
Xu et al. BMC Pulmonary Medicine          (2022) 22:133  
https://doi.org/10.1186/s12890-022-01924-0

RESEARCH

DNA methylation molecular subtypes 
for prognosis prediction in lung 
adenocarcinoma
Duoduo Xu1, Cheng Li2, Youjing Zhang3 and Jizhou Zhang1* 

Abstract 

Aims:  Lung cancer is one of the main results in tumor-related mortality. Methylation differences reflect critical biolog-
ical features of the etiology of LUAD and affect prognosis.

Methods:  In the present study, we constructed a prediction prognostic model integrating various DNA methylation 
used high-throughput omics data for improved prognostic evaluation.

Results:  Overall 21,120 methylation sites were identified in the training dataset. Overall, 237 promoter genes were 
identified by genomic annotation of 205 CpG loci. We used Akakike Information Criteria (AIC) to obtain the validity of 
data fitting, but to prevent overfitting. After AIC clustering, specific methylation sites of cg19224164 and cg22085335 
were left. Prognostic analysis showed a significant difference among the two groups (P = 0.017). In particular, the 
hypermethylated group had a poor prognosis, suggesting that these methylation sites may be a marker of prognosis.

Conclusion:  The model might help in the identification of unknown biomarkers in predicting patient prognosis in 
LUAD.
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Background
Lung cancer is one of the main results in tumor-related 
mortality, and in China, it ranks first and the second 
highest cause of cancer morbidity among men and 
women, respectively [1, 2]. Some of the associated fac-
tors causing increased lung cancer mortality include 
increased tobacco use, aging, and atmospheric pollution. 
In 2018, lung cancer was predicted to have caused 1.8 
million deaths [3–5]. The general subtype of lung can-
cer is lung adenocarcinoma (LUAD) and due to its late 
recognized, the five-year survival rate is reported to be 
15% [6]. LUAD is sensitive to chemotherapy, however, the 

rapid increase in drug resistance and chemo-resistance 
result in the death of most patients [7, 8]. For advanced-
stage LUAD, molecularly targeted therapies are reported 
to increase the patients’ survival rates. however, many 
more patients failed to have a useful targetable mutation. 
LUAD usually initiates from abnormal hyperplasia of the 
bronchial mucosa, continued by malignant infiltration 
and growth. Epigenetic alteration is closely associate to 
tumorigenesis, growth, and metastasis, but DNA meth-
ylation raised forward constantly in the complex course 
of tumorigenesis and acts as key part in regulating gene 
function in tumor cells. Methylation differences reflect 
critical biological features of the etiology of LUAD and 
affect prognosis [9]. In this way, it is necessary for rec-
ognizing the more useful novel specific epigenetic targets 
for developing powerful prognostic evaluation, survival, 
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and timely launch of therapeutic drugs and treatment 
ways of LUAD.

DNA methylation characterized to the response cata-
lyzed through DNA methyltransferase (DNMT), whereby 
a methyl of S-adenosylmethionine (SAM) is transferred 
to the cytosine form five-methylcytosine (5-mC). It 
mainly arises in the C-phosphate-G site (CpGs) and over 
two thirds of mammalian CpGs are methylated [10]. 
While, un-methylated CpGs tend to aggregate in the seed 
sequence of structural gene promoters as well as tran-
scription start sites (TSS), forming CpG islands [11]. CpG 
islands exist in the 5′ regulatory area of most genes, espe-
cially in the promoter region. The high level of 5-methyl-
cytosine in the gene promoter area can lead to gene 
silencing in tumor cells, and then suppresses gene expres-
sion, leading to cell dysfunction. Chromosomal instabil-
ity, particularly 17p loss, offer proof for the accumulation 
of mutations and propose that cancerous regions are 
helpful for the selection and expansion of these precan-
cerous lesions in LUAD [12]. Currently, methylation of 
some promoter sequences, involving EGFR, KRAS, TP53, 
ECT2, S100A16, and AGTR1 has been related to the inci-
dent and development of LUAD [13–15]. But, the value 
of these gene methylations in clinical not well examined 
in LUAD patients. Besides, there is currently no system-
atic assessment of predictions of overall survival (OS) or 
characteristics involve in DNA methylation in LUAD. In 
the present study, we built a prediction prognostic signa-
ture integrating DNA methylation used high-throughput 
omics data for improved prognostic evaluation.

