traveling waves slow down

and become narrower as they reach the anterior part of the PSM or SAZ as described above.

Second, the somitogenesis period in vertebrates is not constant throughout axis formation but

rather increases gradually as the caudal most somites are laid down [208]. An extreme example

is the marsupial Monodelphis domestica, which displays a lengthening in somitogenesis period

from 1 hour at cervical levels to 4.5 hours at caudal levels [209]. Similar observations have

been made in Tribolium, where the rate of segment addition varies along the AP axis [57,210].

Like the slowdown of traveling waves along the PSM/SAZ, and in line with the speed regu-

lation model (Box 3), the gradual lengthening of clock period toward the end of axis elongation

may potentially be explained by changes in the level of speed regulators with time. Axis termi-

nation in vertebrates involves the down-regulation of Wnt and FGF signaling, which may

account for the longer somitogenesis period at these stages [117].

In addition to clock frequency variation along the AP axis, the period of the segmentation

clock varies significantly across species. The segmentation clock oscillates every 30 minutes in

zebrafish [208], 1.5 hours in chicken [4], 2.5 hours in mouse [211], 3 hours in Tribolium [6],

and 5 hours in human [72,184]. This parameter is strongly correlated with developmental

speed, such that more rapidly developing species like zebrafish exhibit shorter clock periods.

Furthermore, the somitogenesis period, like developmental rate, is temperature sensitive. Rais-

ing embryos at different temperatures leads to scaling of the clock period in both vertebrates

and arthropods [6,208,212,213]. This tight coupling between segmentation clock period and

developmental speed has resulted in the emergence of somitogenesis as a model for the study

of allochrony [214].
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Currently, the predominant hypothesis concerning the segmentation clock pacemaker in

vertebrates is based upon the Hes/Her time-delayed negative feedback loops that are thought

to underlie cyclic gene oscillations [158]. The cumulative time of gene expression steps such as

transcription, splicing, nuclear export, and translation of Hes/Her genes are referred to as the

transcriptional delay and represent the total time delay before feedback inhibition can take

place [157]. These transcriptional delays have been proposed to regulate the oscillatory period

across species. Indeed, transcriptional delays for Hes/Her orthologs are longer in vertebrate

species with slower clock period, and removing introns from the mouse Hes7 gene to acceler-

ate splicing results in a moderate acceleration of oscillations [215,216]. These interspecific dif-

ferences in Hes/Her gene expression kinetics are most likely the result of larger differences in

the global rates of biochemical reaction speeds between species. Recent studies have shown

that the production and degradation of many proteins, not only Hes/Her proteins, is acceler-

ated in mouse PSM cells compared to human cells [214]. Similarly, the global half-life of the

mouse proteome is significantly shorter in mouse neural progenitors than human [217]. It

thus seems that species-specific segmentation clock periods are the result of global scaling in

gene expression and protein turnover rates. Further work is required to understand the mech-

anisms that underlie and regulate species-specific biochemical reaction speeds.

These studies also suggest that Hes/Her genes may not represent the core segmentation

clock pacemaker, at least in mouse. Rather, the clock period may be an emergent property of

system-wide kinetics. In line with this hypothesis, mice carrying null alleles of Hes7 still exhibit

residual segmentation, and the period of Wnt oscillations remains unchanged [218,219].

Mouse embryonic stem cells where the entire Hes7 locus has been swapped for its human

ortholog differentiate into PSM cells that oscillate with the characteristic mouse-specific

period, thus confirming that differences in Hes7 genomic sequence cannot explain the inter-

species differences in clock period [214]. Hes7 is thus unlikely to be the fundamental pace-

maker for the mammalian segmentation clock. Alternatively, other Hes genes may work

redundantly with Hes7 as pacemakers, thus complicating the interpretation of the single

mutant phenotype.

