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also be, in part, PPARγ-independent (see below). Glitazones also 
upregulate the expression of genes involved in fatty acid uptake, 
beta-oxidation, electron transport, and oxidative phosphorylation 
in subcutaneous fat (Boden et al., 2005), which may reduce plasma 
levels of lipids. Glitazones induce a moderate decrease in triglycer-
ides and free fatty acids and an increase in high-density lipoprotein 
(HDL) cholesterol, while increasing the size/decreasing the den-
sity of low-density lipoprotein (LDL; Goldberg, 2006). This list of 
effects induced by glitazones is far from being complete, but may 
give an idea of the multiplicity of genes regulated following PPARγ 
stimulation; these genes go beyond glucose and lipid metabolism, 
encompassing inflammation (cytokines), cell growth and differen-
tiation, angiogenesis (VEGF), which provides the basis for additional 
potential therapeutic indications. In fact, beside diabetes, glitazones 
have been investigated in a number of diseases, such as non-alcoholic 
steatohepatitis (Neuschwander-Tetri et al., 2003), psoriasis (Ellis 
et al., 2000), autism (Boris et al., 2007), polycystic ovary syndrome 
(Katsiki et al., 2009), and other conditions, potentially including 
also breast carcinoma (Baranova, 2008).

Some consequences of PPARγ stimulation, however, may not be 
beneficial or may even be harmful. Gene expression changes induced 
by glitazones are likely to be different in different cell types. In vitro 
studies with hepatocytes have shown that the gene expression pro-
files following troglitazone and ciglitazone exposure are clearly distin-
guished from those following pioglitazone and rosiglitazone. Genes 
that are differentially expressed between the more toxic troglitazone/
ciglitazone group and the less toxic rosiglitazone/pioglitazone group 
are involved in necrotic, apoptotic, and cell proliferative pathways 
(Guo et al., 2006). Troglitazone seems to be more potent than other 
glitazones in inducing genes related to oxidative stress, such as heme 
oxygenase 1, or genes involved in DNA repair and cell death, such as 

Glitazones (also referred to as thiazolidinediones) are drugs approved 
for use in the treatment of diabetes mellitus type 2; they include cigli-
tazone, pioglitazone, troglitazone, rosiglitazone, rivoglitazone, and 
balaglitazone. Despite their striking chemical similarity (Figure 1A), 
these compounds have different safety profiles, such that only piogli-
tazone is currently still in clinical use; ciglitazone never reached 
the market, troglitazone and more recently rosiglitazone have been 
withdrawn (rosiglitazone is still sold in United States, but put under 
restriction), while rivoglitazone and balaglitazone are still in devel-
opment. After being introduced in the 1990s, glitazones became 
very popular and widely prescribed, because they increase insulin 
sensitivity without causing hypoglycemia, until some clinical studies 
raised concerns on their safety (see below). In 2009 pioglitazone was 
selling for about 2.5 billion $ in United States, ranking ninth among 
top selling drugs (Drugs.com1). Glitazones act by binding to peroxi-
some proliferator-activated receptor γ (PPARγ), a nuclear receptor 
involved in regulation of insulin sensitivity and glucose metabolism 
(Francis et al., 2003). Following activation by exogenous ligands, 
such as glitazones, or endogenous ligands, such as free fatty acids 
and eicosanoids, PPARγ modulates transcription of genes involved 
in carbohydrate and lipid metabolism (Figure 2; Francis et al., 2003). 
PPARγ-dependent effects of glitazones include decrease of insulin 
resistance (Fujita et al., 1983), induction of adipocyte differentiation 
(Kletzien et al., 1992), inhibition of vascular endothelial growth fac-
tor (VEGF)-induced angiogenesis (Panigrahy et al., 2002), change 
in levels of leptin (De Vos et al., 1996) and adiponectin (Yamauchi 
et al., 2001), decrease in levels of some cytokines (Jiang et al., 1998; 
Ricote et al., 1998), including tumor necrosis factor α (TNFα), and 
 interleukin-6 (IL-6; Sigrist et al., 2000), though this latter effect may 
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Figure 1 | Chemical structures of glitazones (A) and glitazars (B). The chemical structure shared by all the compounds of the class is indicated in green, while in 
red is the part of the molecule that characterizes individual compounds.