Materials and methods
Data gathering
We downloaded RNA-Seq standardized FPKM data and 
clinical comparison data from 486 cases in the TCGA-
LUAD (www. portal.gdc.cancer.gov/). Methylation data 
from Illumina Infinium was got from the UCSC Cancer 
Browse (www. genome.ucsc.edu/) and human methyla-
tion was performed on 27 and 450 bead chip arrays in 
cases from 150 and 503 patients, respectively. The level 
of each methylation site is expressed as a β value, rang-
ing from1 (fully methylated) to 0 (unmethylated). CpG 
loci for which data were lacking over 70% of the subjects 
were rule out. The cross-reactive genome CpG sites in 
"Illumina Infinium Human Methylated 450-bead Array 
Discovery of Cross Reaction Probe and Polymorphic 
CpG" were not included. The k-nearest neighbor (KNN) 
estimator is applied for the remaining sites where input 
data is unable available. Combat algorithms in the R SVA 
package eliminate the batching effect. Unsteady genomic 
sites, involving CpG and individual nucleotide polymor-
phisms on sex chromosomes, were eliminated. Because 
gene expression regulated promoter DNA methylation, 

we specifically studied the promoter region CpGs (from 
transcription start site 2  kb upstream to 0.5  kb down-
stream). In addition, we choose cases with available gene 
expression profiles. Overall, 458 subjects and 21,120 
methyl sites were contained. Samples are divided into 
two groups: a testing set (27 Beadchip) and a training set 
(450 Beadchip).

Identification of classification features
CpG loci that significantly affected survival were applied 
as classification features. Univariate Cox regression 
model was established based on the methylation level, 
TNM, age, sex, stage and survival information. Signifi-
cant CpGs got from the univariate Cox regression model 
were included in the multivariate Cox regression model. 
Then CpG loci were selected as characteristic CpG loci. 
The risk score was acquired based on the formula: esum 

(CpG’s expression×coefficient). The way of prediction accuracy of 
the prognostic signatures used by ROC curve.

Identification of molecular subtypes
ConsensusClusterPlus (R package) was used for consen-
sus clustering, and the LUAD subgroups were identified 
according to the CpG sites that varied the most. The algo-
rithm first subsamples some items and features from the 
data matrix, and each subsample is divided into group K 
by kmeans. The "consensus" clustering is defined by cal-
culating the stability of the clustering results from using a 
specific clustering way to a random data subset. The area 
under the curve with no obvious change was taken as the 
classification count. To bring more thorough classifica-
tion categories for LUAD, more categories are tended to 
be used. Use color gradients to act for consensus values 
from zero (white) to one (dark blue); arrange the matrices 
so that items being classified the alike cluster are next to 
each other.

Prognosis and Function analyses
Kaplan–Meier diagrams are applied to demonstrate OS 
in the LUAD subgroup defined by DNA methylation 
profiles. The significance of the differences among clus-
ters evaluate by log-rank test. The relationship between 
clinical, biological characteristics and DNA methylation 
clusters analyzed by chi-square test. KEGG and Genetic 
Ontology (GO) (Molecular Functions (MF), Biological 
Processes (BP), and Cellular Components (CC)) for the 
analysis of biological functions and annotation genes 
using the R ggplot2 package to display the graph. All tests 
were bilateral, and P < 0.05 was considered statistically 
significant.
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Results
Built the prognostic methylation sites signatures
A flow chart of this study was shown in Fig.  1. In the 
training dataset, overall 21,120 methylation sites were 
identified. The univariate Cox regression identified 1103 
CpG sites as prospective DNA methylation biomarkers 
for OS. Cox regression analysis of the 864 methylation 
sites with tumor stage, sex, TMN, and age as covari-
ates identified 205 independent prognosis-related CpG 
sites. The clinicopathological properties of the sam-
ples are shown in Table 1. Middle-aged at diagnosis was 
60.5  years, and the median age of final exposure of the 
study subjects was 9.3 years.

Identify DNA methylation subgroups
A consensus cluster of the 205 possible prognostic meth-
ylation sites was applied to identified molecular sub-
groups of DNA methylation. Under the region of the 
Cumulative Distribution Function (CDF) curve as well 
as a consensus, matrix to decide the numbers of clus-
ters. The CDF curve began to stabilize afterward cluster 
6 (Fig.  2A, B). To increase the prognostic worth of the 
LUAD subgroups, we choose even more cluster num-
ber when possible. The consensus matrix indicates the 
consensus for k = seven illustrates a well-determined 

seven-block pattern Fig. 2C. The corresponding heat map 
marked with TNM, gender, stage, age and DNA methyla-
tion subgroup in the tree diagram of Fig. 2C is shown in 
Fig. 2D. OS analysis illustrated that there was a statisti-
cally significant difference in prognosis among the seven 
groups (P < 0.05). Cluster 6 had the worst prognosis, but 
cluster three and seven had the best prognosis (Fig. 3A). 
Then, we analyzed the clustering proportions of the seven 
clusters based on TNM, stage, gender and age Fig. 3B–G. 
The relationship between characteristics and specific 
clusters is: Clusters 1, 4 and 5 with lower T-level; Group 
5 and group 6 were advanced group; Clusters 1 and 7 of Fig. 1  A flow chart of the study