Mechanisms of regionalization in short-germ insects

As discussed earlier, the predominant model of gap gene regulation in the long-germ insect

Drosophila is based on a French Flag mechanism, in which the maternal Hb gradient acts as a

master regulator. The maternal Hb gradient, however, plays less prominent role in Tribolium:

Flattening the maternal Hb gradient in Tribolium (by knocking down nos;pum) only slows

down the onset of the sequential activation of gap genes [9]. Alternatively, the posterior-to-

anterior gradient of Wnt/Cad was proposed to be a master regulator of gap genes in Tribolium
[3,201]. Depleting cad by RNAi completely abolishes gap gene expressions in Tribolium, and

manipulating the Wnt/Cad gradient in several genetic backgrounds leads to stereotypical

changes in the spatiotemporal dynamics of gap gene expression waves similar to those

observed for pair-rule genes in the same genetic backgrounds [3,8]. These observations led to

the proposal that gap genes, similar to pair-rule genes, are regulated according to the speed

regulation model, in which Wnt/Cad acts as a speed regulator (Box 3) [3]. In this model, gap

genes are wired into a genetic cascade that mediates the observed sequential activation of gap

genes (Fig 4E). The wiring of gap genes into a genetic cascade is supported by RNAi knock-

down experiments (Fig 4F): Knocking down one gap gene leads to the down-regulation of

downstream gap genes and the up-regulation of upstream gap genes [110–113,220] (similar

gap gene phenotypes were also reported in the milkweed bug [221]). The model then presumes

that the Wnt/Cad gradient acts to modulate the speed of the genetic cascade, and, hence, the
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speed of the sequential activation of gap genes. During the blastoderm stage, the cad gradient

is nonregressing and induces sequential waves of gap genes according the nonperiodic and

gradient-based version of the speed regulation model (Box 3; Fig 6A, bottom left). During the

germ-band stage, the cad gradient starts to regress, producing more gap gene waves, where

gene expression patterns left behind by the cad gradient are arrested into stable gene expres-

sion domains [3], according to the nonperiodic and wavefront-based version of the speed reg-

ulation model (Box 3; Fig 6A, bottom right).

Gap gene expressions in Tribolium are the main regulator of downstream Hox genes. Little

experiments, however, have been done to study Hox gene regulation in Tribolium other than

those showing their disruption upon gap gene knockdowns (summarized in [33,113]), and it is

unclear if Hox genes are involved in axis termination in this insect as the case in vertebrates.

Mechanisms of regionalization in vertebrates

In most vertebrates, genome duplications have resulted in 4 separate Hox clusters (HoxA-D)

[222]. Mammalian genomes thus encode 39 individual Hox genes organized into 4 clusters

and 13 paralogous groups [222]. There is extensive functional redundancy between the para-

logs, so much so that deleting entire Hox clusters does not impair segmental identity

[223,224]. Despite the duplication of Hox gene clusters, colinear expression within each cluster

has been maintained. The regionalization of segments by Hox genes has been most intensively

studied with regard to patterning of the vertebral column in the axial skeleton. The spine is

divided into morphologically and functionally distinct regions corresponding to the cervical,

thoracic, lumbar, sacral, and caudal vertebrae. While the specific axial formula varies between

species, the role of Hox genes in specifying distinct regional identities appears to be conserved

(Fig 7C). Specifically, Hox4 genes control patterning of the cervical somites that form the neck

[225], whereas the Hox5, Hox6, and Hox9 paralogous groups are involved in the development

of thoracic segments [226]. Moreover, Hox10 paralogs are required for the specification of

lumbar identity and are capable of suppressing rib formation when overexpressed in the tho-

racic region [227]. Similarly, Hox11 genes are essential for sacrum specification and Hox13
genes correspond to the caudal vertebrae [227,228].