Figure 2 | Scheme of PPArγ activation and signaling. (A) In the absence of 
ligand, PPARγ is bound to co-repressors and may interact with DNA in a manner that 
prevent transcription. (B) Upon binding the ligand, PPARγ undergoes conformational 
changes inducing the recruitment of specific co-activators and allowing hetero-

dimerization with retinoid receptors. These multimeric complex activates 
transcriptional activity and gene expression. L, ligand; RXR, retinoid receptor; LBD, 
ligand binding domain; DBD, DNA binding domain; PPRE, PPAR responsive 
element; SRC-1, steroid receptor co-activator-1; HAT, histone acetyl transferase.
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compound differently affects PPARγ-dependent gene expression 
in different cell types. The actual view of nuclear receptor regula-
tion by co-regulators, summarized in Figure 2, assumes that in the 
absence of ligand, the nuclear receptor binds to co-repressors with 
which it can be recruited on DNA to prevent transcription. Upon 
binding of endogenous or exogenous ligands, the ligand binding 
domain of PPARγ may undergo conformational changes inducing 
the recruitment of specific co-activators. These multimeric com-
plexes determine transcriptional activity by bridging transcription 
factors to the basic transcription machinery and by specifically 
modifying chromatin structure (Gelman et al., 2007). Development 
of more selective PPARγ ligands, that induce recruitment of spe-
cific co-regulators, may implement the beneficial pharmacologi-
cal actions of glitazones over their adverse effects (Gelman et al., 
2007). However, because activation of other nuclear receptors, 
such as PPARα, exerts also beneficial metabolic and cardiovascu-
lar actions, the opposite strategy of broadening the pharmacology 
of PPAR-interacting compounds is also exploited in drug discovery 
and development. This latter strategy has recently brought PPAR 
dual ligands, termed glitazars (Tenenbaum et al., 2005), interacting 
with both PPARα and PPARγ. These drugs include muraglitazar, 
tesaglitazar, ragaglitazar, farglitazar, aleglitazar (Figure 1B). Despite 
their promising effects, however, none of them has yet reached the 
market and some have been stopped during clinical development.

PPARγ-unRelAted effects of glitAzones And dRug 
discoveRy
Compounds containing the glitazone/thiazolidinedione moiety 
have been synthesized and screened for binding to diverse molecu-
lar targets. As can be seen from the following list, some of this targets 
are protein kinases and phosphatases. In terms of in vitro analytical 
pharmacology, this implies that kinetics of PPARγ-independent 
responses to these compounds is expected to be faster (within 
minutes), than PPARγ-dependent gene expression-related effects 
(Sears et al., 2007).

Class I phosphoinositide 3-kinases (PI3Ks), in particular PI3Kγ, 
have become attractive drug targets of glitazone-related com-
pounds as potential treatments for inflammatory and autoim-
mune conditions (Pomel et al., 2006). Importantly, PI3Kγ is also 
involved in cardiovascular patho-physiology (Alloatti et al., 2004; 
Oudit et al., 2004), in cardiomyocytes as well as in endothelium 
and vascular smooth muscle cells, through Akt/protein kinase B 
stimulation; cardiovascular diseases may therefore represent, in the 
near future, an additional therapeutic field for glitazone-related 
compounds. Beside PI3K signaling, other PPARγ-unrelated mecha-
nisms of glitazones may find usefulness in inflammation: inhibition 
of macrophage/monocyte chemotaxis, which plays a significant 
role in acute liver injury (Luo et al., 2010); activation of adenosine 
monophosphate-activated protein kinase and suppression of IL-6 
production (Guh et al., 2010); inhibition of autotaxin, an extracel-
lular enzyme that hydrolyzes lysophosphatidylcholine to produce 
lysophosphatidic acid (Albers et al., 2010), thereby inducing cell 
proliferation and/or chemotaxis.

