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Abstract: The hazards of antibiotics as emerging contaminants to aquatic ecosystems and human
health have received global attention. This study investigates the presence, concentration levels,
spatial and temporal distribution patterns, and their potential risks to aquatic organisms and human
health of sulfonamides (SAs) in the Shaanxi section of the Weihe River. The SA pollution in the Weihe
River was relatively less than that in other rivers in China and abroad. The spatial and temporal
distribution showed that the total concentrations of SAs in the Weihe River were highest in the main
stream (ND–35.296 ng/L), followed by the south tributary (3.718–34.354 ng/L) and north tributary
(5.476–9.302 ng/L) during the wet water period. Similarly, the order of concentration from highest to
lowest during the flat water period was main stream (ND–3 ng/L), north tributary (ND–2.095 ng/L),
and south tributary (ND–1.3 ng/L). In addition, the ecological risk assessment showed that the SAs
other than sulfadiazine (SDZ) and sulfamethoxazole (SMZ) posed no significant risk (RQS < 0.01) to
the corresponding sensitive species during both periods, with no significant risk to human health
for different age groups, as suggested by the health risk assessment. The risk of the six SAs to both
aquatic organisms and human health decreased significantly from 2016 to 2021.

Keywords: emerging contaminants; sulfonamides; Shaanxi section of the Weihe River; ecological risk
assessment; health risk assessment

1. Introduction

Antibiotics are a group of antibacterial drugs produced by bacteria and fungi or syn-
thesized artificially and limit bacterial growth [1]. These are widely utilized in animal
husbandry, aquaculture, and medicine. China is the largest producer and consumer of
antibiotics globally, with the overall usage of antibiotics reaching 162,000 tons in 2015, ac-
counting for almost 50% of the worldwide consumption [2]. Four major groups of emerging
contaminants are now receiving global attention: persistent organic pollutants, endocrine-
disrupting chemicals, antibiotics, and microplastics [3,4]. Antibiotic contamination may
occur in various ways, including percolation into groundwater, soil contamination through
irrigation, and even entry into aquatic organisms, all of which can impact human health via
the food chain. Prolonged exposure to antibiotics may cause drug resistance, accelerate the
evolution and spread of antibiotic resistance genes (ARGs), and contribute to the emergence
of drug-resistant strains, posing a potential threat to human health and ecosystems [5].
Several basins in China currently contain antibiotics, primarily sulfonamides, quinolones,
tetracyclines, and macrocyclic lipids [6]. The contamination caused by antibiotics is primar-
ily the result of improper treatment of wastewater generated by pharmaceutical companies,
sewage treatment plants, households, livestock, and agriculture [7]. In contrast, traditional
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wastewater treatment processes are unable to completely remove antibiotics from water,
resulting in the transfer of large quantities of antibiotics into surface water, groundwater,
and even drinking water. Most antibiotics cannot be completely metabolized after entering
the organism, and 50–90% of them ultimately reach the aquatic environment through urine
or feces [8]. Antibiotic concentrations in China have reached nanogram or even milligram
levels today [9], as they are difficult to degrade and easy to enrich in the ecosystem due to
their environmental persistence and bioaccumulation. Thus, they may accumulate in the
environment and organisms for an extended period of time. Consequently, it has become a
new kind of water pollution.

The fundamental chemical structure of sulfonamides, which is p-Aminobenzenesulfo-
namide [10], aids in achieving bacteriostatic and sterilizing effects [11] by inhibiting the
synthesis of folic acid and bacterial nucleoproteins. The major sulfonamides in the aqueous
environment include sulfadiazine (SDZ), sulfathiazole (STZ), sulfapyridine (SPZ), sulfamet-
hazine (SM2), sulfamonomethoxine (SMM), sulfachloropyridazine (SCP), sulfamethoxazole
(SMZ), sulfamethizole (SMI), sulfamethoxypyrimidine (SMR), sulfadimethoxine (SDM),
sulfamethoxypyridazine (SMP), sulfaquinoxaline (SQZ), etc. There have been numerous
studies on antibiotics confirming the presence of sulfonamides in Chinese rivers such as
the Pearl River basin [12], the Yangtze River basin [13], the Haihe River basin [14], and the
Liaohe River basin [15], as well as in several foreign water environments. The concentra-
tions of SDZ and SPZ in the surface water of Lower Saxony in Germany reached 147 ng/L
and 155 ng/L, respectively, while that of SMZ reached up to 1140 ng/L [16]. The highest
concentration of SMZ of 4330 ng/L was reported in the urban canals in the northern region
of Vietnam [17]. However, the concentration of SMZ was comparably higher in urban
canals in Hanoi than in North America, Europe, and other Asian countries [18].