Table 1  TCGA lung adenocarcinoma patient characteristics

Data express as mean (min–max)

Clinical characteristics Total (486) %

Age at diagnosis (y) 60.5 (33–88)

Futime (y) 9.3 (0–18.7)

Gender

 Female 265 54.5

 Male 221 45.5

Stage

 I 262 53.9

 II 112 23.1

 III 79 16.3

 IV 25 5.1

 NA 8 1.6

Grade

 NA 486 100

T-classification

 T1 163 33.5

 T2 260 53.5

 T3 41 8.4

 T4 19 3.9

 TX 3 0.6

M-classification

 M0 333 68.5

 M1 24 4.9

 MX 125 25.7

 NA 4 0.8

N-classification

 N0 312 64.2

 N1 90 18.5

 N2 70 14.4

 N3 2 0.4

 NX 11 2.3

 NA 1 0.2

Status

 Alive 162 33.3

 Death 324 66.7
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lower N rank; Class M and above Group 3 and 6; Group 
4 was older, group 1 had more women, and group 3 had 
more men. These results suggest that each clinical factor 
is related to different intra-cluster rates.

Identifying various feature of DNA methylation clustering
A total of 237 promoter genes were identified by genomic 
annotation of 205 CpG loci. Then we used the software 
package "Clusterprofiler" R to perform functional enrich-
ment analysis on the 237 genes. BP associated pathways 
were mainly enriched in the regulation of animal organ 
morphogenesis, meiotic nuclear division, cell differ-
entiation, and some metabolic process. MF associated 
pathways were significantly enriched in protein/factor 

binding, bridging, kinase/receptor-ligand activity. CC 
associated pathways were mainly enriched in the ribo-
some, postsynaptic specialization membrane, and other 
membrane regions. KEGG pathway was mainly enriched 
in metabolism pathways, Platinum drug resistance, Anti-
folate resistance, Apoptosis, ECM-receptor interaction, 
TNF and Ras signaling pathway (Fig.  4). We then ana-
lyzed the expression of the methylated genes identified 
in the subgroup, and the heatmap of gene expression is 
shown in Fig. 5A. Gene expression models varied among 
the subgroups an indication that the level of DNA meth-
ylation reflected the expression of the genes. A protein–
protein interaction network was constructed and four 
hub genes (CCL25, PRMS17, NETO1, and RAD1) were 

Fig. 2  Criteria for selecting a number of categories and consensus matrix for DNA methylation classification with the corresponding heat map. 
A The consensus among clusters for each category number k. B Delta area curves for consensus clustering indicating the relative change in area 
under the CDF curve for each category number k compared to k − 1. The horizontal axis represents the category number k and the vertical axis 
represents the relative change in area under the CDF curve. C Color-coded heatmap corresponding to the consensus matrix for k = 7 obtained 
by applying consensus clustering. Color gradients represent consensus values from 0 to 1; white corresponds to 0 and dark blue to 1. D A 
heatmap corresponding to the dendrogram in C was generated using the heatmap function with DNA methylation classification, TNM stage, 
clinicopathological stage, and histological type as the annotations
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Fig. 3  Comparison of prognosis and clinical factors between the DNA methylation clusters. A Survival curves for each DNA methylation subtype in 
the training set. Age (B), gender (C), Stage score (D), topography score (E), lymphocyte infiltration (F), and metastasis (G) distributions for each DNA 
methylation subtype in the training set. H Box plot of CpG methylation levels of the 7 Clusters

Fig. 4  The function of the identified CpG sites corresponding promotor genes using gene ontology (GO) enrichment and KEGG pathway analysis
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identified using the MCODE of Cytoscape as shown in 
Fig. 5B. We then explored for cluster-specific methylation 
sites by using the methylation sites as cluster characteris-
tics. To |log2FC|> 1 joint P value < 0.05 as selection crite-
ria, will be one of the clusters as a single cluster, six other 
clustering as different, the difference between 7 cluster-
ing analysis. Cluster 6 had the highest specific sites, most 
of which were hypermethylated, and the level of methyla-
tion was the highest among all clusters (Fig. 3H).