Cancer therapy is another potential field of glitazone-related 
compounds. Glitazones down-regulates cyclin D1 through protea-
some-facilitated proteolysis (Huang et al., 2006); using glitazone 
structure as chemical scaffold, other inhibitors of cyclin D1 have 

Gadd45 (Vansant et al., 2006). The withdrawal of troglitazone has led 
to concerns also on the other glitazones about their potential to induce 
liver failure (approximately 1 in 20,000 with troglitazone). Because of 
this, Food and Drug Administration (FDA) recommends 2–3 months 
checks of liver enzymes for the first year of glitazone therapy for early 
detection of this rare but very severe adverse effect. To date, with 
the newer glitazones, rosiglitazone, and pioglitazone, reported liver 
toxicity is much less frequent and severe. Liver toxicity has also been 
attributed to metabolic transformation of troglitazone by cytochrome 
P450 (CYP) 3A with generation of a quinone metabolite (He et al., 
2001); however, no correlation between generation of the reactive 
metabolites and susceptibility to the troglitazone cytotoxicity has 
been demonstrated, while chemical inhibitors of drug metabolizing 
enzymes do not protect the cells against the toxicity (Masubuchi, 
2006). The precise molecular mechanism of glitazone-induced liver 
injury remains to be determined; however, based on troglitazone-
induced expression profile, which includes oxidative-apoptotic genes, 
on the mechanism of liver injury, that involves mitochondrial dam-
age, with potential release of cytochrome c (Smith, 2003; Lee et al., 
2008), on the pro-inflammatory effects of PPARγ ligands on hepatic 
stellate cells (Marra et al., 2000), we may hypothesize that PPARγ 
receptor stimulation may take part into the mechanism of hepatic 
injury. Worthy of note, troglitazone-induced gene expression pro-
file exhibit high variability in individuals (Rogue et al., 2010), which 
may provide the basis for idiosyncratic reactions; genetic polymor-
phisms responsible for such reactions remain to be elucidated, but 
may include both genes involved in drug metabolism (CYP isoforms) 
and in PPARγ activity (PPAR co-activators, co-repressors, etc.).

A common side effect of all glitazones is water retention, which 
represents a significant risk in patients with decreased ventricular 
function. Increasing sodium retention and plasma volume expan-
sion have been related to PPARγ stimulation in the epithelium of the 
renal collecting duct (Chen et al., 2005). There is some thought that 
amiloride or spironolactone could decrease this effect (Chen et al., 
2005). Another adverse effect of glitazones related to PPARγ activa-
tion is on bone; glitazones decrease bone formation and bone mass, 
and increase fracture rates, at least in women (Bodmer et al., 2009). 
PPARγ inhibits bone formation by diverting mesenchymal stem 
cells from the osteogenic to the adipocytic lineage and increases 
bone resorption by inducing the development of osteoclasts. Other 
indirect mechanisms may involve levels of hormones and cytokines 
that affect bone metabolism (Bodmer et al., 2009).

An increased risk of coronary heart disease has been observed 
with rosiglitazone (Nissen and Wolski, 2007; Kaul et al., 2010). 
Recent evidence, however, suggests that rosiglitazone itself decreases 
the progression of atherosclerosis (Gerstein et al., 2010). In keep-
ing with this, pioglitazone has been shown to afford significant 
protection from cardiovascular events in diabetic patients (Kaul 
et al., 2010). Protection against plaque progression seems therefore 
to be a class effect of glitazones, that might be related to PPARγ-
dependent induction of adiponectin (Tao et al., 2010). At present, 
the precise mechanism(s) through which rosiglitazone increases 
the incidence of cardiac events is unknown and possibly unrelated 
to PPARγ stimulation.

