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Constraint based modeling has seen applications in many microorganisms. For example,

there are now established methods to determine potential genetic modifications and

external interventions to increase the efficiency of microbial strains in chemical production

pipelines. In addition, multiple models of multicellular organisms have been created

including plants and humans. While initially the focus here was on modeling individual

cell types of the multicellular organism, this focus recently started to switch. Models

of microbial communities, as well as multi-tissue models of higher organisms have

been constructed. These models thereby can include different parts of a plant, like

root, stem, or different tissue types in the same organ. Such models can elucidate

details of the interplay between symbiotic organisms, as well as the concerted efforts

of multiple tissues and can be applied to analyse the effects of drugs or mutations on

a more systemic level. In this review we give an overview of the recent development of

multi-tissue models using constraint based techniques and the methods employed when

investigating these models. We further highlight advances in combining constraint based

models with dynamic and regulatory information and give an overview of these types of

hybrid or multi-level approaches.

Keywords: multi-scale modeling, constraint based modeling, multi-tissue modeling, multi-organism modeling,

metabolic modeling

1. INTRODUCTION

While genome sequences are now readily available, determining the metabolic properties of
organisms is still an open problem. Numerous methods for modeling and analyzing metabolism
exist (for a general comparison please refer to Bordbar et al., 2014), including a large diversity of
multi-scale approaches. E.g., Karr et al. (2012) reconstructed a whole-cell model of Mycoplasma
genitalium. The overall model combines multiple different modeling techniques for describing
different levels of the organism, reaching from regulatory signaling to metabolism and other
pathways. However, its comprehensiveness leads to a large number of parameters, making this
approach practically quite challenging for more complex organisms. There also exist some
applications of kinetic modeling to study different tissues, like liver (Ricken et al., 2015; Zeigerer
et al., 2015), heart (Crampin et al., 2004), and brain metabolism (Jolivet et al., 2015), mainly in the
framework of the Virtual Physiological Human Project (Viceconti et al., 2008). A hepatocyte model
integrating signaling and regulatory information along with metabolism based on kinetic modeling
has recently been published (Ryll et al., 2014). Petri-nets form another approach used for multi-
scale modeling (Berestovsky et al., 2013). However, due to the availability of genome annotations
and the lack of knowledge on kinetic parameters, stoichiometric network models of metabolism
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form an widely used and very scalable basis. The concept
of constraint based modeling (CBM) allows fast calculations
of large networks under the steady state assumption, relying
mainly on genetic information easily obtainable by genome
sequencing. Recent combinations of these types of models with
other modeling techniques show promising results. We will
therefore focus in this review on constraint based modeling and
its combination with other techniques.

Constraint based modeling (CBM) aims at helping
researchers to get a better insight into the complex system
of metabolism (Llaneras and Picó, 2008). Additionally, they
exploit the property of metabolism that reactions have defined
substrates and products. Based on a network of biochemical
reactions, a stoichiometric matrix S is created, with columns
representing reactions, rows representing metabolites, and
entries S(i, j) representing the stoichiometric coefficient of
metabolite i in reaction j. For larger networks this requires the
application of computational tools usually providing the models
in SBML format being an important step toward reproducible
science (Pfau et al., 2015). The major constraint imposed by
CBM methods is the assumption of an internal quasi steady
state of the investigated system. It is assumed that the internal
concentrations of metabolites do not change over time (i.e.,
S · v = 0 , where v is the flux distribution vector of the
system). In addition, three primary constraints are introduced
to obtain biologically relevant solutions (Orth and Palsson,
2010; Lewis et al., 2012): mass and charge conservation within
reactions, dependency on substrate and enzyme availability
and reversibility constraints based on thermodynamics. It is
also common to employ an objective function that the system
is assumed to be optimized for (Schuetz et al., 2007). The
implemented functions range from growth (Feist and Palsson,
2010) over production of ATP to complex combinations of
multiple simpler objectives (Vo et al., 2004) and are a particular
challenge when multicellular organisms are the target of
research. One of the most common approaches to CBM is the
use of flux balance analysis (FBA) (Savinell and Palsson, 1992;
Varma and Palsson, 1994; Kauffman et al., 2003; Raman and
Chandra, 2009; Orth and Palsson, 2010). FBA has been used to
investigate the effects of knockouts on metabolism (Segrè et al.,
2002; Shlomi et al., 2005) and to design knockout strategies
for metabolic engineering (Burgard et al., 2003; Rocha et al.,
2010; von Kamp and Klamt, 2014). Basic FBA however, does
not account for model dynamics like gene regulation, signaling
processes, or metabolic regulation (Orth and Palsson, 2010).
Therefore, approaches considering these regulatory elements
have been developed (Covert and Palsson, 2002; Mahadevan
et al., 2002; Covert et al., 2008). Models for multiple species from
all biological kingdoms (prokaryotes, eukaryotes, and archaea)
have been reconstructed (see http://systemsbiology.ucsd.edu/
InSilicoOrganisms/OtherOrganisms), and their number is
constantly increasing. While the first models used in CBM were
mostly aimed at central carbon metabolism, the ever growing
availability of genome sequences has let to a rapid increase
in genome scale metabolic reconstructions (GSM). The first
GSM was Haemophilus influenzae Rd (Edwards and Palsson,
1999) in 1999, followed four years later by the first eukaryotic