Constructing and verifying the signature
Cluster 6 was chosen as the seed cluster as it had the 
most specific methylation sites. Cluster 6 has 7 specific 
methylation sites, among which cg22085335 is hypo-
methylation site and the others are hypermethylation 
sites. We used Akakike Information Criteria (AIC) to 
obtain the validity of data fitting, but to prevent overfit-
ting to the greatest extent. After AIC clustering, specific 
methylation sites of cg19224164 and cg22085335 were 
left. Therefore, our model formula is as follows: risk sco
re = 2.71*cg19224164 + 2.75*cg22085335. Using the 
median risk score as the threshold, the samples were 
divided into two (high-risk vs. low-risk) groups. Prognos-
tic analysis illustrated a significant difference among the 
two groups (P = 0.017), as shown in Fig. 6A. The samples 
were then sorted according to the risk score to determine 
whether methylation levels changed systematically as the 
risk score changed, as shown in Fig. 6B. In particular, the 
hypermethylated group had a poor prognosis, suggest-
ing that these specific methylation sites may be a marker 
of prognosis. Area under the curve (AUC) is 0.643, 

indicating normal operation of the model Fig.  6C. The 
methylation levels at specific sites increased significantly 
as the risk score increased. At last, a test data set to pre-
dict patient prognostic outcomes. There was also a sig-
nificant difference in prognosis between the two groups 
(Fig. 7A, P = 8.305E−05). The AUC of the test sample is 
0.788, suggesting that the model runs well Fig. 7B. Since 
EGFR mutations are major driver gene mutations, we 
also found a positive correlated with the methylation 
status of cg19224164 and cg22085335 Additional file  1: 
Fig. S1. In addition, the impacts of risk scores on patient 
OS in different clinical subtypes were explored, and the 
results indicated that Female, Stage III–IV, and T1–2 
subtypes were significantly correlated with the survival of 
a patient Additional file 2: Fig. S2. Further, the differences 
in somatic mutations between the low and high-risk 
groups was also explored and TTN was the most com-
mon mutated gene Additional file 3: Fig. S3. These find-
ings are consistent with the results of the training data 
set, which proves the stability and accuracy of our model 
prediction.

Discussion
Lung cancer is the most critical lead to cancer-related 
mortality worldwide, resulting in over one million deaths 
each year. Adenocarcinoma is the most prevailing his-
tological subtype of non-small cell lung cancer. Smok-
ing is the leading result to lung adenocarcinoma. But, 
as the number of smokers has decreased in many coun-
tries, the incidence of LUAD among non-smokers has 
raised. Even if the 5-year survival rate of LUAD has get 

Fig. 5  Gene annotations of the 205 methylated sites. A Cluster analysis heat map for annotated genes associated with the 205 CpG site. B The PPI 
network for annotated genes associated with the 205 CpG site
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better in recent years owing to advances in surgical treat-
ment, radiation therapy, and chemotherapy, it is still dis-
satisfactory. In order to enhance the administration of 

LUAD, molecular definition-based methods usually do 
not demand huge tissue samples, which can increase 
patient volume and reduce unnecessary surgical step. 

Fig. 6  Construction of the prognosis prediction model for the training set LUAD patients. A Analysis of prognostic differences after classification 
in the training set. B The horizontal axis represents the samples, and the vertical axis represents risk scores (top), overall survival (middle), and 
methylation site (bottom). C ROC curves of prognostic predictors in LUAD patients

Fig. 7  The prognosis prediction model in testing set. A Overall survival analysis. B ROC curves results
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DNA methylation plays an important role in epigenetic 
function by reducing the activity of DNA fragments and 
inhibiting gene transcription.