The multiplicity and variety of glitazone effects through PPARγ 
stimulation has raised the question on whether different com-
pounds exhibit different pharmacological profiles and/or a same 
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and eventually to rupture, platelet aggregation, and thrombosis. It is 
generally thought that PPARγ activation favorably affects these inflam-
matory components (Marx et al., 1998, 2002; Pasceri et al., 2000). As 
mentioned above, however, glitazones exert several anti-inflammatory 
effects also in a PPARγ-unrelated manner, which may further impact, 
at least theoretically, atherosclerosis progression, and plaque evolu-
tion. Glitazones have been shown to increase endothelial release of 
nitric oxide and expression of VEGF, and to decrease expression of 
endothelin-1; these are generally considered PPARγ-dependent effects 
and, overall, may contribute to the risk reduction for stroke and myo-
cardial infarctions (McGuire and Inzucchi, 2008).

While studying vasomotor effects of telmisartan (Siarkos et al., 
2011), an angiotensin receptor antagonist endowed with PPARγ 
agonistic activity (Schupp et al., 2004), we recently made the ser-
endipitous observation that, in vitro, troglitazone rapidly and 
reversibly blocks contraction of vascular smooth muscle induced 
by either K+-dependent depolarization or α

1
-adrenoceptor stimula-

tion (Figure 3). Because this effect of troglitazone occurred already 
after only 30 min incubation, it does not seem to be consistent with 

recently been designed and screened for potential anticancer activity 
(Colin et al., 2010). Increased proteasomal degradation by glitazones 
is not limited to cyclin D1, but includes important apoptosis regu-
latory proteins such as FLICE-inhibitory protein (FLIP) and beta-
catenin, and the transcription factor Sp1 (Yang et al., 2008; Wei et al., 
2009). Additional targets of glitazone-based drug design potentially 
exploitable for cancer therapy are: SHP-2, a tyrosine phosphatase 
that mediates cell signaling by growth factors and cytokines via the 
mitogen-activated protein kinase (MAPK) pathway (Geronikaki 
et al., 2008); Pim-1 and Pim-2 protein kinases frequently over-
expressed in prostate cancer and certain forms of leukemia and 
lymphoma (Xia et al., 2009); Insulin-like growth factor-1 receptor, 
which may affect cell proliferation and survival (Liu et al., 2010).

vAsculAR effects of glitAzones
Inflammation is a key mechanism in the process of vascular athero-
sclerosis. Plaque progression involves a number of mediators such as 
adhesion molecules, growth factors, chemokines, cytokines, and matrix 
metalloproteinases that lead to weaken the fibrous  atherosclerotic cap 

Figure 3 | effect of troglitazone on vasomotor responses to phenylephrine 
(Pe) in isolated femoral arteries. Arterial segments, mounted in a wire 
myograph, were first challenged with a 100-mM K+ depolarizing solution, then 
with cumulative concentrations of PE (10 nM–10 μM), added to the organ 
chamber by half log increase, as indicated by dots on the tracing. Three 
consecutive runs of vasoconstriction to PE were carried out in each preparation, 

interrupted by 30-min wash out intervals. Upper trace (A) shows three 
reproducible concentration–contraction curves in a control preparation; middle 
trace (B) shows a block of vasoconstriction to PE, following incubation with 
troglitazone, that is reversed in runs 2 and 3, following troglitazone wash out; 
lower trace (C) shows block of vasoconstriction to PE by troglitazone, unaffected 
by preincubation with GW9662, a PPAR antagonist.
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Furthermore, troglitazone-induced block of vasoconstriction was 
rapidly reversible, upon just 30 min wash out, which again makes 
unlikely PPARγ stimulation as the underlying mechanism, because 
reversibility would imply longer time related to the turnover of 
PPARγ-induced mRNAs and proteins; finally, the lack of effect of 
30 μM GW9662, a PPARγ antagonist (Han et al., 2001) that we used 
at a concentration much higher than the reported IC50 (3.8 nM, 
Seimandi et al., 2005), rules out the involvement of PPARγ. At 
first sight, the concentration of troglitazone used in the present 
experiment, 30 μM, may look too high (“too” implying a plethora 
of potential non-specific effects); it is not that high, however, when 
considering that, in vitro, PPARγ stimulation by troglitazone is often 
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