The Hox gene expression domains that determine axial identity are thought to be estab-

lished by a “Hox clock” that drives the sequential activation of Hox genes in the progenitor

domain [11]. This sequential activation follows the order of the arrangement of Hox genes

within each cluster and is thus temporally colinear (Fig 7C) [106,229]. Hox expression in the

progenitor domain controls the timing of mesodermal cell ingression, such that progenitors

expressing only anterior Hox genes ingress earlier and end up in more anterior positions

along the body axis [116,117]. Posterior Hox genes (paralogs 9 to 13) delay cell ingression in a

graded fashion, with Hox13 paralogs displaying the strongest effect and also triggering axis ter-

mination [117]. Thus, temporally colinear Hox expression coupled with timed cell ingression

in the progenitor domain set up the nested spatial colinearity that confers axial identity. Once

progenitor cells ingress, they maintain their Hox gene expression, and in this way, the sequen-

tial activation of Hox genes is translated into stable spatial domains [116,230]. This mechanism

is similar to the clock and wavefront, where cell ingression acts as a determination front that

translates the ticks of the Hox clock into spatial pattern (or, equivalently, similar to the nonper-

iodic wavefront-based mode of the speed regulation model; see Box 3 and Fig 6A, bottom right

panel).

The Hox clock. What drives the sequential activation of Hox genes is highly debated. Sev-

eral lines of evidence argue for a functional relevance of the fact that the 30 to 50 organization

of the Hox cluster matches the temporal sequence of Hox gene activation. All genes in a Hox
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cluster are initially in a compact chromatin state that prevents transcription [231]. Opening

the chromatin then proceeds sequentially beginning at the 30 end [229]. The progressive open-

ing of the chromatin is mediated by the clearing of repressive histone modifications such as

H3K27 trimethylation, which are laid down and maintained by the Polycomb repressive com-

plex [231]. These inactivating histone marks are, in turn, replaced by activating ones, including

H3K4 trimethylation. The “open for business” model suggests that there might be an intrinsic

mechanism that mediates this progressive opening of chromatin with time, and consequently,

the sequential activation of Hox genes [11,232]. Indeed, the order of Hox genes within a Hox

cluster is important. Flipping the orientation of a HoxD cluster such that HoxD13 gene

becomes located 30 in the cluster leads to embryonic lethality [233]. Furthermore, chromatin

architecture is crucial to the correct sequential activation of Hox genes, as insulation through

CTCF establishes topological boundaries that prevent premature expansion of the active

domain [234]. In addition, mouse Hox clusters were found to be in between 2 separate topo-

logically associated domains (TADs) that have been proposed to be important for their colin-

ear activation [235].

However, it is so far unclear whether chromatin regulation is the main driver of Hox colin-

earity or just a safeguard to prevent the accidental premature activation of more posterior Hox

genes, which exhibit dominant negative effects over anterior ones. It has been recently shown

that a relay mechanism (or a genetic cascade) composed of cross-regulatory interactions

between Wnt, Cdx, and Gdf11/TGFβ acts upstream of Hox genes and (partly) mediates their

collnear activation [229,236–238], reminiscent of the genetic cascade that drives the sequential

activation of gap genes in Tribolium. Early Hox genes (which are anteriorly expressed and

located at 30 end of the cluster) are activated by Wnt signaling through asymmetric distribution

of Wnt-responsive enhancer sequences on the 30 side of the cluster [229]. Later on, Wnt acti-

vates Cdx, which, in turn, activates more centrally located Hox genes through binding sites

within the Hox cluster [236]. Finally, more 50-located Hox genes are activated by Gdf11/TGFβ
signal in the tail bud [237,239]. Hence, a sequence of Wnt, Cdx, and TGFβ signals mediates

the sequential activation of the 30, central and 50 subdomains of the Hox cluster, respectively

(Fig 7C). The sequential activation of Hox genes within each subdomain is so far not well

understood and could rely on an intrinsic mechanism of progressive chromatin opening and/

or a cross-regulatory scheme between Hox genes [240].