model (Saccharomyces cervisiae) (Förster et al., 2003) and
the first mammalian model (Mus musculus) in 2005 (Sheikh
et al., 2005). The first human reconstruction (Recon1 by
Duarte et al., 2007) was closely followed by the publication
of a second human GSM, the Edinburgh Human Metabolic
Network, within the same year (Ma et al., 2007). These initial
models have seen many improved versions over the past years
(e.g., Recon2 Thiele et al., 2013 and HMR2 Mardinoglu et al.,
2014 for human). While general reconstructions serve as an
important knowledge base for our understanding of metabolic
capabilities within the reconstructed organism, they are limited
when investigating multicellular organisms exhibiting multiple
different tissues. Since different cell types of higher organisms
have different functions, and indeed different capabilities, it
is therefore necessary to reconstruct tissue specific models. In
a recent review, Ryu et al. (2015) give an extensive overview
over currently available reconstructions. In addition to manual
reconstruction, multiple methods exist for contextualization of
metabolic networks (reviewed in Machado and Herrgård, 2014;
Resendis-Antonio et al., 2014; Robaina Estévez and Nikoloski,
2014; Ryu et al., 2015). While tissue specificity can help to
elucidate important information about a specific tissue, a single
tissue model on its own is unable to inform about the complex
interactions occurring in a higher organism. This necessitates
the combination of models presenting multiple tissues. In
this review we will first provide an overview of methods
developed for the integration of non-metabolic information
in constraint based models and give an overview of methods
used for model simulation. We will continue by detailing
the recent development of constraint based models spanning
multiple organisms or tissues along with methods employed
when investigating these models. Finally we will present recent
advances in combining constraint based models with dynamic
and regulatory information and give an overview of these types
of hybrid or multi-scale approaches.

2. FBA METHOD: DATA INTEGRATION AND
EXTENSIONS

Multiple methods can be used to improve constraint basedmodel
predictions. Figure 1 provides an overview of these methods,
ordered by their time of publication. These methods include
ways to integrate regulatory events which can influence the
activity of reactions by altering the production of specific proteins
necessary to catalyze these reactions. They also provide concepts
which allow the use of omics data to determine the availability
of enzymatic activities. The first attempts to integrate non-
metabolic information into a CBM analysis was introduced
by Covert et al. (2001), who linked regulatory data to a CBM
model of Escherichia coli turning reactions on and off (a method
termed rFBA). The principle of flux adjustment based on external
data was picked up by others and either used to switch reactions
on or off (Becker and Palsson, 2008; Vlassis et al., 2014) or to
adjust the bonds of fluxes (Colijn et al., 2009; Lee et al., 2012).
The former try to derive the activity state of genes and assign
reaction availabilities based on these activities using Boolean
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FIGURE 1 | Timeline of the development of techniques for the integration of data and the simulation and analysis of complex systems. Please refer to

the main text for details. ([1] Savinell and Palsson (1992); [2] Covert et al. (2001); [3] Mahadevan et al. (2002); [4] Mahadevan and Schilling (2003); [5] Covert et al.