The use of DNA methylation markers can do us a better 
prognosis and predict therapy response, thereby extend-
ing patient survival. DNA methylation changes are an 
early event in tumorigenesis and are crucial in the regula-
tion of gene expression in cancers. Therefore, in the early 
diagnosis of LUAD, epigenetic changes can be detected 
either independent or in combination with other tradi-
tional biomarkers [16]. One study obtained eight probes 
corresponding to the characteristics of eight genes 
(AGTRL1, CTSE, EFNA2, ALDH1A3, BDKRB1, NFAM1, 
TMEM129, and SEMA4a) to predict survival in patients 
with early LUAD, but this study only included Asian and 
Caucasian populations [17]. In another study, 6 differen-
tially methylated genes (JDP2, PLG, SERPINA5, SEMG2, 
RFX5, and POLR3B) were identified to predict the prog-
nosis of LUAD patients, but the study restricts in stage I 
patients [18]. Abnormal methylated genes may serve as 
non-invasive biomarkers for diagnosis at early, treatment 
selection, response assessment and possible applications 
of novel therapies. We identified 205 independents prog-
nostic CpG loci and 237 corresponding promoter genes. 
We also built a PPI network and determined four central 
genes (CCL25, PRMS17, NETO1, and RAD1). C–C motif 
chemokine ligand 25 (CCL25), belongs to the subfam-
ily of small cytokine CC genes and the product of this 
gene binds to chemokine receptor CCR9. CCR9-CCL25 
axis is reported to play a critical role in breast cancer 
(BC) cell survival and low chemotherapeutic effect of 
cisplatin primarily via PI3K/Akt dependent fashion [19]. 
Progesterone receptor modulators (PRMs) constitute 
an interesting new hormone drug for BC treatment, 
and anti-proliferative effects of various PRMs have been 
reported [20]. NETO1 regulates NMDAR and kainic acid 
receptor (KAR) to control synaptic transmission by act-
ing as a helper protein for two types of ionic glutamate 
receptors in a synaptic-specific manner [21]. The Rad9-
Hus1-Rad1 protein complex is thought to respond to 
DNA destruction and play an indispensable role in the 
cell cycle [22]. RAD9 inhibition can potentiate the cyto-
toxic reaction of chemotherapy on BC cells [23]. Besides, 
mouse RAD1 deletion is reported to enhance sensitiv-
ity for skin tumor development probably by maintaining 
genomic integrity [24]. Currently, there is no comprehen-
sive study on the role of CCL25, PRMS17, NETO1, and 
RAD1 in LUAD and this study may provide key informa-
tion to in-depth studies.

KEGG pathway enrichment analysis indicated that they 
were mainly enriched in metabolism pathways, Platinum 

drug resistance, Antifolate resistance, Apoptosis, ECM-
receptor interaction, TNF/Ras signaling pathway. Stage 
II–IIIA LUAD patients generally accept platinum-based 
ACT after surgical resection, while just 4–15% survival 
advantage after adjuvant chemotherapy (ACT) has been 
observed [25]. Van et al. constructed a 37-gene signature 
for identifying patients with longer and shorter survival 
after receiving platinum-based ACT and then deter-
mined them to non-responders and responders, respec-
tively [26]. Thus, we hypothesis that the 237 promotor 
genes act as a key role in Platinum drug resistance and 
need further research. Although methylation may essen-
tial in LUAD, specific methylation sequences in the pro-
moter region affecting gene expression remain unclear. 
Besides, in a larger group of LUAD patients, the statis-
tical and clinical significance of these gene methylation 
associated to prognosis needs to be demonstrated. In this 
study, we tried to develop a classification model integrat-
ing many DNA methylation biomarkers to evaluate the 
prognosis. This model can promote the determination of 
novel biomarkers, molecular subtype classification, and 
precise medical targets of diseases in LUAD. Meanwhile, 
the model can also help with prognosis prediction, diag-
nosis, and strategies of patients with difference epigenetic 
subtypes of LUAD.

The signatures might give DNA methylation alteration 
and offer potentially useful targets for cancer treatment 
and prediction therapy response. But, our signatures 
have to prove in further independent studies as well 
as predictive DNA methylation functional by experi-
ments. This study has limitations. First, the results have 
not yet been validated in clinical samples. Second, these 
results do not offer precise clinical data as a result of 
the relatively small sample size of patients used. Finally, 
due to the limited data, we could not discuss the role of 
cg19224164 and cg22085335 and the role of tobacco and 
alcohol habit information in LUD. Although our study 
hopes to explore the possibility of establishing predictive 
models, it is still in its infancy and needs to be improved. 
Meanwhile, cg19224164 and cg22085335 not only may be 
a useful biomarker but also a potential therapeutic target 
in LUAD.

Conclusion
In summary, prognostic specific methylation sites were 
identified by TCGA database and other bioinformat-
ics methods, and a prognostic prediction model was 
constructed for LUAD patients. The model can help 
identify novel biomarkers, predict prognosis, clinically 
diagnose and manage patients with different distinct 
subtypes of LUAD.
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