Hox gene waves. Hox genes of paralogous groups 1 to 8 are first expressed sequentially in

a salt-and-pepper pattern in the posterior region of the primitive streak [116]. The expression

domain for each Hox gene then expands anteriorly until it encompasses the entirety of the

primitive streak and adjacent epiblast and part of the neural plate [230,241]. Anterior Hox

genes are thus initially expressed in waves that sweep the epiblast from posterior to anterior (a

phenomenon termed “spreading”), reminiscent of the nonperiodic waves of gap genes in

short-germ insects. It is not known how these waves are induced, but could possibly be due to

temporal modulation of Hox gene activation by early expressed Wnt and Cdx genes in the epi-

blast (see gradient-based mode of the speed regulation model, Box 3; Fig 6, left bottom panel)

or alternatively through a French Flag model (Box 1). Interestingly, loss of Cdx results in pos-

terior shifts and delay in timing of central Hox genes [242], reminiscent of experiment in

which cad concentration is reduced in Tribolium (Fig 4G) [3,8]. Moreover, levels of Fgf and

Gdf11 were recently found to modulate the speed of sequential Hox gene activation in differ-

entiating human pluripotent stem cells [243].

Hox genes and axis termination. In addition to specifying tail identity, the Hox13 paralo-

gous group has been proposed to control axis termination. In mice, loss of Hoxb13 leads to the

formation of extranumerary caudal vertebrae [228], while its overexpression results in prema-

ture truncation of the tail [244]. Similarly, zebrafish embryos that inducibly overexpress
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Hoxa13b also display severe axis truncation [245]. Through a genetic cascade involving the

factors Gdf11 and Lin28, the paralogs Hoxb13 and Hoxc13 trigger a reduction in the posterior

progenitor pool of the tail bud [239]. As this pool is progressively depleted, axis extension

slows down and is eventually halted. The speed of somitogenesis, nevertheless, remains stable,

such that the length of the PSM is reduced with every cycle of somite formation until all para-

xial mesoderm is segmented. The mechanisms underlying this process involve the down-regu-

lation of Wnt and FGF signaling in the tail bud by Hox13 paralogous group genes [117]. At the

same time, these terminal Hox genes also inhibit expression of the RA-degrading enzyme

Cyp26A1 in the chicken and fish tail bud, and, hence, up-regulate RA signaling [244,246]. Axis

termination in vertebrates is thus mediated by a decrease in Wnt and FGF signaling coupled

with an increase in RA signaling, both of which are triggered by Hox13 genes [117]. A similar

mechanism might mediate the termination of AP patterning in short-germ insects. Indeed, a

reduction in cad expression is observed by the end of germ-band elongation in Tribolium via

an unknown mechanism, which could be mediated in principle by posteriorly expressed gap

genes. Indeed, perturbing the gap gene hb leads to supernumerary segment formation in both

Tribolium [10] and the silk moth Bombyx mori [247], indicating an interaction between gap

and pair-rule genes either directly or indirectly through regulating the Wnt/Cad gradient.

Coupling of segmentation and regionalization

Segments and fates along the AP axis of insects and vertebrates have species-specific registry.

Any misalignment between regionalization and segmentation leads to incorrect segmental

fates (homeotic transformation) that potentially leads to severe consequences on the organism

fitness. Hence, the processes of segmentation and regionalization are usually coupled. How

this coupling is carried out is well understood in Drosophila, where gap genes provide instruc-

tive cues for both segmentation (by regulating pair-rule genes) and regionalization (by regulat-

ing Hox genes). Pair-rule genes also coregulate Hox genes, providing an additional

mechanism for coupling segmentation and regionalization. In Tribolium, although gap genes

and pair-rule gene regulation represent 2 separate processes running in parallel, limited cou-

pling between segmentation and regionalization has been documented [112,113].

In vertebrates, segmentation and regionalization are linked together through their common

coupling to axial elongation. As described above, axial elongation takes place in the posterior

progenitor domain, which corresponds to the regressing primitive streak at early stages and to

the tail bud later in development. This posterior progenitor domain is not only the source of

PSM cells but is also responsible for setting up the Wnt/FGF gradients that control segmenta-

tion and the point of origin for segmentation clock oscillations. At the same time, Hox gene

expression patterns are also set up in this posterior progenitor domain, where they control the

timing of mesodermal cell ingression [117]. This means that the groups of cells segmented into

somites in the anterior PSM had been already patterned to express their corresponding Hox

code much earlier in development. It has been suggested that the final allocation of somite

axial identity is directly coupled to the segmentation clock, as several Hox genes display oscil-

latory expression in the amniote PSM and shifting somite boundaries leads to repositioning of