(2008); [6] Lee et al. (2008); [7] Vo et al. (2004); [8] Krauss et al. (2012); [9] Thiele et al. (2012); [10] Lerman et al. (2012); [11] Fisher et al. (2013)), Images for [8],[9], and

[10] are derived from images taken from the respective publications which are provided under a Creative Commons attribution license (https://creativecommons.org/

licenses/by/2.0/).

gene-protein-reaction association rules. These rules are similar to
the Boolean rules used by Covert et al. for regulatory constraints,
but only use gene activity information, where Covert et al. used
additional information, like the availability of a preferred carbon
source deactivating a second importer. These methods used
for omics integration have received much attention lately and
were extensively reviewed in Machado and Herrgård (2014) and
Robaina Estévez and Nikoloski (2014). The reviews focused on
flux bound adjustment and network structure contextualization,
respectively.

Simultaneous to the development of rFBA, Mahadevan et al.
introduced the concept of dynamic FBA (dFBA), which allows
the simulation of time courses using FBA (Mahadevan et al.,
2002). The idea is to use the resulting outputs (e.g., remaining
amount of substrate, generated products) of an earlier time step
as inputs for the next time step. Both concepts where later
combined to form integrated dynamic FBA (iFBA or idFBA)
which uses both time dependent regulatory information and
the dFBA approach (Covert et al., 2008; Lee et al., 2008). In
addition, Covert et al. used a small dynamic ODE model to
dynamically simulate parts of the network based on the results
of the earlier time step. This was also the first attempt to combine

constraint based and dynamic models in a common framework.
In iFBA the ODE model was solved to calculate initial rates,
which were subsequently applied to the constraint basedmodel as
flux bounds. In addition, gene expression data for each time step
was applied to the CBM restricting the active parts. Finally, the
CBM was optimized and the resulting metabolite concentrations
used as inputs to the next iteration of the ODE model.

Integration of different data types on the samemodel, requires
the development of new optimization approaches. Each of these
approaches is specifically designed for the research problem
of interest. In Table 1, an overview on the main FBA-based
methods discussed in this review is given. For a broader view
on FBA methods, please refer to Lewis et al. (2012). Since 2012,
other optimization methods have been developed, and we will
briefly present some of them here. Pozo et al. (2012) developed
a new optimization algorithm which allows to determine the
global optimum of kinetic metabolic models while optimizing
for multiple-objectives. Additionally, this algorithm allows the
selection of sets of the most efficient optimal alternatives. This
optimization approach can be very interesting when being
applied to metabolic engineering, i.e., it can be applied when
the objective is to optimize the synthesis rate of metabolite X,
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at minimum cost, and with minimum concentration change of
intermediate metabolites. Recently, another approach, developed
by Andreozzi et al. (2015), employs CBMs at steady-state and
metabolite concentrations to derive feasible kinetic models which
are representative of a specific physiological state. As the previous
algorithm, this framework is easily applicable to metabolic
engineering and can give hints about which enzymes to alter in
order to achieve a specific physiological state. Furthermore, it can
be used to decrease the uncertainty related with kinetic parameter
estimation and to efficiently sample the solution space.

Constraint based metabolic models are commonly aimed
to simulate the metabolism of small molecules and tend to
include macromolecular biosynthesis and modifications only
implicitly by the inclusion of energy or reductant consuming
reactions. Recently this neglect has been addressed in studies on
E.coli and Thermotoga maritima which explicitly modeled the
macromolecular biosynthesis machinery (Lerman et al., 2012;
Thiele et al., 2012). The basis for this approach is a CBM
model of the target organism, which was noted as M-matrix
and a stoichiometric model of the macromolecular synthesis
machinery, noted as E-matrix. The models are combined by
forming a large ME matrix and adding coupling constraints that
restrict the flux through reactions by requiring the catalyzing
enzymes to be available. In addition, biomass is adjusted to
reflect the explicit costs of macromolecular synthesis and amino
acids, since proteins are allowed to accumulate in the model.
In Thiele et al. (2012), the ME-model was simulated and
the predictions matched with experimental growth rates and
knockout phenotypes. Lerman et al. (2012) used the technique
to investigate minimal ribosomal production rates necessary at
specific growth rates, and could show changes consistent with
experimental data. They also found pathways which become
necessary for efficient growth in the ME-model but which are not
important in a puremetabolic model. Thiele et al. (2012)mention
that performing FBA in the ME-matrix is time consuming,
therefore this approach does not easily scale to larger models. In
practice, this dimensionality is likely to become too high formany
eukaryotic models.