The Yellow River, the second largest river in China, is an important source of water for
industrial, agricultural, and domestic use in northern China. Currently, the Yellow River
basin has been plagued by varying degrees of antibiotic contamination, with the pollution
level in tributaries often more severe than that in the main stream. The Weihe River, the
largest tributary of the Yellow River, which is located in the center of the Yellow River
basin, is the “heartland” of Chinese civilization, with a basin area about 1/10 of that of
the Yellow River [19]. Current research on sulfonamides pollution in the Weihe River has
mainly focused on a particular river section without considering the entire watershed and
has only evaluated the ecological risk to aquatic biota without evaluating the risk to human
health. Although the water quality of the Weihe River has significantly improved since
2018 [20], the evolution of antibiotic residues remains uncertain. In this context, the Shaanxi
section of the Weihe River is selected as the study area for the analysis of the types of
antibiotics and their concentration levels in main stream and tributaries, understanding of
the characteristics of spatial and temporal distribution, and the assessment of the potential
risk to the ecosystem and human health. This study may provide a scientific basis for the
prevention and management of sulfonamides pollution and the development of a healthy
aquatic ecosystem in the Weihe River basin.

2. Materials and Methods
2.1. Study Area and Sampling Site Description

The Weihe River originates at the Niaoshu Mountain in Weiyuan County, Gansu
Province, and flows through Baoji, Xianyang, Xi’an, and Weinan, and eventually converges
into the Yellow River. Being the largest tributary of the Yellow River, the basin area of
Weihe River (67,108 km2) accounts for 50% of the total area of the Yellow River basin in
Shaanxi Province. The total length of the main stream of the Shaanxi section of the Weihe
River (Linjia Village–Tongguan) is 379 km. There are many tributaries with asymmetric
development on both sides within the study area, wherein more tributaries than the north
bank characterize the south bank. Most tributaries on the North bank comprise relatively
little water, while those on the south bank comprise clear water with a short source and
rapid flow. The rivers other than the Heihe and Bahe Rivers are less than 100 km in length.
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This study distinguished the upper, middle, and lower reaches as Linjia Village–Tanyu
River, Xianyang Dam–Xinfeng, and Shawangdu–Tongguan, respectively. The main stream
and major tributaries of the Shaanxi section of the Weihe River are depicted in Figure 1 and
Table S1.

Figure 1. Distribution of sampling sites in Shaanxi section of the Weihe River.

2.2. Methods
2.2.1. Reagents and Chemicals

Reagents: Liquid chromatography–tandem mass spectrometer (LC–MS/MS, Agilent
1260 + 6460B QQQ with ESI ion source), nitrogen blowing apparatus (Biotage), and a
solid-phase extraction apparatus (Dionex SPE-280).

Chemicals: Sulfadiazine (SDZ), sulfathiazole (STZ), sulfapyridine (SPZ), sulfamet-
hazine (SM2), sulfamonomethoxine (SMM), sulfachloropyridazine (SCP), sulfamethoxazole
(SMZ), sulfamethizole (SMI), sulfamethoxypyrimidine (SMR), sulfadimethoxine (SDM),
sulfamethoxypyrimidine (SMP), and sulfaquinoxaline (SQZ) were purchased from Dr.
Ehrenstorfer, Germany, and acetonitrile were purchased from Merck (Darmstadt, Ger-
many). The formic acid used for mass spectrometry was purchased from J&K Scientific.
The analytically pure hydrochloric acid and disodium EDTA (Na-2 EDTA-2H2O) were
purchased from China National Pharmaceutical Group Corporation. Ultrapure water was
purchased from a Milli-Q water purification system (Millipore, Burlington, MA, USA) and
used for the experiments throughout the study.

2.2.2. Sample Collection and Pre-Treatment

The water samples were collected during the wet water period in October 2020 and
the flat water period in May 2021 from 31 sampling sites (W1~W31) with the same locations
for both sampling periods. All sampling sites were set in the national control section,
provincial control section, and key pollution sections of the Weihe River. The water samples
in this study were snap samples since the water flow in the Weihe River basin was stable
during the sampling period. All samples were collected according to the “water quality
sampling program design technical requirements” (HJ495–2009), using a plexiglass water
grab sampler from about 0.5 m below the surface. At each sampling location, three parallel
control groups were set up with 2 mL of methanol to prevent microbial activity, and the
water samples were stored at 4 ◦C. Water temperature (WT), electrical conductivity (EC),
and total dissolved solids (TDS) were measured in the field using portable detectors. All
samples were returned to the laboratory for processing and analysis within 24 h.



Int. J. Environ. Res. Public Health 2022, 19, 8607 4 of 18

Pre-treatment method: Briefly, 1.0 L of water sample was filtered via a 0.45 µm pore-
size glass fiber membrane, followed by the addition of 5 mL of 100 g·L−1 EDTA·2Na
solution, and then 50% (v/v) phosphoric acid aqueous solution was used to adjust the
pH value of the water sample to 3.0; afterward, 6 mL of methanol, 3 mL of ultrapure
water, and 6 mL of sodium dihydrogen phosphate aqueous solution were added to the
HLB cartridge in turn to activate the cartridge, and the flow rate of the cartridge solution
was adjusted to 4 mL/min. After the sample was drained, 10 mL of ultrapure water was
added to the sampling bottle, dried under vacuum for 30 min, and then eluted with 6 mL
of methanol and 6 mL of 2% (v/v) ammonia methanol at a flow rate of 1 mL/min; the
eluate was evaporated nearly dry at 40 ◦C and then redissolved with methanol to 1 mL for
LC–MS/MS analysis.