Hox boundaries [82,248]. Similarly, loss of Hoxb6 leads to somite formation and segmentation

clock defects in tail bud-stage mouse embryos [249]. In contrast, conflicting evidence from

slowly segmenting zebrafish mutants, which retain proper axial identity [250], has challenged

the notion of direct coupling between the segmental program and regionalization. It thus

remains unclear to what extent the segmentation clock plays a role in positioning Hox bound-

aries during somite formation.
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Toward reconciliation of simultaneous and sequential models of

patterning

Although the long-germ insect Drosophila and the short-germ insect Tribolium utilize the

same set of genes to mediate segmentation and regionalization of their AP axis, neither the

gene expression dynamics nor the underlying patterning mechanisms seem to be similar in

the 2 species. Specifically, both gap and pair-rule genes arise as sequential waves in Tribolium,

whereas they arise more or less simultaneously in Drosophila (Fig 2). However, upon closer

inspection, we find interesting similarities between patterning events in both species that hold

promise for a reconciliation and a possible evolutionary path between sequentially segmenting

(short-germ) and simultaneously segmenting (long-germ) insects.

Although gap gene expressions have been reported to arise more or less simultaneously in

the blastoderm of Drosophila, recent studies using carefully staged in situ staining and live

imaging demonstrated that gap gene domains, although arising de novo early on, undergo ste-

reotypical posterior to anterior shifts [50,52] (Fig 2C), reminiscent of the wave dynamics of

gap gene expressions in Tribolium (Fig 2B). This might be viewed as a manifestation of sequen-

tiality in the gap gene activation in Drosophila, since a shifting border between 2 expression

domains entails that cells at this border switch from expressing one gene to another [9,51].

This observation indicates that gap genes in Drosophila might after all be wired into a genetic

cascade [9] (or a nonperiodic “oscillator” [51]) that mediates this limited form of sequentiality.

Interestingly, gap gene mutant phenotypes in Drosophila further support this hypothesis: The

loss of one gap gene domain (in a mutant of that gap gene) leads to the down-regulation of the

gap gene domain immediately posterior to it and overexpression of the gap gene domain

immediately anterior to it (Fig 8A) [9], reminiscent of the gap gene knockdown phenotypes in

Tribolium (Fig 4F) [251–255] (see summaries of Drosophila gap gene mutant phenotypes in

[9,34]). Based on these observations, a model was recently suggested to reconcile gap gene reg-

ulation in Tribolium and Drosophila [9,51]. In this model, the gap genes in Drosophila, like in

Tribolium, are wired into a genetic cascade (Fig 8A). However, rather than regulating the

speed of this genetic cascade via the posterior-to-anterior gradient of Cad (like in Tribolium;

Fig 8B, left), the maternal Hb gradient pre-sets the Drosophila gap gene cascade at different ini-

tial phases along the AP axis to mediate simultaneous and fast patterning (Fig 8B, right)

[3,9,51]. The same mechanism of gap gene initialization by a maternal Hb gradient was

observed, to a lesser extent, during the blastoderm phase of Tribolium development [9].

Pair-rule gene regulation in Tribolium and Drosophila seem to be harder to reconcile. In

Drosophila, pair-rule gene regulation heavily depends on instructive cues from upstream gap

genes, whose expression patterns form significantly earlier than those of pair-rule genes. On

the other hand, gap and pair-rule genes are expressed in parallel in Tribolium with limited

interaction between the 2 gene classes, although the nature and extent of this interaction is cur-

rently unclear. A possible bridge between segmentation in the 2 species is the zebra enhancers

of pair-rule genes in Drosophila. As discussed earlier, while each one or pair of pair-rule stripes

in Drosophila is initially mediated by a stripe-specific enhancer, there exist late-acting “zebra

enhancers” that drive the full 7-striped pattern of each pair-rule gene. While zebra enhancers

were hypothesized to mediate the stabilization of the pattern already formed by the stripe-spe-

cific enhancers, they could have evolutionarily originated as a “clock enhancer” to mediate

pair-rule oscillations in more ancestral sequentially segmenting insects (like Tribolium) [12].