To tackle more complex systems the classic FBA formulation
optimizing for a single objective is often insufficient. One
approach to handle those multi-objective systems is to use a
concept called pareto optimality, where a solution is searched
for which any change would lead to the worsening of at
least one objective (Oh et al., 2009). The concept has been
applied to optimize a human mitochondrial model taking into
consideration three objective functions (Vo et al., 2004). There
are different ways to combine objectives, e.g., by weighted
sums of objective functions, or by successive optimization and
fixation of the objective value of one target flux. However, even
when multiple objectives are employed, the final solution is not
necessarily unique and the number of alternate optima might
become so high that is infeasible to calculate them. To analyze
those solutions it is often useful to perform Flux Variability
Analysis (FVA; Mahadevan and Schilling, 2003). In contrast to
FBA, FVA determines the allowed ranges of fluxes under the
optimal conditions. This can help to indicate flexible reactions,
with large ranges of possible flux values, and reactions under

tight control, which show only a very small range of possible
fluxes.

3. COMBINING MULTIPLE CONSTRAINT
BASED MODELS

While originally flux balance analysis was used on small models,
partially due to a lack of knowledge about metabolic pathways
and also due to a lack of computational resources, ever more
complex models have been constructed over the past years. These
models can include multiple tissues within an organism, or even
multiple distinct organisms which interact metabolically. We will
discuss the creation of these models in the following section
and provide an overview of the development of these models in
Figure 2.

3.1. Constraint Based Models Spanning
Multiple Organisms
While models for isolated microbes are now quite advanced,
investigations of interactions between organisms are rare.
However, there are multiple examples of interactions, either
as symbiotic or mutualistic relations (e.g., plant-mycorrhiza
interactions) or as parasites (like human-pathogens). To address
these types of interactions and investigate their metabolic effects
it is necessary to combine multiple organism networks. The
first attempt to perform such a combination of metabolic
networks of different species was published by Stolyar et al.
(2007). They created a combination of metabolic networks
consisting of two symbiotic microbial species and investigated
the metabolic exchanges occurring between them. This initial
idea has been extended into frameworks for optimization
of microbial communities (Zomorrodi and Maranas, 2012;
Zomorrodi et al., 2014). A more detailed review was published
by Mahadevan and Henson (2012).

The concept of combining different organisms in larger
models has also been used in simulating host-pathogen
interactions. Bordbar et al. (2010) developed a model of the
infection of alveolar macrophages by Myobacterium tubercolosis
and successfully simulated maximal ATP and nitric oxide
(NO) production rates. For the model described by Bordbar
et al. (2010), one of the most important constraints was the
level of oxygen available to the pathogen, as it is (even in
simulations) unable to grow without a minimal amount of
oxygen. Furthermore, the original biomass function was adjusted
to the conditions in the infectedmacrophage based on expression
data. This was achieved in a step-wise manner. First, random
sampling was applied to determine the solution space of each
individual metabolic component. Second, linear regression was
used by iteratively adding and removing metabolic components
to and from the biomass function. This process was performed
until a new biomass function could better fit the gene expression
data. This led to an altered biomass definition with different
metabolic components which could reflect the infectious state
of the pathogen. The resulting composition is closer to that
observed in the infectious state instead of the phase of maximal
growth in vitro. The combined model with tailored objective
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FIGURE 2 | Timeline of development of reconstruction of metabolic models and realization of different models spanning multiple tissues or

organisms. Except for the development of the initial genome scale reconstructions from various kingdoms of live, only multi-tissue or multi-compartment models are

listed. ([1] Edwards and Palsson (1999); [2] Förster et al. (2003); [3] Sheikh et al. (2005); [4] Duarte et al. (2007); [5] Ma et al. (2007); [6] Stolyar et al. (2007); [7] Bordbar

et al. (2010); [8] Lewis et al. (2010); [9] Bordbar et al. (2011); [10] Zomorrodi and Maranas (2012); [11] Heinken et al. (2013); [12] Grafahrend-Belau et al. (2013);