2.2.3. LC–MS/MS Analysis and Quality Control

The target contaminants in the samples were analyzed using liquid chromatography–
tandem mass spectrometry (LC–MS/MS). The liquid chromatography (LC) parameters
include mobile phase A of 0.01 mol/L formic acid, mobile phase B of water, 2:8 acetonitrile,
1.0 mL/min flow rate, and column temperature of 40 ◦C, 20 µL sample quantity, and C18
column of 4.6 × 150 mm, with 5 µm. The coefficient of determination (R2) of the standard
curves of antibiotics was greater than 0.99 and was compared with the concentration of the
tested antibiotic. Three water samples were collected at each sampling location for parallel
analysis to ensure the reliability of the experimental result.

The test was performed according to the criterion that the parallel sample should be
no less than 20% of the test sample. In this study, one parallel sample was inserted into five
samples. The recovery rate of the test was between 85% and 120%.

2.2.4. Ecological Risk Assessment

The potential ecological risk induced by the exposure to sulfonamides in the Shaanxi
section of the Weihe River was evaluated using the method adopted in the European
Technical Guidance Document for environmental risks of pollutants (TGD) [21]. Using
RQs, the ecological risk of sulfonamides in the water environment was calculated using the
following relation:

RQs =
MEC
PNEC

(1)

where RQs represent the risk quotient; MEC represents the measured environmental
concentration (ng/L), and PNEC represents the predicted no-effect concentrations (ng/L).

The PNEC is calculated as follows:

PNEC =
(EC50)or(LC50)

AF
(2)

where EC50 or LC50 represents acute or chronic toxicity data; AF represents the assessment
factor which is 1000 and 100 for acute and chronic toxicities, respectively. The PENC
values and EC50 or LC50 (Table 1) were derived from the EPA ECOTOX toxicity database
(https://cfpub.epa.gov/ecotox/, accessed on 5 April 2022) and toxicological data from the
published literature [22].

In accordance with the RQS classification method for determining the ecological risk
level [23], the RQS was divided into four risk levels, which are RQS < 0.01, 0.01 ≤ RQS < 0.1,
0.1 ≤ RQS < 1, and RQS ≥ 1, representing no significant risk, low risk, medium risk, and
high risk, respectively.

https://cfpub.epa.gov/ecotox/
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Table 1. Toxicity data and PNEC values for sensitive species to antibiotics.

Sulfonamides Corresponding Sensitive Species EC50/(mg/L) Toxicity Type AF PNEC/(ng/L)

SDZ

Fish 890

Acute toxicity 1000

890,000
Microcystis sp. 0.135 135

Algae 0.52 520
Water flea 0.21 210

SPZ
Lemna minor 0.46 Acute toxicity 1000

460
Chlorella vulgaris 5.28 5280

SM2
Fish 517

Acute toxicity 1000
517,000

Algae 38 38,000
Water flea 4 4000

SMM
Fish 450 Acute toxicity 1000

450,000
Algae 8.56 8560

SMZ

Fish 890

Acute toxicity 1000

89,000
Cyclotella sp. 2.4 2400

Brachionus calyciflorus 26.27 26,270
Algae 51 51,000

Water flea 4.5 4500

SQZ
Algae 20 Acute toxicity 50 400

Water flea 84.46 1000 84,460

SCP Chlorella vulgaris 32.25 Acute toxicity 1000 32,250

2.2.5. Health Risk Assessment

The RQH was calculated based on the ADI of humans and the RQs calculation
model [24], and the RQH of antibiotics to human health in the Shaanxi section of the
Weihe River was calculated to assess the health risk of SAs, using the following relation:

RQH =
MEC

DWEL
(3)

where RQH represents the health risk entropy value for a single antibiotic, MEC represents
the measured concentration of antibiotics (µg/L), and the DWEL represents the drinking
water equivalent value (µg/L).

The DWEL was calculated using the following relation:

DWEL =
ADI × BW × HQ
DWI × AB × FOE

(4)

where ADI represents the allowable daily intake µg/(kg·d); BW represents the body weight
(kg); HQ represents the highest risk, which is assumed as 1; DWI is the daily water intake
(L/d); AB represents gastrointestinal absorption rate, which is assumed as 1; and FOE is the
frequency of exposure (350 d/a), which is 0.96. The BW, DWI, and antibiotic ADI values
for various age groups are listed in Tables 2 and 3.

Table 2. BW and DWI values for adults and children.