The stripe-specific enhancers in these ancestral insects (and possibly Tribolium) could act later

on to stabilize clock-oscillations into stripes (in a fashion similar to the 2-network model of

gap gene regulation; Fig 4I), and possibly coupling their positions to that of gap gene expres-

sion domains. Another possibility is that in sequentially segmenting insects like Tribolium, the
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periodic expression of pair-rule genes is not generated by a dedicated clock at all, but by

instructive cues from gap gene expressions. However, the complete breakdown of the periodic

pair-rule expression upon knocking down any of the primary pair-rule genes in Tribolium
[60], and the limited effect that gap gene knockdowns have on pair-rule expressions disfavors

this model. A combination of a clock-based model and a model based on an instructive role by

gap genes is still a possibility. In yet another model, ancestral insects like Tribolium might lack

a full set of stripe-specific enhancers (although one study reports the existence of such ele-

ments for the pair-rule gene hairy in Tribolium [256]), and in the path to the evolution to a

Drosophila-like mode of segmentation, stripe-specific enhancers regulated by gap genes might

have then been added one by one, initially to ensure the robustness of segmentation, but later
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Fig 8. A model toward reconciliation of simultaneous and sequential modes of AP patterning in insects. (A) Right:

In a loss of function mutant of a Drosophila gap gene (here shown only Dm-kni mutant), gap gene expression anterior

to it is extended (here Dm-Kr), and gap gene expression posterior to it is missing (here shown for Dm-gt). This is

reminiscent of the gap gene phenotypes in Tribolium (compare with Fig 4E and 4F) and suggests that gap genes in

Drosophila are wired into a genetic cascade as well (see the sketch of a gene network to the left; note that this is a

parsimonious wiring explaining observed gene expression dynamics in WT and mutant phenotypes, where wiring

might differ from the one shown, especially that most gap genes are known to act as repressors rather than activators).

(B) A model for the evolution of gap gene regulation in insects from a sequential mode of patterning (like in

Tribolium) to a simultaneous mode (like in Drosophila). Left: Typical speed regulation model for producing

nonperiodic patterns (Box 3), in which the leading gene in the gene sequence (blue) is initially uniformly expressed.

Right: Expressing the leading gene in the gene sequence (blue) in a graded fashion result in speedy and seemingly

simultaneous patterning [9]. AP, anterior–posterior.

https://doi.org/10.1371/journal.pgen.1009812.g008
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in evolution hijacked the process to mediate a fast and simultaneous mode of segmentation as

observed in Drosophila [12].

Conclusions and prospects

As highlighted in this review, vertebrates and short-germ insects share an impressive number

of features related to segmentation and regionalization mechanisms (see a summary compari-

son in Fig 9). Patterning takes place as the axis elongates at the posterior end. The periodicity

of segments is established by a genetic oscillator, whose frequency progressively decreases

from posterior to anterior, generating traveling waves of gene expression. A determination

front set by long-range signaling gradients freezes this periodic pattern into segmental units.

Regionalization genes are activated sequentially under the influence of posteriorly localized

gradients and are translated into nonperiodic expression patterns that divide the AP axis into

different fates. These features are strikingly similar to patterning events in other tissues and

organisms, suggesting that patterning with clocks and genetic cascades might be a widespread

mechanism in development (Box 3).

Differences in segmentation and regionalization between insects and vertebrates are few

but meaningful, such as the absence of both double-segmental patterning and gap gene equiva-

lents in vertebrates. It is not possible to conclude whether these similarities and differences are

the result of deep homology or convergent evolution. Nevertheless, if the urbilaterian ancestor

was indeed segmented, it potentially patterned its segments sequentially through Hairy/pair-

rule gene oscillations that interacted with a regressing determination front positioned by Wnt.