[13] Cheung et al. (2014); [14] Kumar et al. (2014); [15] Gomes De Oliveira Dal’molin et al. (2015))

functions was interrogated with respect to changes in ATP, NO,
and NADH production fluxes in the macrophage, and in the
biomass function flux for both host and pathogen. In addition, in
silico gene essentiality studies were performed on the combined
model and compared to experimental data, showing a better
agreement than the same studies on the disconnected pathogen
model. Finally, flux changes in both the macrophage and the
pathogen were investigated by mapping gene expression data
using the GIMME algorithm (Becker and Palsson, 2008).

Recently, Heinken et al. (2013) focused on a model of the
interactions of the microbium B. thetaiotaomicron and the gut
cells of a mouse model and could simulate their growth on five
different dietary regimes. The coupling between thesemodels was
achieved by creating a new compartment (the intestinal lumen)
where the metabolites could be exchanged between the models.
This multi-scale model was able to capture the symbiotic growth
between mouse and microbe and identify the metabolic crosstalk
between the two organisms.

While there have been examples of organism linkage, the main
issue present in these attempts is the determination and selection
of the links between organisms. Selecting alternative linking
compounds could lead to vastly different results and while there
are active transporters identified for some compounds, many
transport systems allow the exchange of multiple compounds,
which makes it difficult to pin down the right selection.

3.2. Reconstruction and Analysis of
Multi-Tissue Models of Higher Organisms
Coupling models of different tissues within the same organism,
or of specific tissues with pathogens is conceptually similar to
coupling multiple organisms. Both situations commonly define
interactions by allowing the different models to secrete and

consume metabolites provided by the external medium or the
other model. The main challenges are again to find which
compounds are exchanged and determine the extent to which this
exchange occurs. If the aim is to model microbial communities,
there is commonly the assumption that the aim of all community
organisms is to grow. Thus, any interaction between organisms
that allows a higher growth rate for both organisms is commonly
beneficial for both organisms. In a multicellular organism, with
multiple distinct tissues, the aim of each tissue is commonly
distinct from growth (with the prominent exception of cancer).
Thus, it is important to determine the objectives or required
activities of each tissue in a multi-tissue model. Those objectives
can include e.g., ammonia detoxification in the liver or energy
production in the brain. However, it is also possible to define
certain functionalities that have to be provided by each tissue and
assume that the general objective is to perform these tasks most
efficiently (e.g., with a minimum amount of wasted energy, or a
minimal amount of enzymes required). Thus, there are multiple
challenges which have to be addressed when trying to model
multicellular organisms using multi-tissue models.

One of the earliest multi-tissue models was a two-tissue model
of Arabidopsis thaliana by de Oliveira Dal’Molin et al. (2010),
describing the interactions between mesophyll and bundle-
sheath cells. Other models are often considering the different
phases of day and night by creating a dual representation of
the model (Cheung et al., 2014). As these models are the
result of coupling two different models (one for the day and
one for the night), they are conceptually similar to multi-scale
models. In these models, the interactions between the day and
the night model are implemented as reactions which represent
the storage of compounds during either the day or the night.
The concept was extended to a true multi-tissue model by
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Gomes De Oliveira Dal’molin et al. (2015) who created this
dual representation for roots, stem and leaves. By investigating
the exchanges the authors were able to determine the storage
compounds transferred between day and night (Cheung et al.,
2014) and elucidate the effect of translocation costs between
tissues on the localization of biosynthetic activities (Gomes De
Oliveira Dal’molin et al., 2015).