Research Subjects Gender BW/kg DWI/L·d

Children
Male 24 0.81

Female 23 0.76

Adults
Male 66.1 2.48

Female 57.8 2.12
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Table 3. ADI values of different sulfonamides.

Sulfonamides ADI/(µg·kg−1·d−1) References

SDZ 20
[24]SPZ 10

SM2 20
SMM 6 [25]
SMZ 130 [24]
SQZ 10

[25]SDM 10
SCP 50

[26]SMR 50
STZ 50

The ADI values for SMI and SMP were not found; thus, only the existing data are
listed in Table 3. Further, the RQH was divided into four risk levels to human health based
on various reports [27]: RQH ≥ 1, 0.1 ≤ RQH < 1, 0.01 ≤ RQH < 0.1, and RQH < 0.01
representing high risk, medium risk, for low risk, and no significant risk.

3. Results and Discussion
3.1. Concentrations of Sulfonamides in the Shaanxi Section of the Weihe River

The concentration and detection rates of sulfonamides in the Shaanxi section of the
Weihe River are shown in Table 4, which illustrates the presence of five SAs (SDZ, SM2,
SMM, SMZ, SQZ) during the wet water period. The detection rate of SMZ reached 90.30%
at all the sampling sites, with a maximum concentration of 34.256 ng/L, which was much
higher than the other four antibiotics. Similarly, the frequency rates of SQZ and SMM were
also relatively high, which were 54.8% and 51.6%, respectively, followed by SDZ and SM2
at 12.9%. Additionally, five types of SAs (SPZ, SM2, SMM, SMZ, and SQZ) were detected
during the flat water period, with lower concentrations than those observed in the previous
period. The highest detection rates of 13.3% were observed for SMM and SQZ, while the
detection rates of SPZ, SM2, and SMZ were 10%, 8.57%, and 8.57%, respectively. Significant
differences were noted in the occurrence of the SAs, as revealed in Table 4, and this can be
attributed to the use of antibiotics and their varying environmental behavior throughout
the time periods.

Table 4. Concentration levels of sulfonamides in the Shaanxi section of the Weihe River.

Sulfonamides
Wet Water Period Flat Water Period

Min/(ng/L) Max/(ng/L) Mean/(ng/L) Detectionrates/% Min/(ng/L) Max/(ng/L) Mean/(ng/L) Detection Rates/%

SDZ ND 2.584 0.106 12.90 ND ND ND 0
SPZ ND ND ND 0 ND 2.113 0.210 10.00
SM2 ND 0.756 0.064 12.90 ND 1.4 0.090 6.70
SMM ND 1.260 0.212 51.60 ND 0.500 0.067 13.30
SMZ ND 34.256 10.126 90.30 ND 1.3 0.087 6.70
SQZ ND 1.84 0.884 54.80 ND 1.2 0.160 13.30

ND, not detected.

SMZ was the major pollutant during the wet water period, with a significantly higher
concentration level and detection rate than the other four sulfonamides, as shown in
Figure 2. This is due to the widespread use of SMZ for the prevention and treatment of
influenza or respiratory infections, often breaking out during spring and autumn [28], and
also the common usage of SMZ as an antimicrobial drug for human and veterinary due to
its wide antimicrobial spectrum, strong antimicrobial properties, high quality, and low cost.
As a result, SMZ is used in large quantities and more often than other antibiotics. Moreover,
antibiotic concentration levels are also related to their physicochemical properties, such as
poor degradation capacity in the aquatic environment and the longer migrating capacity,
which enables SMZ detection in any sampling sites at varying degrees. Conversely, SPZ
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and SQZ were the two dominant antibiotics in water during the flat water period. All
the remaining SAs, except for SDZ, were present at low levels, indicating a relatively
low residual concentration of the five antibiotics even with different degrees of usage.
There were seasonal fluctuations in pollutant levels due to variations in antibiotic use and
environmental conditions.

Figure 2. The proportion of sulfonamides: (a) the wet water period; (b) the flat water period.

Currently, the consumption of antibiotics in various parts of China varies significantly,
with greater quantities consumed in coastal areas than inland areas and southern regions
than northern regions, which is also correlated with the regional economic development.
A study conducted on the use of antibiotics in different regions of China in 2013 by Zhang
et al. [29] shows that, among the seven regions in China, the maximum consumption of
SAs is in the east, and the minimum consumption is in the northwest, as shown in Figure 3.
The Weihe River flows through the eastern Gansu and central Shaanxi Provinces, both of
which are located in northwestern China. In this research, the pollution and consumption
of SAs correspond to each other.