There remain many open questions in the field of segmentation and regionalization in both

insects and vertebrates. What is the molecular mechanism underlying the speed regulation of

the segmentation clock and regionalization genetic cascade? How is the segmentation clock

wired? The amniotes segmentation clock seems to be composed of several constituents (Hairy

and components of the Wnt, FGF, and Notch signaling pathways). Are these constituents

independent, coupled (as indeed shown for Wnt and Notch), or all part of the same clock? Is

the insect pair-rule clock composed of multiple coupled clocks? Is the wiring of this clock evo-

lutionary flexible? [28–31]. How is segmentation and regionalization coupled? How are all

these processes regulated at the cis-regulatory level? Finally, how could the sequential mode of

AP patterning found in ancestral short-germ insects have evolved into a simultaneous one like

that found in long-germ insects (e.g., Drosophila)? Several models for short- to long-germ evo-

lution have been suggested in this and other articles [9,12,51] that still, however, await rigorous

experimental verification.

In vertebrates, answering these questions has been hindered in part by the complexities of

culturing and manipulating somitogenesis stage embryos, especially in the case of mammalian

species. As an alternative, in vitro models of the mammalian segmentation clock have now

been established [72,184,257]. Both the oscillatory gene expression of the segmentation clock

and the temporally colinear activation of Hox genes have been recapitulated in 2D PSM cul-

tures and 3D gastruloids derived from mouse and human pluripotent stem cells [184,258].

Traveling waves of the segmentation clock accompanied by a determination front can be gen-

erated in 3D PSM organoids as well as gastruloids [72,257,259]. In the case of gastruloids, spa-

tial colinearity in the form of nested Hox expression domains is also observed [258]. In

parallel, the genetic toolkit for sequentially segmenting insects such as Tribolium continues to

grow. A tissue culture assay, RNAi screen, and a growing number of live imaging and genomic

editing techniques have been developed for Tribolium [7,260–267]. Recently, a framework for

enhancer discovery in Tribolium has been implemented [268], promising for a deeper under-

standing of segmentation and regionalization at the cis-regulatory level. When combined with
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the wealth of cis-regulatory data already available for Drosophila segmentation, this opens an

avenue for understanding the evolution of patterning mechanisms at the molecular level.

These novel systems and techniques hold great promise to enable the detailed dissection of

mechanisms controlling segmentation and regionalization in vertebrates and insects, and

more generally, embryonic patterning mechanisms that rely on the spatial regulation of oscil-

latory and sequential gene activities.
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42. Bénazéraf B, Francois P, Baker RE, Denans N, Little CD, Pourquié O. A random cell motility gradient
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sion of the gap genes Krüppel and knirps in the early Drosophila embryo. Nature. 1990; 346:577–80.

https://doi.org/10.1038/346577a0 PMID: 2377231

125. Struhl G, Johnston P, Lawrence PA. Control of Drosophila body pattern by the hunchback morphogen

gradient. Cell. 1992; 69:237–49. https://doi.org/10.1016/0092-8674(92)90405-2 PMID: 1568245

126. Yu D, Small S. Precise registration of gene expression boundaries by a repressive morphogen in Dro-

sophila. Curr Biol. 2008; 18:868–76. https://doi.org/10.1016/j.cub.2008.05.050 PMID: 18571415

127. Rivera-Pomar R, Lu X, Perrimon N, Taubert H, Jäckle H. Activation of posterior gap gene expression
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expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta.