The recent advances in modeling multi-tissue models have
also been applied to human tissues, starting with a multi-tissue
brain model by Lewis et al. (2010). They created three models
for different neuron types in the human brain: glutaminergic,
γ -aminobutyrate (GABA)ergic, and cholinergic. The models
contained the following submodels: a neuron with a neuronal
mitochondria, an astrocyte with an astrocytic mitochondria, an
endothelium/blood compartment and a interstitial space. The
brain model used was based on Recon1 (Duarte et al., 2007),
using only reactions indicated to be localized in the brain by
the Human Protein Reference Database (Mishra et al., 2006)
or by HINV (Yamasaki et al., 2008) and additional reaction
evidence based on literature research. The reconstructed models
could then be used to investigate downregulated pathways in
Alzheimer patients and to obtain a mechanistic overview of
the effect of this downregulation. The authors further identified
potential routes of acetyl-choline precursor synthesis in the
mitochondria. The identification was performed by iteratively
removing reactions from Recon1 (Duarte et al., 2007) while
retaining acetyl-CoA transport frommitochondria to the cytosol.
They could determine three main groups of potential acetyl-
CoA biosynthesis using singular value decomposition on a
set of 21,000 unique minimal reaction sets obtained by this
process. The resulting set included the major two pathways
in the generated cholinergic model and allowed the qualitative
reproduction of multiple regulatory effects on this specific
neuron type.

Subsequently, Bordbar et al. (2011) established a multi-tissue
model of adipocyte, hepatocyte and myocyte. In the model
by Bordbar et al. (2011), each cell model was reconstructed
from Recon1 (Duarte et al., 2007) using the SimPheny toolbox
to generate initial draft models followed by manual curation.
The integration of these cell models was performed in two
steps. The first step was renaming all reactions and metabolites
according to the compartments they were localized in. In
addition, a new blood compartment representing three different
fluids, the interstitial fluid, the urine and the blood, was
introduced. All cellular exchange reactions were linked to this
novel compartment. The second step of integration consisted of
adding a bicarbonate buffer reaction in order to achieve proton
balancing in the blood compartment. Biomass functions for each
cell type were scaled to the average tissue mass and metabolite
degradation in the blood compartment was assumed to be
insignificant (Bordbar et al., 2011). The analysis of this multi-
scale model was performed using FBA and FVA. When there
was more than one objective function, the FBA optimization was
performed using a pareto optimality approach. The authors were
able to analyze specific interactions (like the alanine cycle and
Cori cycles between liver and muscle), and could show that those
interactions are indeed necessary.

A model similar to the model constructed by Bordbar et al.
(2011) has been described recently (Kumar et al., 2014). While
these two models focus on the same tissues, they differ by their
method of reconstruction, integration and analysis. Furthermore,
Kumar et al. (2014) aimed at obtaining a model for diabetic
mice instead of human. However, due to the lack of a genome
scale reconstruction of mice at the time, Recon1 was used as
a basis for their model. The tissue-specific reconstruction was
based on the model building algorithm (MBA; Jerby et al., 2010).
However, instead of reconstructing three distinct tissue models,
the overall model was reconstructed simultaneously. To achieve
this, Recon1 (Duarte et al., 2007), was triplicated to represent all
three tissues, and these “tissues” were connected. Subsequently,
a high, medium and low confidence set was defined for each
part of the triplicated Recon. This extended model was then
reduced to its consistent subnetwork (i.e., to a network in which
all reactions were able to carry a flux). The resulting model
was finally subjected to MBA using the defined confidence sets
for the reactions in each “tissue.” While containing the same
tissues as the model by Bordbar et al. (2011), it consisted of
about four times more reactions. The authors then showed that
they could transfer the model predictions on mouse phenotypes
to diabetic humans. Validation was performed by comparing
model predicted phenotypes to known mouse phenotypes based
on OMIM (McKusick, 2007). Expression data was incorporated
by adapting the flux bounds according to the expression of the
gene. The analysis of the physiological and diseased model was
performed with FVA using multiple steps:

1. Reactions affected by gene regulation had their flux bounds
set to -100 and 100, or 0 and 100, depending on reaction
reversibility, while unaffected reaction flux bounds were equal
to -1000 and 1000, or 0 and 1000, again depending on reaction
reversibility;

2. An FVA of the physiological condition was calculated;
3. The bounds for the disease states were adapted by doubling

and halving the bounds for upregulated and downregulated
reactions respectively;

4. The diabetic condition was analyzed using FVA;
5. The FVA results were used to calculate the difference between

the two conditions.