Antibiotic pollution in different regions is influenced by a number of factors, including
population, economic pillar industries, and antibiotic consumption level. It is also related
to the spatial variations in the climatic conditions, geographical environment, and the
physicochemical properties of antibiotics. In this context, the pollution levels of SAs were
compared in the Guangzhou section of the Pearl River, Nanjing section of the Yangtze River,
Haihe River, Liaohe River, Songhua River, and Shaanxi section of the Weihe River, which
is located in the southern, eastern, central, northern regions of China. The concentration
of SAs in the Shaanxi section of the Weihe River was generally lower than those in the
domestic and foreign rivers, as seen in Table 5. However, the SMZ was higher than that
in certain rivers due to its presumably high abundance in the Weihe River during the
earlier period. Moreover, SMZ exhibited a moderate concentration in the Weihe River basin,
similar to the Ebro River, and was significantly higher than in the Nanjing section of the
Yangtze River, Hong Kong river, and Bangladesh River, indicating serious overconsumption
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of SMZ in this study area [30]. Except for undetected antibiotics, the overall concentrations
of SDZ and SMZ in the Bangladesh River were lower than those detected in this study.

Figure 3. Consumption of antibiotics in different regions of China.

Table 5. The concentrations of sulfonamides in domestic and foreign rivers (ng/L).

Name
Concentration/(ng/L)

References
Item SDZ SPZ SM2 SMM SMZ SQZ

Shaanxi section of the Weihe River
Max 2.584 ND 0.756 1.26 34.256 1.84 -
Min ND ND ND ND ND ND

Guangzhou section of the Pearl River Max 13.7 10.4 256 56.8 210 3.02
[12]Min 3.5 ND 8.2 9.14 2.66 ND

Nanjing section of the Yangtze River Max 6.59 1.01 - ND 6.76 -
[13]Min 2.52 0.36 - ND 8.98 -

Haihe River
Max 270 - 940 - 660 -

[14]Min ND - ND - ND -

Liaohe River
Max - 0.96 15.91 - 670.27 14.59

[15]Min - ND ND - ND ND

Songhua River Max 505 85.0 16.1 ND 940 -
[31]Min 0.86 ND ND ND ND -

Hongkong River Max 14.8 3.2 580.4 - 3.1 -
[32]Min 1 0.9 16.5 - 1.1 -

Bangladesh River Max 0.58 - 11.35 - 7.24 -
[33]Min 0.03 - 0.02 - 0.03 -

Mekong River Max - - 328 - 174 -
[34]Min - - 15 - 20 -

Ebro River
Max 6.4 - ND - 35.6 -

[35]Min 1.3 - ND - 1.88 -
Youngshan River Max 20 - 20 - 110 - [36]

ND, not detected.
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Among these typical rivers above, the Guangzhou section of the Pearl River flows
through the economically developed region of the Pearl River Delta and has a very sub-
stantial discharge of domestic sewage, breeding wastewater, and medical wastewater; as a
result, antibiotics have been identified in this aquatic environment to varying degrees; the
water quality in the Yangtze River, as the most important industrial water and drinking
water source in China, has a direct influence on the surrounding residents and industrial
production. The Nanjing section of the Yangtze River is situated in the lower reaches of the
Yangtze River and is the most economically developed region in China. The Haihe River is
the most extensive water system in northern China, covering most of the areas, including
Beijing, Tianjin, Hebei, and Shandong, with a large population and abundant natural re-
sources [37], even though the river runoff is relatively low; both Liaohe and Songhua Rivers
are located in the northeast of China, with a well-developed farming industry around the
basin. SAs such as widely used antibiotics for humans and animals are detected at signifi-
cantly high concentrations. Although the Yellow River is the second largest river in China,
there are few reports on the presence of antibiotics in it [38]. Antibiotic concentrations in
Yellow River mainstem and tributary streams varied from 3 to 56 ng/L, with low detection
rates, compared with those of other rivers [39]. In conclusion, the economically developed
areas and areas with developed farming industries in China have extensively been using
and discharging SAs, resulting in serious antibiotic pollution in these watersheds. There-
fore, the high level of antibiotics in the area can be attributed to the high input and high
consumption of antibiotics. Moreover, the average annual precipitation in China generally
decreases from southeast to northwest due to the influence of the monsoon, concentrating
mainly during summer. This differential rainfall leads to significant differences in the
surface water runoff in different areas, which favors the entry of antibiotics into the surface
water causing varying pollution levels in different watersheds.

3.2. Spatial and Temporal Distribution of Sulfonamides in the Shaanxi Section of the Weihe River
3.2.1. Temporal Distribution of Sulfonamides in the Shaanxi Section of the Weihe River