Development. 1995; 121:2407–18. PMID: 7671806

189. Morimoto M, Sasaki N, Oginuma M, Kiso M, Igarashi K, Aizaki K, et al. The negative regulation of

Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Devel-

opment. 2007; 134:1561–9. https://doi.org/10.1242/dev.000836 PMID: 17360776

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009812 October 14, 2021 38 / 42

https://doi.org/10.1016/j.ydbio.2006.08.040
http://www.ncbi.nlm.nih.gov/pubmed/16982047
https://doi.org/10.1016/s0925-4773%2801%2900338-0
https://doi.org/10.1016/s0925-4773%2801%2900338-0
http://www.ncbi.nlm.nih.gov/pubmed/11335109
https://doi.org/10.1006/dbio.2001.0446
http://www.ncbi.nlm.nih.gov/pubmed/11784033
https://doi.org/10.1016/s0925-4773%2803%2900023-6
http://www.ncbi.nlm.nih.gov/pubmed/12782274
https://doi.org/10.1016/s0925-4773%2896%2900653-3
http://www.ncbi.nlm.nih.gov/pubmed/9106168
https://doi.org/10.1101/gad.851501
http://www.ncbi.nlm.nih.gov/pubmed/11157777
https://doi.org/10.1101/261891
https://doi.org/10.1242/dev.063735
https://doi.org/10.1242/dev.063735
http://www.ncbi.nlm.nih.gov/pubmed/22274695
https://doi.org/10.2976/1.3027088
http://www.ncbi.nlm.nih.gov/pubmed/19492022
https://doi.org/10.1038/244492a0
http://www.ncbi.nlm.nih.gov/pubmed/4621272
https://doi.org/10.1101/gad.1547407
http://www.ncbi.nlm.nih.gov/pubmed/17575045
https://doi.org/10.1038/ncb0902-e216
https://doi.org/10.1038/ncb0902-e216
http://www.ncbi.nlm.nih.gov/pubmed/12205485
https://doi.org/10.1038/s41586-019-1885-9
https://doi.org/10.1038/s41586-019-1885-9
http://www.ncbi.nlm.nih.gov/pubmed/31915384
https://doi.org/10.1038/nature11804
http://www.ncbi.nlm.nih.gov/pubmed/23254931
https://doi.org/10.1038/nature03591
http://www.ncbi.nlm.nih.gov/pubmed/15902259
https://doi.org/10.1242/dev.019877
http://www.ncbi.nlm.nih.gov/pubmed/18579680
http://www.ncbi.nlm.nih.gov/pubmed/7671806
https://doi.org/10.1242/dev.000836
http://www.ncbi.nlm.nih.gov/pubmed/17360776
https://doi.org/10.1371/journal.pgen.1009812


190. Zhao W, Oginuma M, Ajima R, Kiso M, Okubo A, Saga Y. Ripply2 recruits proteasome complex for

Tbx6 degradation to define segment border during murine somitogenesis. Elife. 2018;7. https://doi.

org/10.7554/eLife.33068 PMID: 29761784

191. Bussen M, Petry M, Schuster-Gossler K, Leitges M, Gossler A, Kispert A. The T-box transcription fac-

tor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev. 2004;

18:1209–21. https://doi.org/10.1101/gad.300104 PMID: 15155583

192. DiNardo S, O’Farrell PH. Establishment and refinement of segmental pattern in the Drosophila

embryo: spatial control of engrailed expression by pair-rule genes. Genes Dev. 1987; 1:1212–25.

https://doi.org/10.1101/gad.1.10.1212 PMID: 3123316

193. Delaune EA, François P, Shih NP, Amacher SL. Single-cell-resolution imaging of the impact of Notch

signaling and mitosis on segmentation clock dynamics. Dev Cell. 2012; 23:995–1005. https://doi.org/

10.1016/j.devcel.2012.09.009 PMID: 23153496

194. Shih NP, François P, Delaune EA, Amacher SL. Dynamics of the slowing segmentation clock reveal

alternating two-segment periodicity. Development. 2015; 142:1785–93. https://doi.org/10.1242/dev.

119057 PMID: 25968314

195. Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, et al. Real-time imag-

ing of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic

mesoderm cells. Proc Natl Acad Sci U S A. 2006; 103:1313–8. https://doi.org/10.1073/pnas.

0508658103 PMID: 16432209

196. Ishimatsu K, Takamatsu A, Takeda H. Emergence of traveling waves in the zebrafish segmentation

clock. Development. 2010; 137:1595–9. https://doi.org/10.1242/dev.046888 PMID: 20392739
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