The resulting exchange fluxes were compared to phenotypes
in the OMIM database and showed a better agreement than
the analysis on an unmodified Recon1. Finally the model was
analyzed for upregulated and downregulated metabolic pathways
based on a contextualized subnetwork. This analysis was again
performed using FVA and comparing the obtained fluxes with
a randomized regulation, resulting in the indication of several
tissue specific upregulated and downregulated pathways, which
were in accordance with experimental observations.

The approaches presented show that it has become feasible
to simulate multi-tissue systems and that the neglect of
metabolic interactions between tissues can hide the true
actions of metabolism. However, they also indicate that it
is important to define non-trivial objectives for each tissue,
or to analyze the qualitative changes in flux potentials in
order to obtain useful predictions. The former makes it
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necessary to define the functions and their extend, which
is non-trivial. The latter approach might be a possibility to
hint at potential interactions/exchanges between tissues, as the
automatic reconstruction will include only those transporters
strictly necessary for the functions of the network. Thus, there
is much potential in multi-tissue reconstruction that is likely to
become addressed in the near future.

4. MULTI-SCALE MODELING OF HIGHER
ORGANISMS

Up to this point, we have focusedmainly on purely stoichiometric
models. These models have the advantage of requiring minimal
amounts of parameters needing only information about the
structure of the underlying network, while still providing the
full metabolic capacity. However, they are commonly restricted
to simulate non-dynamic processes or compare the situation
in two distinct conditions. We will now show recent advances
in using constraint based models as parts of larger, multi-
scale, frameworks which simulate other cellular processes using
dynamic techniques.

The human liver is often a target of metabolic investigations,
as it is one of the metabolically most active tissues performing
many different tasks. Thus, it comes as no surprise that the
metabolic reconstruction of hepatocytes, HepatoNet (Gille et al.,
2010), is one of the most frequently employed metabolic
networks when attempts at integrating additional processes
in human are performed. One of these attempts aimed at
integrating regulatory and signaling processes with metabolic
networks (Fisher et al., 2013). They used a petri net approach to
model the regulatory and signaling network in a dynamic fashion.
The petri net was extended by constraint nodes which were
linked to the flux bounds in the metabolic model. In addition,
objective nodes in the petri net were included, which were used
to set the objective in the CBM, and to react to changes in the
respective objective values. The CBM was simulated using FBA.
The approach employs iterations of the following steps:

1. Calculate the constraint and the objective nodes;
2. Update the metabolic model according to (1);
3. Optimize the metabolic model using FBA;
4. Update the Petri net objective nodes according to the new

objective.

Using the generated framework, they investigated bile acid
homeostasis, and could generate time courses in agreement with
those determined experimentally. In addition, they analyzed
genotype-phenotype relationships, from which they could
identify several genes which are likely critical in keeping the bile
acid homeostasis. The investigation showed a promising way to
integrate the effects of regulatory networks on metabolism in
a dynamic way. It is however restricted to parts of metabolic
networks, where the controlling regulatory network is well
understood.

The pharmaceutical industry routinely uses kinetic whole-
bodymodels to determine the distribution and effects of drugs on

a whole-body scale. These physiologically based pharmacokinetic
models (PBPK) aim to describe the absorption, distribution,
metabolization and excretion of compounds. They commonly
include kinetics for blood flow, and exchange rates for organs
or tissues relevant for the biological question. Additionally, they
are based on prior knowledge of anatomy, physiology as well
as of compounds properties. Furthermore, they can give rise to
an understanding of the macroscale effects of a drug treatment.
Thus, combining these large scale models with the cellular
models above provides the potential to understand both whole-
body behavior and individual cell responses and can provide
information on the potential side effects of a treatment. This
concept has been applied to human (Krauss et al., 2012) and
arabidopsis (Grafahrend-Belau et al., 2013) and we will discuss
both studies in more detail. In the system developed by Krauss
et al. (2012) a liver CBM and a whole-body physiologically
based pharmacokinetics (PBPK) model were coupled. In order
to study, how these compounds affect cellular metabolism, the
CBM models were integrated, replacing parts of the tissue
specific functions. The model chosen to serve as a CBM was
Hepatonet, which was simulated by a static dFBA approach.
Since this static method uses linear programming, it is not
computationally expensive. The models were coupled using two
different approaches. Indirect coupling was used to simulate
processes that have no direct effect on the PBPK model e.g.,
administration of a compound that affects metabolic enzyme
activity. For these processes information from the PBPK model
was used to constrain the CBM model. For processes that have
a direct influence on the dynamics of the PBPK model, direct
linkage was used. To achieve this coupling, a feedback update
loop was integrated in order to update the fluxes for the next
time step in the PBPK model according to those resulting from
the simulation of the CBMmodel. This feedback loop consists of
four steps:

1. Clearance and production rates are calculated at the whole-
body level using the PBPK model;

2. The upper bounds of coupled reactions in the CBM are
adjusted to the calculated values;

3. The CBM is simulated and the coupled rates are determined;
4. The directly coupled PBPK rates are set to the rates obtained

in 3 to determine the metabolite levels for the next iteration.

Indirect coupling was used to simulate both the effect of
allopurinol treatment on hyperuricemia and a paracetamol
overdose causing liver toxification. Direct coupling of the models
was employed to simulate impaired ammonia detoxification,
where the activity of a specific enzyme in the CBM was
impaired. The modeling approach can be applied to study
different processes, inferring the effect of cellular alterations
on the whole-body level. However, it does not allow a direct
assessment of the cellular flux distribution, as the objective used
in the CBM model is to maximize the coupled fluxes while
minimizing the remaining fluxes, which can lead to odd internal
flux distributions.

In an approach similar to the one used by Krauss et al.
(2012) and Grafahrend-Belau et al. (2013) were simulating
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a multi-scale model of barley. The multi-tissue plant model
was reconstructed from literature-based biochemical reactions
and databases. It included leaf, stem, seed, and root models
which were coupled by adding a phloem compartment that
was used for the exchange of carbon and nitrogen sources
between the different plant compartments. The multi-tissue
model was coupled to the dynamic whole-plant ProNet-CN
model (Mueller et al., 2012). In order to analyze the multi-
tissue model, dynamic FBA was used. The optimization of
the multi-tissue model was performed in two steps: first
the carbon uptake was minimized and the result was used
to constrain the second optimization step which consisted
of a minimization of all fluxes using the minimal carbon
uptake. The coupling approaches were similar to those used
by Krauss et al. (2012). The resulting modeling framework was
then used to study the seed developmental phase of barley
plants.

As could be seen, there are many approaches, to add
additional levels of cellular processes to constraint based models,
or use constraint based models as parts of complex whole
organism simulations. And while recently a whole-cell model
of Mycoplasma genitalium has been published by Karr et al.
(2012), this model requires over 1900 parameters to be fitted
or determined. While this has been achieved on a prokaryotic,
rather “simple” system, the same would require many more
parameters for eukaryotic cells and likely at least an order of
magnitude more for multicellular organisms, exhibiting multiple
types of tissues. Thus, approaches with simplified processes, like
CBM models, will serve as a good basis for quite some time
to come, but as we showed, it is always possible to combine
them with other types of models, to improve our capabilities
in simulating the effects of metabolic interventions on larger
systems.

5. CONCLUSION

Even with our constantly growing understanding of the kinetic
properties of enzymatic processes, the multitude of different
conditions and slight variations makes it unlikely that a multi-
cellular kinetic model comprising all known metabolic pathways
will be established in the near future. Thus, we need modeling
techniques that can cope with the size of a complex multi-
tissue network. We have presented several examples of purely
constraint based modeling approaches that aim at providing
these techniques. These methods however, lack the capability to
include effects like distribution limits, or the dynamic response to
the changes in metabolite levels generated by the CBM models.
In the recent years, methods to combine CBMmodels with other
types of models have been proposed to address these issues. These
techniques could allow us to achieve a better understanding of
the interactions between dynamic processes on the whole-body
scale, and cellular metabolic processes. They provide ways to
integrate additional levels of control influencing the behavior of
the metabolic network, and could provide means to decipher the
intricate interactions of the different regulatory processes in a
higher organism. Thus, further development and improvement
of these techniques is likely to be an important step in our voyage
to a complete understanding of metabolism.
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