From Figure 4, it is evident that the concentration levels and detection rates of SAs in
the Shaanxi section of the Weihe River during the two periods differed significantly, with
higher rates during the wet water period than those found during the flat water period.
The concentration during the wet water period typically ranged from ND to 34.256 ng/L,
with detection rates ranging from 12.9% to 90.30%. Similarly, during the flat water period,
the concentration ranged from ND to 2.113 ng/L, with detection rates ranging from 8.57%
to 13.3%. Different antibiotics often exhibit different seasonal effects [40], which can be
attributed to the increasing frequency of livestock and aquaculture activities and SA con-
sumption in the surrounding medical industry during this period. In addition, the Weihe
River basin receives the majority of its precipitation from June to October, which is also the
season for frequent disease, livestock growth, and agricultural planting, which necessitates
the use of large quantities of manure and organic fertilizers containing antibiotics [41]. The
SAs are easily transported to the river through surface runoff [42] during the rainy season
due to their low adsorption capacity in soil or manure. Moreover, when the temperature
decreases, the light intensity, hydrodynamic conditions, and microbial degradation ability
also deteriorate, reducing the antibiotic degradation rate in the aquatic environment. The
low temperature also affects the removal effect of these compounds in wastewater treat-
ment plants [43], resulting in a considerable amount of antibiotics being released into the
river during the wet water season that has not entirely been removed. The concentration
levels and detection rates of SAs during the flat water period decreased significantly due
to the use of antibiotics and the enhanced biodegradation in response to the gradual rise
in temperature, which catalyzes the dilution effect, and photolysis of SAs in the water
environment [44]. This promoted the transformation and decomposition of antibiotics,
which subsequently resulted in relatively low pollution levels during this period.
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Figure 4. Seasonal distribution of SAs detection rate and concentration in the Shaanxi section of the
Weihe River.

Several scholars have investigated the antibiotic contamination in the Weihe River
basin in recent years. The contamination levels of SAs in the Weihe River during 2016–2018
were significantly higher than those observed in this study [45–47]. However, during the
flat water period, in this study, SMZ was detected at only two sampling sites where the
concentration was just 1.3 ng/L. The pollution has been decreasing significantly in the
Shaanxi section of the Weihe River, which is evident from the concentration level of SAs
from 2016 to 2021, and this can be related to the management of antibiotics in China. The
Ministry of Agriculture and Rural Affairs continuously implemented strategies to reduce
veterinary antimicrobial drugs on various farms across the country from 2018 to 2020.
Additionally, the General Office of the National Health and Wellness Commission issued
a notice on the continuous improvement of the management of the clinical application
of antimicrobial drugs in 2020, which requires in-depth implementation of the “Opinions
on Strengthening Pharmacy Management in Medical Institutions” to promote rational
drug use and the National Action Plan to curb bacterial drug resistance (2016–2020) to
improve the rational use of antimicrobial drugs continuously. This resulted in a significant
variation in the level of SAs contamination in this study, compared with those observed in
previous studies.

3.2.2. Spatial Distribution Characteristics of Sulfonamides in the Shaanxi Section of the
Weihe River

As part of this study, 31 sampling sites (3 sampling sites in the north tributary, 16 sam-
pling sites in the main stream, and 12 sampling sites in the south tributary) during the wet
water period and 30 sampling sites (3 sampling sites in the north tributary, 15 sampling
sites in the main stream, and 12 sampling sites in the south tributary) during the flat water
period were set up, and SA distribution across the sampling sites is shown in Figure 5.
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Figure 5. Distribution of SAs in the Shaanxi section of the Weihe River: (a) the wet water period;
(b) the flat water period.

During the wet water period, the majority of the antibiotic types were detected at
W22 and W28, with a total of 4 SA types in the 31 sampling sites, covering the Geng Town
and Shi Village with concentrations, ranging from 0.358 to 18.338 ng/L and from 0.23 to
17.95 ng/L, respectively, as shown in Figure 5. More than 1 type of SAs was detected
in the remaining 27 sampling sites, but only 2 sampling sites had no SAs, indicating the
prevalence of SAs throughout the upper, middle, and lower reaches during the wet water
period. During the flat water period, only 2 or more SAs were detected at W10 and W19,
which were located at Yangling Dam and Tianjiang Rendu, respectively, and 1 antibiotic
was detected in the remaining 10 sampling sites, while no SAs was detected in any of the
18 sampling sites, suggesting the significant contribution of SAs in the middle reaches
during this period.

The distribution of SAs in the main and tributary streams of the Weihe River during
two periods is shown in Figure 6. The order of distribution of SAs from the highest to
the lowest during the wet water period was main stream (ND–35.296 ng/L) > the south
tributary (3.718–34.354 ng/L) > the north tributary (5.476–9.302 ng/L), and that during the
flat water period was main stream (ND–3 ng/L) > the north tributary (ND–2.095 ng/L) >
the south tributary (ND–1.3 ng/L). Baoji, on the upper reaches of the Shaanxi part of the
Weihe River, is the location of sampling sites W1–W8. It is the second-largest industrial
city in Shaanxi Province, and the predominant industries in the city include machinery,
chemicals, food processing, etc. These industries use water and release a substantial volume
of effluents into the Weihe River [48]. The highest concentration of SAs in the upper main
stream was observed at W1 (Linjia village) due to the vast population and family farming
base in the area, where villagers and livestock cannot survive without antimicrobials.
Sampling sites W9–W24 are located in the middle reaches and may be subdivided into
three sections based on population density, agricultural industry, and factory density:
The upper area in Xianyang, the midstream area in Xi’an, and the downstream area in
Gaoling and Lintong. The population density progressively rises downstream from the
source, and the sampling points W9 and W10 were located above and below the Yangling
dam, respectively. The construction of the dam exerts an intercepting effect on the river,
which slows the flow of water at this location and limits the dilution rate of antibiotics,
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resulting in a greater concentration of SAs downstream than upstream. The W19–W22
were located near the Bahe River, where many poultry and livestock breeding bases exist
in the surrounding area, and the outfall of Xi’an City No. 5 Wastewater Treatment Plant is
also located there; the discharge of pharmaceutical wastewater, breeding wastewater, and
domestic wastewater resulted in increased antibiotic concentrations. The sampling sites
W25–W31 were located in the lower reaches, with even distribution of the main stream
and tributaries, and the sampling site W27 was located in the Chishuihe River, a tributary
on the south bank; since the upstream of this site flows through two outfalls (the Weinan
Municipal Sewage and the Weinan West Alkali Drainage Canal), the effluent from the
sewage treatment plant may be the primary cause of the elevated SAs at this site [49]. When
domestic sewage or agricultural wastewater is discharged, or when the river runoff and
river velocity are low in the tributaries, SAs converge into the main stream and continue
to accumulate, resulting in high levels of SAs pollution in the main stream. During the
flat water periods, SAs levels in the main stream and its tributaries were generally low,
and the overall antibiotic concentration in each sample was comparable. The sampling
site W19 was located at Tianjiang Rendu, which is downstream of the Zaohe River and
the Caoyun nullah, wherein the former river is commonly known as the “sewage river” of
Xi’an. Domestic sewage and industrial wastewater are often discharged into the tributaries
and eventually into the main stream, resulting in a higher detection level of SAs at the
Tianjiang Rendu section.

Figure 6. Distribution of SAs in the main steams and tributaries of the Weihe River: (a) the wet water
period; (b) the flat water period.

In conclusion, the variations in the concentrations of SAs in the Shaanxi section of
the Weihe River may be related to pollution sources, population density, local economic
development levels, and agricultural farming on both sides of the basin. In addition,
relatively severe pollution of SAs in main stream of the Weihe River is also related to the
tributaries and the outfall canals, which are both the recharge sources for the main stream
and the input sources for the downstream pollutants. The very high discharge of antibiotics
by various industrial enterprises, pharmaceutical companies, and outfalls in the tributaries
on both banks may increase the antibiotic residues in the main stream, resulting in a higher
pollution level of SAs in the main stream of the Weihe River than in the tributaries.

3.3. Ecological Risk Assessment of Sulfonamides in the Shaanxi Section of the Weihe River

The RQ values of SAs varied in the wet water period, as illustrated in Figure 7. In
order to comprehend the risk levels of antibiotics in the Shaanxi section of the Weihe River,
the risk assessment results of this study were assessed using the toxicity data and PNEC
values of various sulfonamides to aquatic organisms such as fish, algae, water flea, etc.
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The RQ values of SM2, SMM, and SQZ for respective sensitive species were less than
0.01 at each of the 31 sampling locations during the wet water period, indicating that the
ecological risk caused by these three SAs was not significant. On the other hand, SDZ
exhibited low risk (0.01 ≤ RQs < 0.1) to water flea and Microcystis sp. only at sampling
site W1; SMZ showed low risk (0.01 ≤ RQs < 0.1) to Cyclotella sp. in sampling sites W1,
W9, W10, and W27, but no significant ecological risk to other aquatic organisms in other
sampling locations. As a result, the ecological risk caused by SDZ and SMZ should be
widely acknowledged. Since none of the five antibiotics detected during the flat water
period posed a significant ecological risk (RQs < 0.01) to any of the aquatic organisms in the
watershed, Figure 7 only depicts the ecological risk of SAs to aquatic organisms during the
wet water period. Furthermore, SDZ and SMZ are the primary sources of ecological risk.
These two sulfonamides are also widely used for medicine and agriculture, which may
have toxic effects on aquatic organisms, promote the long-term development of bacterial
resistance in the water environment [50] and may potentially impact the original ecosystem.

Figure 7. The RQs of SAs in Shaanxi section of the Weihe River.

This study used the most sensitive species corresponding to SAs as the benchmark,
calculated the MEC based on the highest observed concentration, and analyzed the changes
in RQ values of sulfonamides over the last five years. As shown in Figure 8, the RQS of
the six SAs for various aquatic organisms exhibited a declining trend from 2016 to 2021
and generally showed an order of wet water period > flat water period. In 2016, SQZ
was greater during the flat water period than that during the wet water period, which
may have been caused by the presence of aquatic organisms along the watershed. In
conclusion, the ecological risk has changed since the start of the antibiotic reduction action
in the Shaanxi section of the Weihe River, also indicating that individual antibiotics are still
abused. Therefore, more attention should continue to be paid to the use of SAs in the Weihe
River in order to prevent more severe ecological threats to aquatic organisms.
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Figure 8. Comparison of the RQs of sulfonamides in Shaanxi section of the Weihe River from 2016
to 2021.

3.4. Health Risk Assessment of Sulfonamides in the Shaanxi Section of the Weihe River

Figure 9 compares the health risks of sulfonamides on human health throughout
different periods from 2016 to 2021, where (c) and (d) represent the health risks of six SAs
to various age groups during the wet water period in 2020 and the flat water period in 2021,
respectively. The RQH values for various age groups varied from 3.17 × 10−7 to 9.49 × 10−6,
showing that there was no major health risk (RQH < 0.01) for SAs in the Shaanxi section
of the Weihe River. Nonetheless, the six SAs revealed distinct health risks for various age
groups, with RQH values greater for adults than children and males than females in the
same age group. Compared with the values of 2016, the RQH values observed in this study
decreased by one order of magnitude, as seen in Figure 9. Long-term exposure to emerging
contaminants at low concentrations can be harmful to human health [51], and it can also
lead to the development of antibiotic-resistant bacteria (ARB) and antibiotic resistance
genes (ARGs), which can increase the risk to human health even at low concentrations
through the food chain and food web [52].

As an emerging contaminant, antibiotic resistance poses a growing threat to global
public health. Emerging contaminants are “emerging” because they are biotoxic, persistent
in the environment, and bioaccumulative. Even at low concentrations in the environment,
they may cause significant risks to the environment and health. Antibiotics are not cur-
rently incorporated into environmental management, or existing management measures
are inadequate, necessitating action from all government agencies and society [53]. The
WHO has identified antimicrobial resistance as a threat to public health in the 21st cen-
tury [54]. In recent years, China has repeatedly emphasized the governance of emerging
contaminants, moving from “special research on the governance of emerging contaminants”
to “pay attention to the governance of emerging contaminants” and, finally, “strengthen
the governance of emerging contaminants.” The demands for new pollutant governance
have increasingly developed, rising in severity, and the importance of the task has been
emphasized. The findings of this study might be relevant for future antibiotic pollution
control measures in the Weihe River basin. This study did not explore the risks posed by
antibiotic pollutant interactions and resistance genes, which solely looked at the impacts of
six SAs on various aquatic organisms and human health. Antibiotic compound pollution
poses additional ecological and health risks, which should be addressed in future studies.



Int. J. Environ. Res. Public Health 2022, 19, 8607 15 of 18

Figure 9. Comparison of the RQH in Shaanxi section of the Weihe River from 2016 to 2021: (a) the flat
water period in 2016; (b) the wet water period in 2016; (c) the wet water period in 2020; (d) the flat
water period in 2021.

4. Conclusions

(1) In the Shaanxi section of the Weihe River, SAs are abundant. In this basin, six SAs
(SDZ, SPZ, SM2, SMM, SMZ, and SQZ) were detected, with five SAs being detected
in each of the wet and flat water periods, with detection rates varying from 12.9% to
90.30% and from 8.57% to 13.3%, respectively. In comparison to other domestic and
foreign rivers, SA pollution in the Shaanxi section of the Weihe River was rather low,
but the risks caused by individual antibiotic usage should still be considered.

(2) In terms of temporal distribution, SAs exhibited seasonal changes associated with
rainfall, light intensity, ambient temperature, and biological and microbial activity,
with wet water period (ND–34.256 ng/L) > flat water period (ND–2.113 ng/L). In
terms of spatial distribution, it was revealed that the order was the main stream
(ND–35.296 ng/L) > the south tributary (3.718–34.354 ng/L) > the north tributary
(5.476–9.302 ng/L) during the wet water period, and the main stream (ND–3 ng/L) >
the north tributary (ND–2.095 ng/L) > the south tributary (ND–1.3 ng/L) during the
flat water period, which is directly associated with the enterprises on both sides and
the degree of population density, economic development, and agricultural farming.

(3) Except for SDZ and SMZ, which exhibited low risk (0.01 ≤ RQS < 0.1) to water flea
and Microcystis sp. in some sampling sites during the wet water period, no other
antibiotics showed a substantial ecological risk (RQS < 0.01) to their sensitive species.
The risks of six SAs to aquatic organisms have decreased in the last five years, with
the order of wet water period > flat water period, which is intrinsically connected to
the development of emerging contaminant management in recent years.
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(4) In the Shaanxi section of the Weihe River, there was no significant health risk
(RQH < 0.01) of SAs in different age groups, and the risks for adults were greater
than for children, and in the same age group, males were at higher risk than females.
The RQH values in this study declined by an order of one magnitude, compared
with those of 2016. However, the risks from antibiotic contaminant interactions and
resistance genes were not explored in this study, which solely looked at the effects of
the six SAs on diverse aquatic organisms and human health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph19148607/s1, Table S1: Mainstream and main tributaries of the
Shaanxi section of the Weihe River.
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